An EDSL Approach to High Performance Haskell Programming

Johan Ankner
skuggi@gmail.com

Josef Svenningsson
Chalmers University of Technology
josef.svenningsson@chalmers.se

Abstract

This paper argues for a new methodology for writing high performance Haskell programs by using Embedded Domain Specific Languages.

We exemplify the methodology by describing a complete library, meta-repa, which is a reimplementation of parts of the repa library. The paper describes the implementation of meta-repa and contrasts it with the standard approach to writing high performance libraries. We conclude that even though the embedded language approach has an initial cost of defining the language and some syntactic overhead it gives a more tailored programming model, stronger performance guarantees, better control over optimizations, simpler implementation of fusion and inlining and allows for moving type level programming down to value level programming in some cases. We also provide benchmarks showing that meta-repa is as fast, or faster, than repa.

Furthermore, meta-repa also includes push arrays and we demonstrate their usefulness for writing certain high performance kernels such as FFT.

Categories and Subject Descriptors D.1.1 [Programming Techniques]: Applicative (Functional) Programming; D.3.4 [Processors]: Code generation

Keywords EDSL; array programming; optimization; meta programming

1. Introduction

In recent years the Haskell community has developed an increasing interest in writing programs which perform well. Much thanks to the advancements of optimizations and language design focused on efficiency in GHC, the Haskell community now enjoys several high-performance libraries and it is quite possible to write efficient code in Haskell.

In this paper we introduce a new methodology to take high performance Haskell programming to a new level, by use an embedded domain specific language approach. Embedded domain specific languages (EDSLs), and in particular embedded compilers, have been very popular in Haskell for quite some time now and has proven very effective for formulating good abstractions which both provides a natural programming model and efficient code generation. Up until now, high performance EDSLs has been generating code for targets such as C, CUDA and VHDL. Our methodology aims to bring these advantages to writing high performance Haskell programs, by generating efficient Haskell code.

By formulating an EDSL and thereby restricting the language somewhat, many optimization problems become much simpler. As we will demonstrate in this paper, it is possible guarantee that all types are unboxed, every function inlined and all array computations fused. These things can be achieved by still allowing a rich and expressive programming interface.

To demonstrate the viability of our methodology, this paper presents a case study, meta-repa, which is a reimplementation of parts of the repa library [9]. The library meta-repa (the name comes from the fact that it implements repa using meta-programming techniques) is described in some detail to show how achieve the advantages of EDSLs when used for Haskell programming. We include measurements against repa to show that the code generated from meta-repa can indeed compete with a well-designed and mature, high-performance library.

The contributions of the paper are as follows:

- We present a new methodology for writing high performance Haskell programs. We argue for using an embedded domain specific language and generate Haskell from that language. Programming in the domain specific language will be easier for the end user because the language can be given a semantics which matches the problem domain.

- Furthermore, several aspects of the implementation of the library becomes simpler when using the embedded language approach. In particular, many things that are done of the type level can now be done the value level.

- We show how we use the technique of combining deep and shallow embeddings, building on the work in [19], to implement arrays. This technique helps limit the size of the core language, implement fusion for arrays for free and give strong optimization guarantees.

- We demonstrate a complete case-study, meta-repa, showing the benefits of our approach. It is a reimplementation of the repa [9] library using the embedded language approach. We explain the implementation in section 3. Section 5 presents benchmarks showing that meta-repa is on par with, and sometimes faster than repa.

- Instead of one array type we have two. We have included Push arrays [5] in our implementation. The result is a simpler implementation of many array operations including stencil computations and although the user of our library must now use two
different types of arrays we consider the resulting API to be easier to use. We explain the details in section 4.

The repository containing the code for meta-repa can be found at: http://github.com/jankner/meta-repa

2. Programming in meta-repa

The basic unit of a meta-repa program are values of the type Expr a, which represent expressions in the core language. For example, a simple numeric expression can be written using the standard Num instance:

```haskell
ex :: Expr Int
ex = 10*5+2
```

Functions are written as normal Haskell functions over Exprs. For example, a simple numeric function:

```haskell
f :: Expr Int -> Expr Int -> Expr Int
f a b = a*a - b
```

Some examples of core language constructs:

```haskell
if_ :: Computable a => Expr Bool -> a -> a -> a
iterateWhile :: Computable a => (a -> Expr Bool) -> (a -> a) -> a -> a
```

Note that polymorphic arguments use the class Computable rather than being of type Expr a. The Computable class allows the programmer to write code as if certain Haskell constructs are part of the core language. For example, it is more convenient to work with the type (Expr Int, Expr Double) rather than Expr (Int, Double) because the former can be constructed and deconstructed with Haskell’s ordinary tuple syntax. Computable handles the tupling and untupling in the core language automatically. Computable also has instances for functions over other Computable types, and values of type ![a](https://latex.codecogs.com/svg.image?\text{Expr}\%20\text{Float}%), which is the interface for monadic computations in meta-repa.

The library for array computations has two different types of arrays: Pull arrays and Push arrays. Pull arrays correspond to the delayed array representation in repa. Push arrays are a different kind of delayed representation that supports a different set of operations. The implementation of these arrays are discussed further in section 3.2 and 4 respectively. The Shape type is used to represent array indexes of varying dimensionality.

The meta-repa library includes functions for manipulating arrays. Many of them similar to list functions found in the Haskell Prelude. Both array types also have a Functor instance. Further examples of functions on Pull arrays that are in the library:

```haskell
zipWith :: (a -> b -> c) -> Pull sh a -> Pull sh b -> Pull sh c
fromFunction :: (Shape sh -> a) -> Shape sh -> Pull sh a
foldS :: (Computable a, Computable b) -> b -> (a -> b -> b) -> Pull (sh :: Expr Length) a -> Pull sh b
```

The function zipWith works much in the same way as the standard list function of the same name. To construct Pull arrays one can use the function fromFunction by giving it an index function and an extent. The function foldS performs a sequential fold on the outer dimension of an array with at least one dimension, and returns an array that has one less dimension than the input.

Figure 1 shows a comparison between the implementation of a function in repa and meta-repa. The function step is a part of calculating the Mandelbrot set. It calculates \(z_{i+1} = z_i + c \) for a given complex plane, where \(c \) comes from the first argument and \(z_i \) comes from the second argument.

The two code fragments are quite similar, but with noticeable differences:

- Int and Double becomes Expr Int and Expr Double.
- We cannot use the standard Haskell type Complex in the meta-repa code. The reason is because we can’t write a RealFloat instance for Expr Double, which is required by Complex. Instead we define our own Complex type.
- In meta-repa there is no explicitly manifest array type. Instead, the forcePull function is used to write a Pull array to an underlying array and return a Pull array which reads from it.
- The meta-repa code uses the function if_ rather than Haskell’s if then else.
- The repa code uses bang-patterns and INLINE pragmas to make sure that the worker functions are properly inlined and strict, which is important for performance. In meta-repa everything is inlined by default. Since meta-repa uses unboxed values internally all functions are also guaranteed to be strict and unboxed.

To use a meta-repa function it has to be translated into a Template Haskell syntax tree and spliced into the module where we wish to use it. For example, we might have this meta-repa function in a module:

```haskell
foo :: Expr Int -> Expr Int -> Expr Int
foo a b = sumAllS (enumFromTo a b)
```

The function translate produces a Template Haskell syntax tree from the a meta-repa program and can be spliced into another like this:

```haskell
f :: Int -> Int -> Int
f = $(translate foo)
```

The meta-repa function of type Expr Int -> Expr Int -> Expr Int compiles into a Haskell function of type Int -> Int -> Int, which can now be used.

2.1 Contract towards the programmer

The library meta-repa comes with a set of guarantees towards the programmer. These contracts help the programmer understand the efficiency of a particular program. They also show precisely when a programmer can introduce abstraction without losing any performance.

- All types are monomorphic and unboxed.

In particular, expressions of type Expr Int will be compiled to Int#. Expr Float to Float#, pairs to unboxed pairs and so forth.

The programmer is free to write polymorphic and overloaded code. But once the final Haskell code is generated, all types will be monomorphic and unboxed.
Every function is inlined by default.

In high performance code, inlining functions is the right default behaviour and generally increases the performance considerably. Apart from removing the overhead of function calls, inlining typically also enable further optimizations by bringing separate pieces of code together.

When the programmer wants to prevent inlining, for whatever reason, it is simple to create a locally defined function with the `let` combinator provided by our library.

Operations on arrays are fused automatically.

Our library has two types of arrays, `Pull` and `Push`, and all operations working on only one of these types will always be fused, as will conversions from `Pull` to `Push`. However, conversions from `Push` to `Pull` are not fused. This exception might seem surprising but we explain why this is the right default in section 4 on Push arrays.

Fusion can easily be prevented by inserting the function `force`, which will store the array to memory. This follows the design used in Feldspar and Repa.

Common subexpression elimination and code motion are applied extensively on the program.

GHC already does these optimizations to some extent but because of the domain specific nature of our library, we can apply these optimizations more extensively than GHC.

These guarantees and optimizations are possible and practical because we are working with a limited domain specific language. When compiling a general purpose language, many program optimizations often turn out to be pessimizations for certain classes of programs. By constructing a smaller language we’ve made the problem of optimizing programs much easier.

In the next sections we will describe how our implementation achieves these guarantees. Many of them come for free, as a side effect of how we’re representing programs.

3. Implementation of meta-repa

This section explains most of the implementation of meta-repa. Some details, in particular the use of Push arrays are explained in section 4.

Programs in meta-repa are in fact program generators. When meta-repa functions are run they produce abstract syntax trees which are then further translated and transformed. Figure 1 gives an overview of this process. Boxes represent abstract syntax trees and circles represent transformations and translations. First the code within the Template Haskell splice is run. This will compute a term of type `Expr`, a GADT which ensures type safety of program by construction. Since all functions defined using the meta-repa library are really Haskell functions they will simply compute new syntax trees. The net effect will be that the code in the functions will be inlined (unless prevented by the programmer). The inlining happens purely as a result of Haskell’s evaluation, there is no code in the meta-repa library which performs any inlining.

The type `Expr` uses higher order abstract syntax to represent programs. This representation is convenient for programming with but somewhat less ideal for rewriting programs. The AST is therefore converted into a first order representation, which we will refer to as FOAS. A possible implementation would have been to skip the `Expr` type and generate the first order representation directly. We have kept the higher order representation partly because it helps maintain the type safety of the implementation and partly because it allows us to write a well typed, tagless interpreter.

Two optimizations are performed on the FOAS representation: common subexpression elimination (CSE) and code motion. CSE finds identical subexpressions and shares their computation so that it only happens once. The transformation is selective with exactly what subexpressions to share. We found in measurements that the generated code was faster if most small subexpressions were left unshared. The code motion transformation moves code up the syntax tree to that it is computed as early as possible. It also moves constant expressions out of loops.

Another popular way to achieve CSE is to represent the syntax tree as a DAG and thereby get sharing as a side effect of the repre-
sentation. We’ve chosen to use a simpler tree based representation with an explicit \texttt{let} construct for sharing which allows us to make local decisions about what to share and what to duplicate.

After the transformations on the FOAS representation the code is translated to Template Haskell and spliced into the module by GHC. The generated code will have a type where everything is unboxed, which makes it a little awkward to interface with. The function \texttt{translate}, mentioned in section \ref{sec:transformation} can be used by the programmer as a wrapper around the generated code to make it easier to call from Haskell.

We would like to point out that the use of Template Haskell is just a matter of convenience and not of fundamental importance. Another possibility would have been to write the generated Haskell code to a separate file which the programmer would then have to compile separately.

\subsection{Core Language(s)}

The core language of meta-repa, represented by the \texttt{Expr} data type, is a standard typed higher order abstract syntax representation implemented using GADTs. A fragment with the most relevant constructs is shown in Figure \ref{fig:core_language}

The first two constructors \texttt{Var} and \texttt{Value} are used for compilation and evaluation and will never be present in trees produced by code written in meta-repa.

The constructors \texttt{Lambda} and \texttt{App} together with the constructs for binary operators, comparisons and tuples form a small functional language for arithmetic and tests which is useful for efficient scalar computations.

The \texttt{Let} construct is used for explicit sharing in the syntax tree. It is exposed to the programmer via the \texttt{let}, function which can be used to prevent inlining and explicitly share computations. It is worth pointing out that meta-repa does not employ observable sharing \footnote{In the language a construct is observable if it has the potential to affect the final result, e.g. \texttt{let x = y in y} is observable if \texttt{x} is unboxed.} so no new \texttt{let} constructors are introduced when the program is represented by the \texttt{Expr} type.

The constructor \texttt{If} and \texttt{IterateWhile} are unsurprising control flow constructs for pure computations.

There are two types of in-memory arrays in the code language. These arrays are not exposed to the programmer, they are instead used as building blocks for the array types implemented as shallow embedding which we explain in the next subsection. The two type of array in the core language are always allocated in memory. One of the types is \texttt{UArray} which represents pure arrays and the constructs \texttt{ReadUArray} and \texttt{ArrayLength} can be used to query them. There is no pure construct for creating pure arrays, instead they must be created through destructive, monadic constructs which we turn to next.

To begin with, the monadic construct contains the generic \texttt{Return}, \texttt{Bind} and a looping construct, \texttt{WhileM}. Then there are a few constructs for creating, reading and updating mutable arrays. The \texttt{RunMutableArray} construct takes a monadic computation and returns a pure array. In that way it is similar to the ST monad \footnote{The ST monad is a monad for stateful computations in Haskell.}. Compared to the ST monad, the state parameter in the type has been omitted, since there is no construct corresponding to \texttt{runST} with a polymorphic return type which could violate safety by passing mutable arrays outside of the scope of their monadic computation.

Finally, there is the parallel for-loop, \texttt{ParM}, which is the construct for parallel computations. Currently it is possible to have a \texttt{ParM} inside another \texttt{ParM} in the core language. However, as we discuss in section \ref{sec:runtime} our runtime system does not allow this kind of nesting. We have not made any attempts at disallowing nesting in the type system. Instead, the API to meta-repa is designed such that nested parallel loops should never occur. This has affected the \texttt{Push} array library (covered in section \ref{sec:array_lib}); certain combinators use a sequential loop where they could have used a parallel loop in order to keep the parallelism flat.

There are a couple of things to note about the core language:

- It is monomorphic. Having a monomorphic language is important to be able to always generate unboxed Haskell code.

 The core language are monomorphic in the same sense as \eg the C language is monomorphic. The language constructs, such as the \texttt{if} constructor can be used with many different types. But in each particular use of the construct it is applied to a particular type. However, since the language is embedded in Haskell, the programmer can use Haskell’s polymorphism and overloading to write generic and reusable functions. The only restriction is that when compiling a meta-repa program, all types must be instantiated to monomorphic types.

- It has a strict semantics. In order to get maximum performance and, again, to be able to unbox as much as possible we have chosen a strict semantics for meta-repa. It also fits better with the domain compared to lazy evaluation. When writing high performance Haskell one often has to resort to inserting calls to \texttt{seq} and using \texttt{bang} patterns to get strict code. None of that is necessary when programming in meta-repa due to its semantics.

The core language comes with an evaluation function which defines the semantics. The evaluation function is straightforward to write. It is also very useful for trying out the language during its development and as a reference semantics to test the Template Haskell against.
data Expr a where
 Var :: Int -> Expr a
 Value :: a -> Expr a
 Lambda :: Type a -> (Expr a -> Expr b) -> Expr (a -> b)
 App :: Expr (a -> b) -> Expr a -> Expr b
 Binop :: Binop a -> Expr a -> Expr a -> Expr a
 Equal :: Eq a => Expr a -> Expr a -> Expr Bool
 NotEqual :: Eq a => Expr a -> Expr a -> Expr Bool
 Tup2 :: Expr a -> Expr b -> Expr (a,b)
 Fst :: Expr (a,b) -> Expr a
 Snd :: Expr (a,b) -> Expr b
 Let :: Expr a -> (Expr a -> Expr b) -> Expr b
 If :: Expr Bool -> Expr a -> Expr a -> Expr a
 IterateWhile :: Expr (s -> Bool) -> Expr (s -> s) -> Expr s -> Expr s
 ReadIArray :: Storable a => Expr (UArray Int a) -> Expr Int
 ArrayLength :: Storable a => Expr (UArray Int a) -> Expr Int
 Return :: Expr a -> Expr (IO a)
 Bind :: Expr (IO a) -> Expr (a -> IO b) -> Expr (IO b)
 WhileM :: Expr (s -> Bool) -> Expr (s -> s) -> Expr s
 -> Expr (IO ()
 RunMutableArray :: Storable a =>
 Expr (IO (IOUArray Int a))
 -> Expr (UArray Int a)
 newArray :: Storable a =>
 Type a -> Expr Int
 -> Expr (IO (IOUArray Int a))
 ReadArray :: Storable a =>
 Expr (IOUArray Int a) -> Expr Int
 -> Expr (IO a)
 WriteArray :: Storable a =>
 Expr (IOUArray Int a) ->
 Expr Int -> Expr a -> Expr (IO ()
 ParM ::
 Expr Int -> Expr (Int -> IO ()
 -> Expr (IO ()

Figure 3. A representative subset of the Expr data type

As mentioned above, Expr is translated into a first order representation, FOAS, which is used for transforming the program. The type FOAS has all the same constructs as Expr but in a first order representation with explicit variables and explicit types which have been reified from the Haskell types parameter for Expr. Below are some example constructors from FOAS:

| IterateWhile Type FOAS FOAS FOAS |
| Lambda Int Type FOAS |

The constructor IterateWhile has gotten an additional argument, which is a value representing the type of the state passed around during iteration. The Lambda constructor is now completely first order compared to Expr. The first argument is an integer used to represent the variable bound in the body. The second argument is the type of the bound variable.

3.2 Shallow Embeddings for Arrays

The implementation of meta-repa follows the methodology of combining deep and shallow embeddings described in [19]. The type Expr is a deeply embedded core language which contains all the language constructs necessary to generate efficient code from any meta-repa program. On top of the core language there are several shallow embeddings; in the case of meta-repa there are two types of arrays which are implemented as shallow embeddings. Implementing language constructs as shallow embeddings help keep the core language small and allows for easy and lightweight experimentation with different language constructs without having to add new constructors in the core language and translation functions for those.

In meta-repa there are two constructs which are implemented as shallow embeddings; arrays and monads. The monad provided by meta-repa is simply called M and provides wrappers for all the monadic operations in the core language. Implementing M as a shallow embedding has the advantage of proving an instance of the Monad type class. This instance enables the programmer to use do-notation and reuse all the monadic combinators in the standard library. For the details of how the shallow embedding for monads work we refer the reader to the paper [16].

Arrays are also implemented as shallow embeddings. While this is not a new technique, we will present enough details about the implementation in meta-repa to show how it contributes to writing high performance Haskell programs. There are two kinds of arrays in meta-repa, but we will focus on one of them here, Pull arrays, and leave the description of the other kind, Push array, for section 4. Pull arrays are defined as follows:

data Pull sh a = Pull (Shape sh -> a) (Shape sh)

Representing arrays as functions from index to value has become a popular way due to its simple implementation and nice properties. In particular, since every element is computed independently, it is very easy to parallelize writing such arrays to memory.

Below are some examples for functions on Pull arrays:

instance Functor (Pull sh) where
 fmap f (Pull ixf sh) = Pull (f . ixf) sh

storePull :: (Computable a, Storable (Internal a)) =>
 Pull sh a
 -> M (Expr (MArray (Internal a)))
storePull (Pull ixf sh) =
 do arr <- newArrayE (size sh)
 forShape sh (\i ->
 writeArrayE arr i
 (internalize (ixf (fromIndex sh i))))
 return arr
fromFunction :: (Shape sh -> a) -> Shape sh
 -> Pull sh a
fromFunction ixf sh = Pull ixf sh

index :: Pull sh a -> Shape sh -> a
index (Pull ixf s) = ixf

halve :: Pull (Sh (:. Expr Index) a)
 -> (Pull (Sh (:. Expr Index) a)
 , Pull (Sh (:. Expr Index) a))
halve (Pull ixf (sh :. 1))
 = (Pull (ixf (sh :. (1 'div' 2))
 , Pull ixf' (sh :. ((1+1) 'div' 2)))
where ixf' (sh :. ix)
 = ixf (sh :. ix + (1 'div' 2))

zipWith :: (a -> b -> c)
zipWith f (Pull ixf1 sh1) (Pull ixf2 sh2)
 = Pull (\ix -> f (ixf1 ix) (ixf2 ix))
 (intersectDim sh1 sh2)

traverse :: Pull sh a -> (Shape sh -> Shape sh')
 -> ((Shape sh -> a) -> Shape sh' -> b)
 -> Pull sh' b
traverse (Pull ixf sh) shFn elemFn
 = Pull (elemFn ixf) (shFn sh)

forcePull :: Storable a =>
Pull sh (Expr a) -> Pull sh (Expr a)
forcePull p@(Pull ixf sh)
 = Pull (\ix -> ixf' arr ix) sh
where
 ixf' arr ix = readArray arr (toIndex sh ix)
 arr = runMutableArray (storePull p)

A perhaps surprising thing about Pull arrays is that they can be made an instance of the type class Functor. Polymorphic functions in embedded languages typically need some form of class constraint. However, the definition of Pull arrays is carefully chosen such that they can work with any Haskell type. It is only when actual transformations in embedded languages typically need some form of class constraint. However, the definition of Pull arrays is carefully chosen such that they can work with any Haskell type. It is only when actual storing the array, as in the storePull function, where there has to be a constraint on the type of element in the Pull array. The function storePull uses the constructs for mutable arrays to write the Pull array to memory. The function forShape is a parallel for-loop, defined in terms of parM, which goes through all elements in the shape of the array in parallel.

The function fromFunction provides an easy way to create arrays, it's simply an alias for the Pull constructor. The index function provides a means for indexing into the array. In general Pull arrays can not only be efficiently indexed but also subdivided into smaller arrays. An example is the halve function which splits an array in half along the last dimension. A slightly more involved example is zipWith which works much like the standard function on lists with the same name. The slightly non-trivial part is that the shape of the final array is the intersection of the shapes of the input arrays.

The function traverse is directly ported from the repa library and enables powerful transformations of arrays. The implementation of meta-repa also contains many other functions for manipulating arrays ported from the repa library.

A nice benefit of the way Pull arrays are represented and the use of the embedded language approach is that fusion comes for free and is guaranteed. Compiling meta-repa programs means producing a syntax tree of type Expr. Since this type doesn’t contain the type Pull we have a static guarantee that all Pull arrays will be statically eliminated. This is a very powerful guarantee indeed. The fact Pull arrays are eliminated purely as a side-effect of Haskell’s evaluation is an added bonus, which simplifies the implementation significantly.

Although fusion is often what the programmer wants, there are occasions when it is good to be able to disable it. An example is when an array transformation uses the elements of the input array more than once. Then the computation which produced the elements of the input array will be duplicated, akin to call-by-name evaluation. In such situations it is often better to write the array to memory. The function forcePull can be used to achieve this.

The class Storable used in the types of storePull and forcePull represents all primitive types which can be unboxed. It is a synonym for the class Typeable, an internal class in meta-repa to reflect type information to the value level, and the Unbox class from the package vector. The type Internal is an associated type in the Computeable class which translates types Haskell types such as pairs to their representation in meta-repa. Continuing the example from section 2, (Expr Int, Expr Double) will be translated to Expr (Int,Double).

3.3 From type level to value level programming

In repa, the type of shapes of an array is represented by a type class and two singleton types as follows:

class Shape sh where
...

data Z = Z

data sh :: e = sh :: e

instance Shape Z where
...

instance Shape sh => Shape (sh :: Int) where
...

In meta-repa, thanks to the meta programming approach, shapes can be represented by an ordinary data type definition.

data Z

data sh :: e

data Shape sh where
 Z :: Shape Z
 (:.) :: Shape sh -> Expr Length
 -> Shape (sh :: Expr Length)

Defining the Shape type like a GADT makes programming with is a lot more natural. Many of the functions which had to be implemented in the Shape type class in repa can now be implemented as ordinary functions.

dim :: Shape sh -> Int
dim Z = 0
dim (sh :: _) = dim sh + 1

size :: Shape sh -> Expr Length
size Z = 1
size (sh :: 1) = size sh * 1

toDouble :: Shape sh -> Shape sh -> Expr Index
toDouble Z a = 0
toDouble (sh1 :: sh2) (i1 :: i2)
 = toIndex sh1 i1 + toIndex sh2 + i2

Functor

dataset/Papers/repas/repas.pdf

The types of these types, Pull arrays, were already presented in section 3.2.

The other type is Push arrays, a notion originally introduced in

Push arrays. The two types have different strengths:

• Pull arrays can efficiently be concatenated. Furthermore, they
 allow sharing computations between different array elements and
 generating code which writes multiple array elements per
 loop iteration.

It’s worth noting that both Pull- and Push arrays can be altered to
efficiently support some of the features that they lack, when defined
in their simplest form. However, based on our experience, these
alterations lose the strong optimization guarantees; either fusion is
lost, or sometimes the generated code is slow. In meta-repa we have
specifically chosen to keep the implementation of the arrays simple
and to provide strong guarantees towards the programmer about
what optimizations can be expected.

Push arrays are implemented as follows:

data Push sh a =
 Push ((Shape sh -> a -> M () -> M ()) (Shape sh))

The second argument to the Push constructor is the extent of
the array. The first argument is a monadic computation (using the
M monad introduced in section 3.2) which, when run, will write the
array to memory. We refer to this computation as the kernel of the
array. The kernel is parametrized by the operation used to write
to memory. Parametrizing over the writing operation is what gives
Push arrays their flexibility.

Here are some example functions on Push arrays.

enumFromTo :: Expr Int -> Expr Int
 -> Push (Z :. Expr Int) (Expr Int)
enumFromTo f t = Push loop (Z :. t - f + 1)
 where loop w = parM (t - f + 1) (\x ->
 w (Z :. x) (i + f))

instance Functor (Push sh) where
 fmap f (Push m sh) = Push n sh
 where n w = m (\i a -> w i (f a))

(+.*) :: Push (sh:.Expr Length) a
 -> Push (sh:.Expr Length) a
 -> Push (sh:.Expr Length) a
 (Push m1 (sh1:.11)) +. (Push m2 (sh2:.12))
 = Push m (sh1:.(11 + 12))
 where m k = m1 k >>
 m2 (\(sh:.i) a -> k (sh:(i+11)) a)

storePush :: (Computable a, Storable (Internal a))
 => Push sh a
 -> M (Expr (MArray (Internal a)))
storePush (Push m sh) =
 do arr <- newArrayE (size sh)
 m \i a -> writeArrayE arr
 (toListIndex sh i)
 (internalize a)

 P.return arr

toPush :: Pull sh a -> Push sh a
toPush (Pull ixf sh) = Push m sh
 where m k = forShape sh (\i ->
 let ish = fromIndex sh i
 in k ish (ixf ish))

force :: Storable a
 => Push sh (Expr a)
 -> Pull sh (Expr a)
force p@(Push f l) = Pull ixf l
 where
 ixf ix = readIArray arr (toIndex 1 ix)
 arr = runMutableArray (storePush p)
The function `enumFromTo` is similar to the standard Haskell function on lists with the same name. The kernel `loop` is defined in terms of a parallel for-loop which writes each element.

Just like Pull arrays, Push arrays can be made an instance of the type class `Functor` as shown in the code above. The kernel of the result array simply calls the kernel of the argument array but modifies the write function such that the elements get transformed before being written.

The operator `.+.` is a good example of the benefits with Push arrays. It defines concatenation along the final dimension of two Push arrays. (The arrays must have the same size in all the other dimensions, something which is not checked.) The kernel of the resulting Push array is simply sequential composition of the kernels for the two argument arrays. In the common case this will mean that the final array is written using two loops, each writing to its own part of the array. This should be compared the code generated from concatenation on Pull array, which is a single loop containing a branch which checks which argument array to read from. Concatenation for Push arrays has effectively moved the conditional out of the loop, a big win in terms of performance. It should be added that an even better implementation of concatenation would have used parallel composition instead of sequential composition. However, our current runtime system doesn’t support that. There is still room for improvements.

The function `storePush` shows how Push arrays are written to memory. It allocates a fresh mutable array in memory. Then the kernel of the Push array argument is invoked by giving it a writing operation which writes to the newly allocated array. When the kernel is run the array will have been populated with elements and is returned as the result of the function.

Inter-operating Pull arrays and Push arrays is an interesting story. Pull arrays can easily be converted into Push arrays in a way that preserves fusion. In meta-repa the function `toPush` is used for this purpose. However, there doesn’t seem to be any way of converting Push arrays to Pull array without allocating memory and thereby destroying fusion. This asymmetry might seem disturbing but is hardly surprising; Pull- and Push arrays have different strength and weaknesses so we should not expect to be able to convert freely between them. In fact, when implementing stencil computations we will use this asymmetry to our advantage (see below, section 4.2). For situations when the programmer wants to avoid fusion and make sure to allocate an array to memory the function `force` can be used.

4.1 FFT

One example algorithm where Push arrays have proven valuable is the Fast Fourier Transform. Below are the relevant bits of our implementation, gently beautified for presentation purposes.

```haskell
fft :: (Computable a, Num a) => Pull DIM1 a -> Pull DIM1 a
fft ws vs = forLoop (ilog2 $ length1 vs) vs stage

unhalve :: (Computable a)
        => Push DIM1 (a,a) -> Push DIM1 a
unhalve (Push f (Z :. l))
  = Push (f . spread) (Z :. l * 2)
  where spread f (Z :. ix) (a1,a2)
         = f (Z :. ix) a1 >> f (Z :. (ix+l)) a2
```

The function `fft` is a Cooley-Tukey radix-2 decimation in frequency algorithm. There are many details and functions which are not important for the purpose of the current discussion and so they have been left out. The operators `>>.` and `<<.` performs bitwise right- and left shift and `ilog2` performs integer logarithm base 2. The essential point is the function `unhalve` which is used to implement the butterfly network. It takes a Push array of pairs and flattens it such that the first half of the resulting Push array contains all the first components of the pairs and the second half the second components. The crucial bit is that the computation of the pair can be shared and that the two components of the pair can be written in the same loop iteration. It is not possible to express this kind of sharing using Pull arrays alone.

Section 4.1 presents benchmarks showing that using Push arrays translates to a real speed advantage.

4.2 Stencil computations

Stencil computations consist of computing elements in the result array from a fixed pattern of neighboring elements in the input. Since adjacent elements share neighbors there is a lot of potential for sharing computations between elements. Exploiting this is not possible using Pull arrays, since elements are necessarily computed independently.

In repa this problem has been addressed by using a different kind of delayed representation called a censored array, which allows LLVMs optimizer to recover the sharing in the stencil computation. [11]

In meta-repa the problem of sharing computation between elements is solved by using Push arrays to represent the result of the stencil computation. The Push array allows the producer more control over the loop that writes the array, which makes it possible to explicitly exploit the sharing by having an inner sequential loop that maintains a state. Computations that can be shared are stored in the state so that they can be used when computing subsequent elements.

Another problem with stencil computations is handling the boundaries. When computing elements along the edges of the array the stencil falls outside the bounds of the array. This must be handled specially to avoid out-of-bounds arrays accesses. However, performing this bars-checking for every array access in the stencil computation would clearly be a big performance penalty. Therefore the boundary regions of the array should be computed separately so that the bounds-checking is only performed where it is needed. The central region can then be computed efficiently. Since the boundary regions are generally small compared to the central region, the computation still performs well overall.

Repa uses a partitioned representation to enable separate computation of the boundary regions and the central region. The disadvantage of this is that it adds complexity to the array representations, and some operations, like map, needs a special form that preserves the structure of partitioned arrays.

In meta-repa this problem is solved by representing stencil computations as functions from Pull arrays to Push arrays. The partitioning of the input array into different regions is done using the Pull array representation since they can be efficiently subdivided (see e.g. `halve` in section 3.2). Each region is then computed separately and produces a Push array each. These Push arrays can then be efficiently concatenated, similarly to the `.+.` operator shown.
above. The generated code will contain a specialized loop for each region.

```haskell
runStencil :: Computable a
  => Boundary a
  -> Stencil (sh :: Expr Int) a b
  -> Pull (sh :: Expr Int) a
  -> Push (sh :: Expr Int) b
```

The first argument is a value that describes how the boundaries are handled. The `Stencil` type describes the stencil computation. It contains the functions used to initialize and update the state, and to use the state to compute the elements of the result. This gives a lot of control when defining the stencil, allowing for explicitly exploiting sharing, but it also means that it is more work to define the stencil. To save the programmer the trouble of having to define the stencil by hand a quasi-quoter is provided to help with defining stencils, in the same way that repa does.

```haskell
sobel :: Stencil DIM2 (Expr Float) (Expr Float)
sobel = [stencilM| -1 0 1
  -2 0 2
  -1 0 1 |]
```

```haskell
blur :: Stencil DIM2 (Expr Float) (Expr Float)
blur = [stencilM| 2 4 5 4 2
  4 9 12 9 4
  5 12 15 12 5
  4 9 12 9 4
  2 4 5 4 2 |]
```

A final advantage to using a Push array for the result of a stencil computation and a Pull array for the input is that it prevents two stencil computations from being fused, since a Push array cannot be converted to Pull array except by writing it to memory. This is an advantage because fusing stencil computations is very bad for performance. So the type of the `runStencil` function prevents the user from doing something that would result in bad performance.

5. Measurements

Table 1 presents benchmarks comparing the performance of meta-repa with repa. All measurements have been performed on a machine with a four core Intel Core i7-3770K processor clocked at 3.5 GHz and with 16 Gb of RAM, running Ubuntu 12.04.1. All programs have been compiled with GHC version 7.6.1 and LLVM version 2.9. The package criterion [15] has been used to perform the measurements and the times in the table are the mean times reported by criterion. The version of the repa library and the repa-algorithms library is 3.2.3.1. All benchmarks were compiled with the flags recommended by the repa documentation: `-O4ph -rtsopts -threaded -fno-liberate-case -funfolding-use-threshold1000 -funfolding-keeness-factor1000 -fllvm-optlo-D3`.

The measurements are divided into three different categories: “no -threaded”, “-H1” and “-H4”. The category “no -threaded” means that the flag `-threaded` was left out when compiling the benchmarks, making them run without the parallel runtime system. The main reason for including this category is the fit benchmarks which we discuss below. The categories “-H1” and “-H4” means that the benchmarks where run with the corresponding runtime flag to indicate how many processes they should be run with. The “-H1” category only uses one process but gives an indication of the penalty of running with the parallel runtime system compared to the “no -threaded” category.

The benchmarks matrix100, matrix500 and matrix1000 are matrix multiplication of two matrices of sizes 100 × 100, 500 × 500 and 1000 × 1000 respectively. Blur and sobel are two stencil operations on two-dimensional images. The blur stencil has size 5 × 5 while the sobel stencil is 3 × 3. Both benchmarks have been run on a png image of size 3000 × 2400 with eight bit color depth. Finally, the benchmarks fft-small, -medium and -large runs FFT on a randomized, complex valued, one-dimensional array of length 2^{16}, 2^{17} and 2^{18} respectively.

The matrix multiplication benchmarks provides the closest comparison between the code generation quality of repa and meta-repa. Both implementations run essentially the same code and the only difference is how well it has been optimized. The situation is a little different for the stencil benchmarks, blur and sobel. As explained in section 4.2, repa relies on LLVM to share memory accesses between loop iterations whereas meta-repa generates code with sharing directly. The sharing is done slightly differently which accounts for some of the differences in the timings. Finally, the FFT benchmarks run different algorithms and are included to demonstrate the advantage of using Push arrays.

In the matrix multiplication benchmarks meta-repa has a small but consistent advantage over repa. Both implementations scales well to four cores. The blur benchmark exhibits a peculiar behaviour. Without the `-threaded` flag the repa library has a slight advantage while the reverse is true when using the parallel runtime system. For the sobel benchmark the repa library is consistently ahead. The FFT benchmarks seem to exhibit a bug in the repa library. When compiled using the parallel runtime it shows really poor performance. For this reason we included the sequential benchmark which shows more reasonable running times. However, meta-repa still outperforms repa by almost a factor of four due to the use of Push arrays, as explained in section 4.1.

The conclusion we draw from these measurements is that the methodology we’ve used when developing meta-repa is very fruitful. Our library is on par with, and in some cases even beats repa, which is a mature library for high performance computing developed over several years.

6. Discussion

This paper presents a methodology for using embedded domain specific languages to implement high performance Haskell programs. It comes with a complete example which shows the viability of the approach.

6.1 Summary

Out methodology has some pros and cons which we have mentioned throughout the paper. Here is a concise summary of the different aspects of using the embedded language approach.

Advantages:

- Tailored programming model.
 Since the embedded language can be given a semantics which matches the particular domain, the programming style can become more tailored to the problem. In our particular case-study the programmer doesn’t need to concern himself with writing bang patterns or inline pragmas to make the code fast. Relieving the programmer of having to insert these annotations removes a whole category of potential performance bug which can go unnoticed and be difficult to pin down.

- Performance guarantees
 When using a restricted language, the problem of optimizing it becomes much simpler, to the point where it is possible to give strong performance guarantees.
Drawbacks:

- **Inlining and fusion for free**

 Due to using an embedded language, inlining comes for free and by default. The implementation of meta-repa doesn’t have to have any code to performing inlining and substitution, it simply relies on Haskell’s evaluation.

 In a similar manner, fusion also comes for free, thanks to well-chosen representations of arrays.

- **Domain specific optimizations**

 Even though we generate Haskell code and make use of the optimizations provided by GHC and whichever backend it uses, it is possible to write domain specific optimizations. In our case-study we have implemented common subexpression elimination and code motion. But given that our methodology gives access to the syntax tree of the program, any kind of optimization can be implemented.

- **Value level programming instead of type level programming**

 As seen in section 3.3, the implementation can become simpler by moving type level computations to the value level. This helps to simplify types in the API and makes the library easier to use and comprehend.

Drawbacks:

- **Having to implement an embedded language requires an upfront investment in defining the language and its compilation.**

- **Some types become a little more awkward. For instance, one has to write Expr Int instead of Int.**

Weighing the advantages and drawbacks against each other our conclusion is clear, at least for the case-study presented in this paper. The embedded language approach can be a net win in the long term for writing high performance applications in Haskell. In order to definitively prove our thesis more case-studies are needed.

Push arrays also come with an initial cost in that they introduce yet another type of arrays to the API of the library. However, considering the performance advantages, the simplified implementation of stencil computations and its more useful default behaviour when it comes to fusion, we consider Push arrays to be a definite advantage.

6.2 Future work

The library meta-repa is only the first step towards a framework for writing high performance Haskell programs. We hope to be able to build on meta-repa to support application areas different from parallel array programming. However, it is not clear that there will be one single language which will be able to handle all use cases. It might be that new languages have to be developed to cater for needs in different domains. Further research is needed to determine the best way to use the methodology presented in this paper.

7. Related work

Domain specific languages have become increasingly popular over the last decade, although they have a long and rich history [2]. Haskell has proved very effective as a host language for embedding domain specific languages. Examples include [11][13][17][20].

The approach of combining deep and shallow embeddings is explained in [19] and has been used previously in languages such as Feldspar [1].

One particular feature of the methodology presented in this paper is that it enables library writers to easily write their own optimizations so that they can be sure to get the performance they want. Recently GHC has been equipped with a plugin mechanism which allows for easily adding new optimization passes. While the plugin facility is very useful it will have a hard time providing the kind of performance guarantees which our library offers. The reason is because it is compiling all of Haskell and due to Haskell’s generality, providing the same kind of performance guarantees is an undecidable problem. Again, formulating a limited, domain specific language pays off by making the problem of optimization feasible.

GHC also has another mechanism for enabling the library writer to implement new optimizations: rewrite rules [8]. Although a very useful tool for writing high performance Haskell it has limited expressivity. It is not clear that it is even possible to use rewrite rules to implement common subexpression elimination and code motion featured in meta-repa. In our design, the full expressivity of Haskell is at hand when writing new optimizations.

A big influence for this work, naturally, is the repa library [9]. It has proven to be a very nice library to work with and reimplement, during the course of implementing meta-repa. Repa has in many way been ideal to use as a vehicle to compare our embedded language approach to regular Haskell programming.

Henning Thielemann has developed a family of libraries for audio processing, called “synthesizer” [21]. One particular member in this family is “synthesizer-Ivm” [22] which employs runtime code generation using LLVM to achieve high performance. This methodology is similar in spirit to our approach but we use compile-time code generation and generate Haskell. For our purposes, generating Haskell was sufficient from a performance perspective and very convenient as Haskell allows us to generate relatively high level code compared to LLVM.

PanTHeon [18] is an image processing library which uses Template Haskell to perform domain specific optimizations as compile time. The main difference with our work is that PanTHeon uses the full syntax of Template Haskell instead of a restricted domain specific language. Therefore PanTHeon can not offer any kind of optimization guarantees. Additionally, PanTHeon does not use shallow embeddings as meta-repa does.

The latest version of Nikola [12] is very similar in design to meta-repa, but targets GPU computations instead. An interesting
bit of future work would be to combine the two libraries to give a uniform language which integrates both CPU and GPU computations.

The notion of Pull arrays is by now a well established way of representing arrays pioneered by [5]. The guarantee of fusion for arrays in meta-repa is the same as in Feldspar [1] and repa. It stems from the implementation technique pioneered by Feldspar.

Push arrays were first introduced in Obsidian [5] and has subsequently been implemented in Feldspar [1] and Nikola [13].

Stencil computations lend themselves very well to functional parallel programming as has been noted in recent papers [11, Orchard et al. [14]]. Our characterization of stencil computations as functions from Pull- to Push arrays seems new although some instances of this principle already occurred in [5].

Acknowledgments

The FFT implementation is a port from a Feldspar implementation written by Anders Persson. Thanks to Emil Axelsson for suggesting to use GADTs to represent the Shape type. The mandelbrot example is due to Geoffrey Mainland.

We would like to thank the members of the functional programming group at Chalmers who gave us valuable feedback during a presentation of meta-repa. We also thank the reviewers for many insightful comments which helped to improve the paper.

The second author is partially funded by the Swedish Foundation for Strategic Research through the the Resource Aware Functional Programming (RAW FP) Project.

References

