Combining Deep and Shallow Embedding of Domain-Specific Languages

Josef Svenningsson, Emil Axelsson

Chalmers University of Technology

Abstract
When compiling embedded languages it is natural to use an abstract syntax tree to represent programs. This is known as a deep embedding and it is a rather cumbersome technique compared to other forms of embedding, typically leading to more code and being harder to extend. In shallow embeddings, language constructs are mapped directly to their semantics which yields more flexible and succinct implementations. But shallow embeddings are not well-suited for compiling embedded languages. We present a technique to combine deep and shallow embedding in the context of compiling embedded languages in order to provide the benefits of both techniques. In particular it helps keeping the deep embedding small and it makes extending the embedded language much easier. Our technique also has some unexpected but welcome knock-on effects. It provides fusion of functions to remove intermediate results for free without any additional effort. It also helps to give the embedded language a more natural programming interface.

1. Introduction
When compiling an embedded language it is natural to use an algebraic data type to represent the abstract syntax tree (AST). This is known as a deep embedding. Deep embeddings can be cumbersome: the AST definition can grow quite large in order to represent all the language features, which can make it rather unwieldy to work with. It is also laborious to add new language constructs as it requires changes to the AST as well as all functions manipulating the AST.

In contrast, shallow embeddings don’t require an abstract syntax tree and all the problems that come with it. Instead, language constructs are mapped directly to their semantics. But if we wish to compile our embedded language we have little choice but having some form of AST — in particular if we not only want to compile it, but first transform the representation, or if we have another type of backend, say, a verification framework.
In this paper we present a technique for combining deep and shallow embeddings in order to achieve many of the advantages of both styles. This combination turns out to provide knock-on effects which we also explore. In particular, our technique has the following advantages:

Simplicity. By moving functionality to shallow embeddings, our technique helps keep the AST small without sacrificing expressiveness.

Abstraction. The shallow embeddings are based on abstract data types leading to better programming interfaces (more like ordinary APIs than constructs of a language). This has important side-effects:

- The shallow interfaces can have properties not possessed by the deep embedding. For example, our vector interface (section 4.5) guarantees removal of intermediate structures (see section 5).

- The abstract types can sometimes be made instances of standard Haskell type classes, such as `Functor` and `Monad`, even when the deep embedding cannot (demonstrated in sections 4.4, 4.5 and 6).

Extensibility. Our technique can be seen as a partial solution to the expression problem [37] as it makes it easier to extend the embedded language with new language constructs and functions.

1.1. Organization

The paper is organized as follows: In section 2 we start by giving a more detailed introduction to shallow and deep embeddings, including a comparison of the two methods (section 2.1). Section 3 gives a detailed description of our technique. Section 4 gives a series of examples that show how a deep embedding can be extended with new shallow language constructs. Section 5 describes how fusion comes for free as a consequence of our technique and explain in detail what guarantees it provides. Section 6 describes how to embed arbitrary monads and adds a monad for mutable data structures as an example. Section 7 shows how to embed functions, and finally, section 8 discusses how the presented techniques can be scaled up to a full EDSL implementation.

Throughout this paper we will use Haskell [27] and some of the extensions provided by the Glasgow Haskell Compiler. While we will use many Haskell-specific functions and constructs the general technique and its advantages translates readily to other languages.

2. Shallow and Deep — Pros and Cons

To explain the meaning of “deep” and “shallow” we will use the following small embedded domain specific language (EDSL) from [9] as an illustrating example.
This piece of code defines a small language for regions, i.e. two-dimensional areas. It only shows the interface; we will give two implementations, one deep and one shallow.

The type \texttt{Region} defines the type of regions which is the domain we are concerned with in this example. We can interpret regions by using \texttt{inRegion}, which allows us to check whether a point is within a region or not. We will refer to functions such as \texttt{inRegion} which interpret values in our domain as \emph{interpretation functions}. The function \texttt{inRegion} takes an argument of type \texttt{Point} and we will just assume there is such a type together with the expected operations on points.

Regions can be constructed using \texttt{circle} which creates a region with a given radius (again, we assume a type \texttt{Radius} without giving its definition). The functions \texttt{outside}, \texttt{(\&\&)} and \texttt{(||)} take the complement, intersection and union of regions. As an example of how to use the language, we define the function \texttt{annulus} which can be used to construct donut-like regions given two radii:

\begin{verbatim}
annulus :: Radius \rightarrow Radius \rightarrow Region
annulus r1 r2 = outside (circle r1) \&\& (circle r2)
\end{verbatim}

The first implementation of our small region EDSL will use a \emph{shallow} embedding. The code is shown below.

\begin{verbatim}
inRegion :: Point \rightarrow Region \rightarrow Bool
circle :: Radius \rightarrow Region
outside :: Region \rightarrow Region
(\&\&) :: Region \rightarrow Region \rightarrow Region
(||) :: Region \rightarrow Region \rightarrow Region
\end{verbatim}

\begin{verbatim}
inRegion p r = r p
circle r = \lambda p \rightarrow magnitude p \leq r
outside r = \lambda p \rightarrow \text{not} (r p)
r1 \&\& r2 = \lambda p \rightarrow r1 p \&\& r2 p
r1 || r2 = \lambda p \rightarrow r1 p || r2 p
\end{verbatim}

Our concrete implementation of the type \texttt{Region} is the type \texttt{Point \rightarrow Bool}. We will refer to the type \texttt{Point \rightarrow Bool} as the \emph{semantic domain} of the shallow embedding. It is no coincidence that the semantic domain is similar to the type of the function \texttt{inRegion}. The essence of shallow embeddings is that the representation they use directly encode the operations that can be performed on them. In our case \texttt{Region} is represented exactly as a test whether a \texttt{Point} is within the region or not.

The implementation of the function \texttt{inRegion} becomes trivial; it simply uses the function used to represent regions. This is common for shallow embeddings; interpretation functions like \texttt{inRegion}, can make direct use of the operations used in the representation. All the other functions encode what it means for a point to be inside the respective region.

The characteristic of deep embeddings is that they use an abstract syntax tree to represent the domain. Below is how we would represent our example language using a deep embedding.
The type `Region` is here represented as a data type with one constructor for each function that can be used to construct regions.

Writing the functions for constructing new regions becomes trivial. It is simply a matter of returning the right constructor. The hard work is instead done in the interpretation function `inRegion` which has to interpret the meaning of each constructor.

2.1. Brief Comparison

As the above example EDSL illustrates, a shallow embedding makes it easier to add new language constructs — as long as they can be represented in the semantic domain. For instance, it would be easy to add a function `rectangle` to our region example. On the other hand, since the semantic domain is fixed, adding a different form of interpretation, say, computing the area of a region, would not be possible without a complete reimplementation.

In the deep embedding, we can easily add new interpretations (just add a new function like `inRegion`), but this comes at the price of having a fixed set of language constructs. Adding a new construct to the deep implementation requires updating the `Region` type as well as all existing interpretation functions.

This comparison shows that shallow and deep embeddings are dual in the sense that the former is extensible with regards to adding language constructs while the latter is extensible with regards to adding interpretations. The holy grail of embedded language implementation is to be able to combine the advantages of shallow and deep in a single implementation. This is commonly referred to as the expression problem.

One way to work around the limitation of deep embeddings not being extensible is to use “derived constructs”. An example of a derived construct is `annulus`, which we defined in terms of `outside`, `circle` and `∩`. Derived constructs are shallow in the sense that they do not have a direct correspondence in the underlying embedding. Shallow derived constructs of a deep embedding are particularly interesting as they inherit most advantages of both shallow and deep embeddings. They can be added with the same ease as constructs in a fully shallow embedding. Yet, the interpretation functions only need to be aware of the deep constructs, which means that we retain the freedom of interpretation available in deep embeddings. There are, of course, limitations to how far these
advantages can be stretched. We will return to this point in the concluding discussion (section 9).

The use of shallow derived constructs is quite common in deeply embedded DSLs. The technique presented in this paper goes beyond “simple” derived constructs to extensions with new interface types leading to drastically different interfaces.

3. Overview of the Technique

We assume a setting where we want an EDSL which generates code. Code generation tends to require intensional analysis of the AST, which is not directly possible with a shallow implementation (but see reference [8] for how to generate code in the final tagless style). Hence, we need a deep embedding as a basis. Our technique can be summarized in the following steps:

1. Implement a deeply embedded core language. The aim of the core language is not to act as a convenient user interface, but rather to support efficient generation of common code patterns in the target language. For this reason, the core language should be kept as simple as possible.

2. Implement user-friendly interfaces as shallow embeddings on top of the core language. Each interface is represented by a separate type and operations on this type.

3. Give each interface a precise meaning by giving a translation to and from a corresponding core language program. In other words, make the deep embedding the semantic domain of the shallow embedding. This is done by means of type class instantiation. If such a translation is not possible, or not efficient, extend the core language as necessary.

In the sections that follow we will demonstrate our technique through a series of examples. For the sake of concreteness we have made some superficial choices which are orthogonal to our technique. In particular, we use a typed embedded language and employ higher order abstract syntax to deal with binding constructs. Neither of these choices matter for the applicability of our technique.

4. Examples

To demonstrate our technique we will use a small embedded language called FunC as our running example. The data type describing the FunC abstract syntax tree can be seen below.¹

```haskell
data FunC a where
  Lit :: Type a ⇒ a → FunC a
  If  :: FunC Bool → FunC a → FunC a → FunC a
```

¹We use a serif font to refer to the language FunC, and sans serif to refer to the data type implementation FunC.
FunC is a low level, pure functional language which has a straightforward translation to C. It is meant for embedding low level programs and is inspired by the core language used in Feldspar \[5\]. We use a GADT to give precise types to the different constructors. We have also chosen Higher Order Abstract Syntax (HOAS) \[28\] to represent constructs with variable binding. In the above data type, the only higher-order construct is While. We will add more in coming sections.

The Lit constructor is used to make a literal. Its type is constrained to members of the Type class which captures simple types that can be stored in variables in the target language (e.g. Int, Bool, Float, Array Int Int, etc.). FunC also has if-expression for testing booleans. The while expression models while loops. Since FunC is pure, the body of the loop cannot perform side-effects, so instead the while loop passes around a state. The third argument to the While constructor is the initial value of the state. The state is then updated each iteration of the loop by the second argument. In order to determine when to stop looping the first argument is used, which performs a test on the state. Furthermore, FunC has pairs which are constructed with the Pair constructor and eliminated using Fst and Snd. The constructs Prim1 and Prim2 are used to create primitive functions in FunC. The string argument is the name of the primitive function which is used when generating code from FunC and the function argument is used during evaluation. It is possible to simply have a single constructor for primitive functions of an arbitrary number of arguments but that would complicate the presentation unnecessarily for the purpose of this paper. The two last constructors, Value and Variable, are not part of the language. They are used internally for evaluation and printing respectively.

The exact semantics of the FunC language is given by the eval function.\(^2\)

\[
\begin{align*}
&(!$) :: (a \to b) \to a \to b \\
&f !$ a = \text{seq } a (f a) \\
&\text{eval} :: \text{FunC } a \to a \\
&\text{eval} \text{ (Lit } l) = l \\
&\text{eval} \text{ (While } c \text{ b i) = head } \text{ dropWhile } (\text{eval } \circ c \circ \text{Value}) \text{ $iterate (eval } \circ b \circ \text{Value}) \text{ $eval i} \\
&\text{eval} \text{ (If } c \text{ t e) = if eval } c \text{ then eval } t \text{ else eval } e \\
&\text{eval} \text{ (Pair } a \text{ b) = (,) !$ eval } a \text{ !$ eval } b \\
&\text{eval} \text{ (Fst } p) = \text{fst } (\text{eval } p)
\end{align*}
\]

\(^2\)We define the operator !$ for strict application. The standard operator, $!, has the wrong fixity for our purposes.
eval (Snd p) = snd (eval p)
eval (Prim1 f a) = f ! eval a
eval (Prim2 f a b) = f ! eval a ! eval b
eval (Value a) = a

4.1. The Syntactic Class

So far our presentation of FunC has been a purely deep embedding. Our
goal is to be able to add shallow embeddings on top of the deep embedding
and in order to make that possible we will make our language extensible using a type
class. This type class will encompass all the types that can be compiled into
the FunC language. We call the type class Syntactic (inspired by a less general
class of the same name in Pan [14]).

class Syntactic a where
type Internal a
toFunC :: a → FunC (Internal a)
fromFunC :: FunC (Internal a) → a

When making an instance of the class Syntactic for a type T one must specify
how T will represented internally, in the already existing deep embedding. This
is what the associated type Internal is for. The two functions toFunC and fromFunC
translates back and forth between the type T and its internal representation. The
fromFunC method is needed when defining user interfaces based on the Syntactic
class. The first instance of Syntactic is simply FunC itself, and the instance is
completely straightforward.

instance Syntactic (FunC a) where
type Internal (FunC a) = a
toFunC ast = ast
fromFunC ast = ast

4.2. User Interface

Now that we have the Syntactic class we can give FunC a nice extensible
interface which we can present to the programmer. This interface will mirror
the deep embedding and its constructors but will use the class Syntactic to
overload the functions to make them compatible with any type that we choose
to make an instance of Syntactic.

true, false :: FunC Bool
true = Lit True
false = Lit False

ifC :: Syntactic a ⇒ FunC Bool → a → a → a
ifC c t e = fromFunC (If c (toFunC t) (toFunC e))
c ? (t, e) = ifC c t e

while :: Syntactic s ⇒ (s → FunC Bool) → (s → s) → s → s
while c b i = fromFunC (While (c o fromFunC)
(toFunC o b o fromFunC)
(toFunC i))
When specifying the types in our new interface we note that base types are not overloaded, they are still on the form FunC Bool. The big difference is when we have polymorphic functions. The function ifC works for any a as long as it is an instance of Syntactic. The advantage of the type Syntactic a ⇒ FunC Bool → a → a → a over FunC Bool → FunC a → FunC a → FunC a is two-fold: First, it is closer to the type that an ordinary Haskell function would have and so it gives the function a more native feel, like it is less of a library and more of a language. Secondly, it makes the language extensible. These functions can now be used with any type that is an instance of Syntactic. We are no longer tied to working solely on the abstract syntax tree FunC.

We have not shown any interface for integers. One way to implement that would be to provide a function equivalent to the Lit specialized for integers. In Haskell there is a nicer way: provide an instance of the type class Num. By instantiating Num we get access to Haskell’s overloaded syntax for numeric literals so that we don’t have to use a function for lifting numbers into FunC. Additionally, Num contains arithmetic functions which we also gain access to. Similarly, we instantiate the Integral class to get an interface for integral operations. The primitive functions of said type classes are implemented using the constructors Prim1 and Prim2. We refrain from presenting the code, as it is rather Haskell-specific and unrelated to the main point of the paper.

We will also be using comparison operators in FunC. For tiresome reasons it is not possible to overload the methods of the corresponding type classes Eq and Ord: these methods return a Haskell Bool and there is no way we can change that to fit the types of FunC. Instead we will simply assume that the standard definitions of the comparison operators are hidden and we will use definitions specific to FunC.

4.3. Embedding Pairs

We have not yet given an interface for pairs. The reason for this is that they provide an excellent opportunity to demonstrate our technique. We simply instantiate the Syntactic class for Haskell pairs:

\[
\begin{align*}
\text{instance} & \quad \text{Syntactic a, Syntactic b) ⇒ Syntactic (a, b) where} \\
\text{type} & \quad \text{Internal (a, b) = (Internal a, Internal b)} \\
\text{toFunC} & \quad (a, b) = \text{Pair (toFunC } a \text{) (toFunC } b) \\
\text{fromFunC} & \quad p = (\text{fromFunC } (\text{Fst } p), \text{ fromFunC } (\text{Snd } p))
\end{align*}
\]

In this instance, toFunC constructs an embedded pair from a Haskell pair, and fromFunC eliminates an embedded pair by selecting the first and second component and returning these as a Haskell pair.\(^3\)

The usefulness of pairs comes in when we need an existing function to operate on a compound value rather than a single value. For example, the state of the

\(^3\)Note that the argument p is duplicated in the definition of fromFunC. If both components are later used in the program, this means that the syntax tree will contain two copies of p. For this reason, having tuples in the language usually requires some way of recovering sharing (see section 8.2). This issue is, however, orthogonal to the ideas presented in this paper.
While loop is a single value. If we want the state to consist of, say, two integers, we use a pair. Since functions such as \texttt{if} and \texttt{while} are overloaded using \texttt{Syntastic}, there is no need for the user to construct compound values explicitly; this is done automatically by the overloaded interface.

As an example of this, here is a for loop defined using the \texttt{while} construct with a compound state:

\begin{verbatim}
forLoop :: Syntastic s ⇒ FunC Int → s → (FunC Int → s → s) → s
forLoop len init step = snd $ while (λ(i,s) → i<len) (λ(i,s) → (i+1, step i s)) (0,init)
\end{verbatim}

The first argument to \texttt{forLoop} is the number of iterations; the second argument is the initial state; the third argument is the step function which, given the current loop index and current state, computes the next state. We define \texttt{forLoop} using a \texttt{while} loop whose state is a pair of an integer and a smaller state.

Note that the above definition only uses ordinary Haskell pairs: The continue condition and step function of the \texttt{while} loop pattern match on the state using ordinary pair syntax, and the initial state is constructed as a standard Haskell pair.

4.4. Embedding Option

If we want to extend our language with optional values, one may be tempted to make a \texttt{Syntastic} instance for \texttt{Maybe}. Unfortunately, there is no way to make this work, because \texttt{fromFunC} would have to decide whether to return \texttt{Just} or \texttt{Nothing} when the Haskell program is evaluated, which is one stage earlier than when the FunC program is evaluated. Instead, we can use the following implementation:

\begin{verbatim}
data Option a = Option { isSome :: FunC Bool, fromSome :: a }

instance Syntastic a ⇒ Syntastic (Option a) where
 type Internal (Option a) = (Bool,Internal a)
 fromFunC m = Option (Fst m) (fromFunC $ Snd m)
 toFunC (Option b a) = Pair b (toFunC a)
\end{verbatim}

We have borrowed the name \texttt{Option} from ML to avoid clashing with the name of the Haskell type. The type \texttt{Option} is represented as a boolean and a value.\footnote{Larger unions can be encoded using an integer instead of a boolean.}

The boolean indicates whether the value is valid or whether it should simply be ignored, effectively interpreting it as not being there. The \texttt{Syntastic} instance converts to and from the representation in FunC which is a pair of a boolean and the value.

The definition of \texttt{Option} may seem straightforward, but when we try to create an empty \texttt{Option} value, we run into problems. We need some value to put into the second component of the pair. It is not important what value we put there, since it is not going to be looked at anyway, but the problem is that we need
a polymorphic value, because we want to be able to create empty Option values of arbitrary types. One alternative would be to extend FunC with a bottom value, analogous to Haskell’s `undefined`, but that seems quite unsatisfactory. A better alternative is to introduce a type class that lets us construct arbitrary “example” values of different types:\(^5\)

```haskell
class Inhabited a where
eexample :: FunC a

instance Inhabited Bool where eexample = true
instance Inhabited Int where eexample = 0
...
```

The `example` method just has to produce an example value of each type. What specific value it produces is irrelevant.

Armed with the `Inhabited` class, we can now provide functions for constructing and eliminating optional values:

```haskell
some :: a -> Option a
some a = Option true a

none :: (Syntactic a, Inhabited (Internal a)) => Option a
none = Option false (fromFunC eexample)

option :: (Syntactic a, Syntactic b) => b -> (a -> b) -> Option a -> b
option noneCase someCase opt = ifC (isSome opt)
  (someCase (fromSome opt))
  noneCase
```

The `some` function creates an optional value which actually contains a value whereas `none` defines an empty value using the newly introduced `example` method. The function `option` acts as a case on optional values, allowing the programmer to test an `Option` value to see whether it contains something or not.

The functions above provide a nice programmer interface but the real power of the shallow embedding of the `Option` type comes from the fact that we can make it an instance of standard Haskell classes. In particular we can make it an instance of `Functor` and `Monad`.

```haskell
instance Functor Option where
  fmap f (Option b a) = Option b (f a)

instance Monad Option where
  return a = some a
  opt >>= k = b { isSome = isSome opt ? (isSome b, false) }
  where b = k (fromSome opt)
```

Being able to reuse standard Haskell functions is a great advantage as it helps to decrease the cognitive load of the programmer when learning our new language. We can map any Haskell function on the element of an optional value.

\(^5\)Thanks to Phil Wadler for the idea to use a type class rather than a bottom value.
because we chose to let the element of the Option type to be completely polymorphic, which is why these instances type check. The advantage of reusing Haskell’s standard classes is particularly powerful in the case of the Monad class because it has syntactic support in Haskell which means that it can be reused for our embedded language. For example, suppose that we have a function

\[
\text{divF} :: \text{FunC Float} \to \text{FunC Float} \to \text{Option (FunC Float)}
\]

which returns nothing in the case the divisor is zero. Then we can write a function for computing the resistance of two parallel resistors as follows:

\[
\text{resistance} :: \text{FunC Float} \to \text{FunC Float} \to \text{Option (FunC Float)}
\]

\[
\text{resistance } r_1 r_2 = \text{do } r_{p1} \leftarrow \text{divF } 1 r_1
\]

\[
r_{p2} \leftarrow \text{divF } 1 r_2
\]

\[
\text{divF } 1 (r_{p1} + r_{p2})
\]

4.5. Embedding Vector

Our language FunC is intended to target low level programming. In this domain most programs deal with sequences of data, typically in the form of arrays. In this section we will see how we can extend FunC to provide a nice interface to array programming.

The first thing to note is that FunC doesn’t have any support for arrays at the moment. We will therefore have to extend FunC to accommodate this. The addition we have chosen is one constructor which computes an array plus two constructors for accessing the length and indexing into the array respectively:

\[
\text{Arr} :: \text{FunC Int} \to (\text{FunC Int} \to \text{FunC a}) \to \text{FunC (Array Int a)}
\]

\[
\text{ArrLen} :: \text{FunC (Array Int a)} \to \text{FunC Int}
\]

\[
\text{ArrIx} :: \text{FunC (Array Int a)} \to \text{FunC Int} \to \text{FunC a}
\]

The first argument of the Arr constructor computes the length of the array. The second argument is a function which given an index computes the element at that index. By repeatedly calling the function for each index we can construct the whole array this way. The meaning of ArrLen and ArrIx should require little explanation. The exact semantics of these constructors is given by the corresponding clauses in the eval function.

\[
\text{eval } (\text{Arr } l \text{ ixf}) = \text{listArray } (0,\text{lml}) [\text{eval } ixf \text{ Value } i | i \leftarrow [0..\text{lml}]]
\]

\[
\text{eval } (\text{ArrLen } a) = (1 +) \text{ uncurry } (\text{flip } (-)) \text{ bounds } \text{ eval } a
\]

\[
\text{eval } (\text{ArrIx } a i) = \text{eval } a \text{ eval } i
\]

We will use two convenience functions for dealing with length and indexing: len which computes the length of the array and the infix operator (<$>$) which is used to index into the array. As usual we have overloaded (<$>$) so that it can be used with any type in the Syntactic class.

\[
\text{len} :: \text{FunC (Array Int a)} \to \text{FunC Int}
\]

\[
\text{len } arr = \text{ArrLen } arr
\]

\[
(<$>$) :: \text{Syntactic a} \Rightarrow \text{FunC (Array Int (Internal a))} \to \text{FunC Int} \to a
\]

\[
\text{arr } <$> ix = \text{fromFunC } (\text{ArrIx } arr ix)
\]
Having extended our deep embedding to support arrays we are now ready to provide the shallow embedding. In order to avoid confusion between the two embeddings we will refer to the shallow embedding as `vector` instead of array.

```haskell
data Vector a where
    Indexed :: FunC Int → (FunC Int → a) → Vector a

instance Syntactic a ⇒ Syntactic (Vector a) where
    type Internal (Vector a) = Array Int (Internal a)
    toFunC (Indexed 1 ix f) = Arr 1 (toFunC ◦ ix f)
    fromFunC arr = Indexed (len arr) (λix → arr <!> ix)
```

The type `Vector` forms the shallow embedding and its constructor `Indexed` is strikingly similar to the `Arr` construct. The only difference is that `Indexed` is completely polymorphic in the element type. One of the advantages of a polymorphic element type is that we can have any type which is an instance of `Syntactic` in vectors, not only values which are deeply embedded. Indeed we can even have vectors of vectors which can be used as a simple (although not very efficient) representation of matrices.

The `Syntactic` instance converts vectors into arrays and back. It is mostly straightforward except that elements of vectors need not be deeply embedded so they must in turn be converted using `toFunC`.

```haskell
zipWithVec :: (Syntactic a, Syntactic b) ⇒ (a → b → c) → Vector a → Vector b → Vector c
zipWithVec f (Indexed l1 ix f1) (Indexed l2 ix f2) = Indexed (min l1 l2) (λix → f (ix f1 ix) (ix f2 ix))

sumVec :: (Syntactic a, Num a) ⇒ Vector a → a
sumVec (Indexed 1 ix f) = forLoop 1 0 (λix s → s + ix f ix)

instance Functor Vector where
    fmap f (Indexed 1 ix f) = Indexed 1 (f ◦ ix f)
```

The above code listing shows some examples of primitive functions for vectors. The call `zipWith f v1 v2` combines the two vectors `v1` and `v2` pointwise using the function `f`. The `sumVec` function computes the sum of all the elements of a vector using the for loop defined in section 4.3. Finally, just as with the `Option` type in section 4.4 we can define an instance of the class `Functor`.

Many more functions can be defined for our `Vector` type. In particular, any kind of function where each vector element can be computed independently will work particularly well with the representation we have chosen. However, functions that require sharing of previously computed results (e.g. Haskell’s `unfoldr`) will yield poor code.

```haskell
scalarProd :: (Syntactic a, Num a) ⇒ Vector a → Vector a → a
scalarProd a b = sumVec (zipWithVec (∗) a b)
```

An example of using the functions presented above we define the function `scalarProd` which computes the scalar product of two vectors. It works by first multiplying the two vectors pointwise using `zipWithVec`. The resulting vector is then summed to yield the final answer.
5. Fusion

Choosing to implement vectors as a shallow embedding has a very powerful consequence: it provides a very lightweight implementation of fusion [18]. We will demonstrate this using the function `scalarProd` defined in the previous section. Upon a first glance it may seem as if this function computes an intermediate vector, the vector `zipWithVec (+) a b` which is then consumed by the `sumVec`. This intermediate vector would be quite bad for performance and space reasons if we ever wanted to use the `scalarProd` function as defined.

Luckily the intermediate vector is never computed. To see why this is the case consider what happens when we generate code for the expression `scalarProd v1 v2`, where `v1` and `v2` are defined as `Indexed l1 ix f1` and `Indexed l2 ix f2` respectively. Before generating an abstract syntax tree the Haskell evaluation mechanism will reduce the expression as follows:

\[
\text{scalarProd } v1 \text{ v2 } \Rightarrow \text{sumVec } (\text{zipWithVec } (+) v1 v2) \\
\Rightarrow \text{sumVec } (\text{zipWithVec } (+) (\text{Indexed } l1 \text{ ix f1}) (\text{Indexed } l2 \text{ ix f2})) \\
\Rightarrow \text{sumVec } (\text{Indexed } (\text{min } l1 l2) (\lambda ix \rightarrow ix f1 \text{ ix } + \text{ ix f2 } \text{ ix})) \\
\Rightarrow \text{forLoop } (\text{min } l1 l2) 0 (\lambda ix s \rightarrow s + ix f1 \text{ ix } + \text{ ix f2 } \text{ ix})
\]

The intermediate vector has disappeared and the only thing left is a for loop which computes the scalar product directly from the two argument vectors.

In the above example, fusion happened because although `zipWithVec` constructs a vector, it does not generate an array in the deep embedding. In fact, all standard vector operations (`fmap`, `take`, `reverse`, etc.) can be defined in a similar manner, without using internal storage. Whenever two such functions are composed, the intermediate vector is guaranteed to be eliminated. This guarantee by far exceeds guarantees given by conventional optimizing compilers.

So far, we have only seen one example of a vector producing function that uses internal storage: `fromFunC`. Thus intermediate vectors produced by `fromFunC` (for example as the result of `ifC` or `while`) will generally not be eliminated.

There are some situations when fusion is not beneficial, for instance in a function which access an element of a vector more than once. This will cause the elements to be recomputed. It is therefore important that the programmer has some way of backing out of using fusion and store the vector to memory. For this purpose we can provide the following function:

\[
\text{memorize : : Syntactic } a \Rightarrow \text{Vector } a \rightarrow \text{Vector } a \\
\text{memorize } (\text{Indexed } l \text{ ix f}) = \text{Indexed } l (\lambda n \rightarrow \text{Arr } l (\text{toFunC } \circ \text{ix f}) <\!\!> n)
\]

The function `memorize` can be inserted between two functions to make sure that the intermediate vector is stored to memory. For example, if we wish to store the intermediate vector in our `scalarProd` function we can define it as follows:

\[
\text{scalarProd : : (Syntactic } a, \text{ Num } a) \Rightarrow \text{Vector } a \rightarrow \text{Vector } a
ightarrow a \\
\text{scalarProd } a \text{ b } = \text{sumVec } (\text{memorize } (\text{zipWithVec } (+) a \text{ b}))
\]

Strong guarantees for fusion in combination with the function `memorize` gives the programmer a very simple interface which still provides powerful optimizations and fine grained control over memory usage.
5.1. Other types which benefit from fusion

The Vector type is very useful for writing array computations in a compositi-

tonal style. Unfortunately, not all computations are efficiently implementable

with the Vector type. One example is to compute the scan of a vector. The

following is an inefficient implementation:

\[
\text{scanVec} :: \text{Syntactic } a \Rightarrow (a \to b \to a) \to a \to \text{Vector } b \to \text{Vector } a
\]

\[
\text{scanVec } f _ z (\text{Indexed } i xf) = \text{Indexed } (i+1) _ ixf'
\]

\[
\text{where } ixf' _ i = \text{forLoop } (i-1) z _ \lambda j _ s \to f _ (ixf j)
\]

This implementation will perform a lot of duplicate computations. An effi-

cient implementation would avoid recomputations by linearly iterating through

the array and use an accumulating parameter to store the intermediate results.

The Vector type does not permit such an implementation because each element

is computed and accessed independently; there is no way to impose a partic-

ular order in which the elements are traversed. We must turn to a different

representation in order to implement scan efficiently.

The type of sequential vectors imposes a linear, left-to-right traversal order

of the elements. We can construct a shallow embedding as follows:

\[
\text{data Seq } a = \forall s . \text{Syntactic } s \Rightarrow \text{Seq } s (s \to (a, s)) (\text{FunC } \text{Int})
\]

The type Seq contains a hidden piece of state; the existentially bound type

variable s. The first argument to the constructor is an initial state. The state is

consumed by the stepper function, the second argument to Seq, which produces

a new element in the vector and a new state. The last argument is the length

of the vector.

The type Seq permits an efficient implementation of scan:

\[
\text{scanSeq} :: \text{Syntactic } a \Rightarrow (a \to b \to a) \to a \to \text{Seq } b \to \text{Seq } a
\]

\[
\text{scanSeq } f _ z (\text{Seq } i n i t s t e p l) = \text{Seq } i n i t' s t e p' (l+1)
\]

\[
\text{where } i n i t' = (z, i n i t)
\]

\[
\text{step'} (a, s) = \text{let } (b, s') = \text{step } s
\]

\[
in (a, (f a b, s'))
\]

We refrain from going into the full details about how to implement a full

library for the Seq type. In summary, we make the following observations:

• To construct a Syntactic instance for Seq requires a new constructor in the

 deep embedding:

 \[
 \text{Sequential} :: \text{Syntactic } s \Rightarrow \text{FunC } s \to (\text{FunC } s \to \text{FunC } (a, s))
 \to \text{FunC } \text{Int} \to \text{FunC } (\text{Array } \text{Int} a)
 \]

• The type Seq provides a complementary set of operations compared to

 Vector. For example, scanning is provided for Seq while random access

 indexing is not.

• Operations on Seq enjoys the same kind of fusion guarantees as the oper-

 ations on Vector.
It is possible to convert from Vector to Seq while still preserving guaranteed fusion, using the following function:

\[
\text{vecToSeq} :: \text{Vector } a \rightarrow \text{Seq } a
\]

\[
\text{vecToSeq} \ (\text{Indexed } l \ ix f) = \text{Seq } 0 \ \text{step } l
\]

\[
\text{where } \text{step } i = (ixf i, i+1)
\]

Converting from Seq to Vector requires storing to memory (i.e. introducing a Sequential node in the deep embedding).

There is a third kind of vector which provides yet another, complementary set of operations; push vectors [12].

\[
\text{data Push } a = \text{Push } ((\text{FunC } \text{Int } \rightarrow a \rightarrow M ())) \rightarrow M () \ (\text{FunC } \text{Int})
\]

The first argument to the Push constructor can be thought of as a program which writes an array to memory. Writing to memory is an inherently imperative operation and fits badly with the functional nature of the language we’ve presented so far. The solution is to use monads, and the type M is a monad for writing to memory. We return to explaining push vectors once we’ve covered how to embed monads.

6. Monads

It is sometimes useful to include monads in a domain specific language, for the same reason they are useful in Haskell: to isolate effectful computations from pure computations using the type system. In section 4.4 we saw that the Option could be made an instance of the typeclass Monad. This monad was constructed using building blocks already available in the deep representation of the language. In this section we will see how to build generic support for monads where the monadic operations are represented as new explicit constructors.

The first step in adding support for monads in our language is to enrich our deep embedding with the constructors Return and Bind, corresponding to the two operations in the standard Monad class.

\[
\text{Return} :: \text{Monad } m \Rightarrow \text{FunC } a \rightarrow \text{FunC } (m a)
\]

\[
\text{Bind} :: \text{Monad } m \Rightarrow \text{FunC } (m a) \rightarrow (\text{FunC } a \rightarrow \text{FunC } (m b)) \rightarrow \text{FunC } (m b)
\]

Although the types for these constructors are similar to the monad operations, it’s worth pointing out that all types are syntax trees in the deep embedding. This has the consequence that we cannot use the constructors directly as implementations in an instance for the Monad class. We show how to get around that below.

Defining the semantics for Return and Bind is relatively straightforward:

\[
\text{eval } (\text{Return } a) = \text{return } (\text{eval } a)
\]

\[
\text{eval } (\text{Bind } m f) = \text{eval } m \gg= \text{eval } \circ f \circ \text{Value}
\]

The user interface for monads consists of the type Mon, which provides a shallow embedding which lifts an arbitrary monad in Haskell into the embedded language, and a Monad instance for Mon.
data Mon m a = M { unM :: ∀ b . ((a → FunC (m b)) → FunC (m b)) }

instance Monad m ⇒ Monad (Mon m) where
 return a = M $ λk → k a
 M m >>= f = M $ λk → m (λa → unM (f a) k)

Readers with prior knowledge about monads will recognize that Mon is similar to the continuation passing monad. The difference is that the answer type has been specialized to generate syntax trees.

Using the continuation monad on top of the deep embedding has a fortunate side effect: it normalizes monadic expression. Certain monads are sensitive to the way the >>= operator is associated, left association can lead to a quadratic slowdown. Luckily, the continuation monad associates >>= to the right, ensuring efficient execution [36].

instance (Monad m, Syntactic a) ⇒ Syntactic (Mon m a) where
 type Internal (Mon m a) = m (Internal a)
 toFunC (M m) = m (Return . toFunC)
 fromFunC m = M $ λk → Bind m (k . fromFunC)

It is possible to provide a Syntactic instance for Mon as shown above. This makes monadic computations first class citizens in the DSL – a very powerful addition. Though, depending on what kind of target code we want to generate, we might not want to allow passing around monadic computations as that would entail creating closures. One option would be to simply omit the Syntactic instance so that the DSL programmer has no way of using monads as values. A more principled approach would be to restrict functions overloaded by Syntactic by placing a Type constraint on the internal representation (and making sure that monadic values are not members of Type). For example, doing so would give the following type for ifC:

ifC :: (Syntactic a, Type (Internal a)) ⇒ FunC Bool → a → a → a

However, we will avoid using this extra security measure in this paper. None of our example programs rely on using monads as first class citizens.

The type Mon provides a generic building block for constructing particular monads in our DSL. As a concrete example, we will implement a monad which adds mutable arrays to our language. Haskell’s standard library for mutable arrays will stand as a model for our extension.

NewArray :: FunC Int → FunC (IO (IOArray Int a))
GetArray :: FunC (IOArray Int a) → FunC Int → FunC (IO a)
PutArray :: FunC (IOArray Int a) → FunC Int → FunC a → FunC (IO ())
LengthArray :: FunC (IOArray Int a) → FunC (IO Int)
FreezeArray :: FunC (IOArray Int a) → FunC (IO (Array Int a))
ThawArray :: FunC (Array Int a) → FunC (IO (IOArray Int a))

eval (NewArray i) = newArray 0 (eval i) − 1

eval (GetArray a i) = readArray (eval a) (eval i)

eval (PutArray a i e) = writeArray (eval a) (eval i) (eval e)

eval (LengthArray a) = getNumElements (eval a)

eval (FreezeArray a) = freeze (eval a)

eval (ThawArray a) = thaw (eval a)
The construct `NewArray` allocates a new, uninitialized array. The length is determined by the first argument. `GetArray` and `PutArray` should be self explanatory, as should `LengthArray`. `FreezeArray` and `ThawArray` provides a way to convert back and forth between mutable and immutable arrays.

Compared to previous language features, this list of constructors is a big addition to our deep embedding. Our experience with adding monadic primitives to embedded language is that they tend to be more verbose than constructs with a more functional flavour.

The code below provides the user interface for the array constructs. We define a new type `M` which captures computations with mutable arrays. The type `MArr` is a convenient alias when using arrays.

```haskell
import Control.Monad

type M a = Mon IO a

newArray :: FunC Int → M (MArr a)
getArray :: MArr a → FunC Int → M (FunC a)
putArray :: MArr a → FunC Int → FunC a → M ()
lengthArray :: MArr a → M (FunC Int)
freezeArray :: MArr a → M (FunC (Array Int a))

newArray l = fromFunC (NewArray l)
getArray arr i = fromFunC (GetArray arr i)
putArray arr i a = fromFunC (PutArray arr i a)
lengthArray arr = fromFunC (LengthArray arr)
freezeArray v = fromFunC (FreezeArray v)

whileM :: Monad m ⇒ Mon (FunC Bool) → Mon m () → Mon m ()
whileM cond body = fromFunC (WhileM (toFunC cond)
    (toFunC body))
```

The result type `M ()` of `putArray` requires the existence of a `Syntactic` instance for `()`, something which is trivial to define.

When working with arrays it is crucial to be able to perform loops over them. Since we have a `Monad` instance for our embedded monad, it is natural to think that we can use the standard control operators for loops provided by the standard library in Haskell. But these control operators would be evaluated at compile time and there would be no loops left in the generated code. For that reason, the loops could not depend on any runtime data, which would be overly restrictive. So we are left with using looping constructs defined in our deep representation. The existing `while` loop is not directly suited to represent monadic loops, so instead we add two new constructs.

```haskell
ForM :: Monad m ⇒ FunC Int → FunC (m ())) → FunC (m ())
WhileM :: Monad m ⇒ FunC (m Bool) → FunC (m ())
```

The user interface for monadic loops is as follows:

```haskell
forM :: Monad m ⇒ FunC Int → FunC Int → (FunC Int → Mon m ()) → Mon m ()
forM start stop body = fromFunC (ForM (stop − start) (toFunC body) (toFunC body))
```

```haskell
whileM :: Monad m ⇒ Mon m (FunC Bool) → Mon m () → Mon m ()
whileM cond body = fromFunC (WhileM (toFunC cond) (toFunC body))
```
An example of how to use the mutable array interface is the following implementation of in-place insertion sort (we assume the existence of mutable references implemented similarly to mutable arrays).

```haskell
type Ord a ⇒ FunC Int → MArr a → M ()
insertionSort l arr = do
  forM 1 l $ λi →
    value ← getArray arr i
    j ← newRef (i-1)
    let cond = do jv ← readRef j
       aj ← getArray arr jv
       return ( jv ≥ 0 && aj > value)
    whileM cond $ do
      jv ← readRef j
      a ← getArray arr jv
      putArray arr ( jv+1) a
      writeRef j ( jv−1)
      jv ← readRef j
      putArray arr ( jv+1) value
```

6.1. Push vectors

As mentioned in the previous section, there is a form of vector which uses monads to write to memory: push vectors [12].

```haskell
type Push a = Push ((FunC Int → a → M ()) → M ()) (FunC Int)

enum :: FunC Int → FunC Int → Push (FunC Int)
enum start stop = Push f (stop − start)
  where f w = forM start stop $ λi →
         w i i
```

Push solves two problems which neither Vector nor Seq can handle: efficient concatenation and computing several elements at once. Here’s how we can implement concatenation of two push vectors:

```haskell
(++) :: Push a → Push a → Push a
Push f1 l1 ++ Push f2 l2 = Push f (l1 + l2)
  where f w = do f1 w
         f2 (λi a → w (i+l1) a)
```

Concatenation is given two push vectors, containing two monadic programs for writing them to memory, f1 and f2. When constructing the program for the resulting push vector, f, we first run f1 to write that vector to memory. Then f2 is allowed to run, but the index where it writes its elements is adjusted so that they are written after the first vector.
An observation is that the two programs f_1 and f_2 write to completely separate memory locations. That means that they could be executed in parallel for increased speed. Push vectors support several operations which can be parallelized in this way. More information about how to parallelize push vectors, see [12].

As an example of computing several elements at once, we use the dup function below. It performs the same operation as concatenating a vector with itself, but makes sure not to duplicate the computation of the elements, which can otherwise happen.

$$\text{dup} :: \text{Push } a \rightarrow \text{Push } a$$
$$\text{dup} (\text{Push } f \ l) = \text{Push } g (2 \ast l)$$
$$\text{where } g w = f (\lambda i \ a \rightarrow w \ i \ a) \gg (2 \ast i) \ a)$$

Although dup is only meant as a pedagogical example, similar patterns happen in real life applications. For example, when scaling up an image to cover more pixels, several pixels are produced at every iteration in the computation.

$$\text{store} :: \text{Push } (\text{FunC } a) \rightarrow M (\text{FunC } (\text{Array Int } a))$$
$$\text{store} (\text{Push } f \ l) = \text{do}$$
$$\text{arr} \leftarrow \text{newArray } l$$
$$f (\text{putArray } \text{arr})$$
$$\text{freezeArray } \text{arr}$$

Storing a push vector means allocating a mutable array in memory, then make the push vector program write to that array by feeding it a function which performs the write. Finally, the mutable array is frozen and the result is an immutable array. The whole computation lives in the M monad, since there is no way to escape it. It is possible to provide an embedding like the ST monad, which can encapsulate imperative algorithms in a purely functional interface [24]. Such an embedding would enable a purely functional interface to store, and would enable a Syntactic instance.

In summary, push vectors provide yet another useful abstraction for array processing. Their implementation is particularly convenient thanks to the embedding of monads, it’s almost as writing in normal Haskell. For a more indepth treatment of push vectors, see [12, 2].

6.2. Mutable data structures

The data structures we’ve seen so far, such as pairs, Option, Vector, Seq, and even Push, has had purely functional interfaces (with the exception of the store function). The introduction of monads in the language opens up for the possibility of creating mutable data structures. When writing streaming applications it is common to use a mutable cyclic buffer. We can implement such a buffer in our language as a shallow embedding:

```haskell
data Buffer a = Buffer
  { indexBuf :: FunC Int → M a
  , putBuf :: a → M ()
  }
```

19
The implementation of this buffer is reminiscent of how classes are imple-
mented in object oriented languages. The data type contains the public meth-
ods exposed to the programmer using the buffer. The hidden members and data
are stored in the closure created when the buffer is constructed. The following
function constructs a buffer:

\[
\text{initBuffer} :: \forall a . \text{Syntactic a} \Rightarrow \text{Vector a} \to M (\text{Buffer a})
\]

\[
\text{initBuffer vec} = \lambda \text{buf} \leftarrow \text{thawArray (toFunC vec)}
\]

\[
\text{l} \leftarrow \text{lengthArray buf}
\]

\[
\text{ir} \leftarrow \text{newRef 0}
\]

\[
\text{let get j = do}
\]

\[
i \leftarrow \text{readRef ir}
\]

\[
\text{fmap fromFunC $ getArray buf $ calcIndex l i j}
\]

\[
\text{put a = do}
\]

\[
i \leftarrow \text{readRef ir}
\]

\[
\text{writeRef ir ((i+1) 'mod' 1)}
\]

\[
\text{putArray buf i $ toFunC a}
\]

\[
\text{return (Buffer get put)}
\]

\[
\text{where}
\]

\[
\text{calcIndex l i j = (l+i-j-1) 'mod' l}
\]

Constructing a Buffer begins with allocating a mutable array which will
contain the payload, and a reference for keeping track of where the first element
in the buffer is located in the array. The two functions get and put read and
write to the appropriate locations in the mutable array using the reference.

As an example of how to use the circular buffer, the following program
computes the nth fibonacci number. (We assume a function fromList which
creates a Vector from a Haskell list.)

\[
\text{fib} :: \text{FunC Int} \to M (\text{FunC Int})
\]

\[
\text{fib n} = \lambda \text{buf} \leftarrow \text{initBuffer (fromList [1,1])}
\]

\[
\text{forM 1 n $ \lambda _ \to do}
\]

\[
a \leftarrow \text{indexBuf buf 0}
\]

\[
b \leftarrow \text{indexBuf buf 1}
\]

\[
\text{putBuf buf (a+b)}
\]

\[
\text{indexBuf buf 0}
\]

7. Embedding functions

We have already made extensive use of functions as a shallow embedding.
For example, a Haskell function of type

\[
\text{FunC Int} \to \text{FunC Bool}
\]

is a shallow representation of an object-level function from Int to Bool. In order
to inspect such a function, it has to be applied to a Variable with a fresh name.

We also have higher-order constructs such as

\[
\text{while} :: \text{Syntactic s} \Rightarrow (s \to \text{FunC Bool}) \to (s \to s) \to s \to s
\]
where the two function arguments represent expressions with an extra free variable.

The correspondence between Haskell and object functions can be made concrete by defining a \textit{Syntactic} instance for functions. In order to do so, we also need a corresponding deep embedding of functions. In this section, we will arrive at a slightly different design for the deep embedding, so instead of adding functions directly to \texttt{FunC}, we define a completely new data type, with constructors for lambda abstraction and application to begin with:

\begin{verbatim}
data FunC λ a where Lam : : Type a ⇒ (FunC λ a → FunC λ b) → FunC λ (a → b) App : : FunC λ (a → b) → FunC λ a → FunC λ b
\end{verbatim}

The \texttt{Type} constraint on \texttt{Lam} will be explained shortly.

To declare shallow embeddings for \texttt{FunC λ}, we introduce a new class \textit{Syntactic}λ, corresponding to the previous \textit{Syntactic} class:

\begin{verbatim}
class Syntactic λ a where type Internal λ a toFunC λ : : a → FunC λ (Internal λ a) fromFunC λ : : FunC λ (Internal λ a) → a
\end{verbatim}

The instance for functions follows quite naturally:

\begin{verbatim}
instance (Syntactic λ a, Syntactic λ b, Type (Internal λ a)) ⇒ Syntactic λ (a → b) where type Internal λ (a → b) = Internal λ a → Internal λ b toFunC λ f = Lam (toFunC λ ◦ f ◦ fromFunC λ) fromFunC λ f = fromFunC λ ◦ App f ◦ toFunC λ
\end{verbatim}

The above instance may seem useful for a language with first-class functions, but it is not obvious that this is something we want in our EDSL. Our goal is to be able to easily generate efficient low-level code, but first-class functions are certainly not easy to generate code for. However, due to the \texttt{Type} constraint on the bound variable in \texttt{Lam}, it can actually only be used to construct first-order expressions (assuming there is no function instance of \texttt{Type}).

The advantage of having \texttt{Lam} in the deep embedding is that now our higher-order constructs can take embedded functions as arguments. For example, we can represent \texttt{While} and \texttt{Arr} from \texttt{FunC} simply as

\begin{verbatim}
Whileλ :: FunC λ (s → Bool) → FunC λ (s → s) → FunC λ s → FunC λ s
Arrλ :: FunC λ Int → FunC λ (Int → a) → FunC λ (Array Int a)
\end{verbatim}

Here we have replaced shallow functions, such as \texttt{FunC s → FunC Bool}, with deep functions, such as \texttt{FunC λ (s → Bool)}. In order to define the user functions \texttt{whileλ} and \texttt{arrλ} (where \texttt{whileλ} corresponds to \texttt{while} from before), we have to wrap the function arguments in a \texttt{Lam} constructor. Fortunately, this is handled nicely using \texttt{toFunC λ}:

\begin{verbatim}
whileλ :: (Syntactic λ s, Type (Internal λ s)) ⇒ (s → FunC λ Bool) → (s → s) → s → s
whileλ cont step init = fromFunC λ $ Whileλ (toFunC λ cont)
\end{verbatim}
Note how the definitions of \(\text{while} \) and \(\text{arr} \) follow the exact same pattern (apply \(\text{toFunC} \lambda \) to all arguments and \(\text{fromFunC} \lambda \) to the result), even though they use different amounts of overloading. It is the type signature that determines what the definitions expand to.

The observation that all user functions can be defined by wrapping the deep constructor in \(\text{fromFunC} \lambda \) is quite useful. Using some type class hackery we can even define a generic lifting function that does the wrapping for us. This approach is taken by the SYNTACTIC package [1], and it makes it very easy to define user interfaces around deep embeddings.

Evaluation becomes slightly easier for \(\text{FunC} \lambda \), because we can call \(\text{eval} \lambda \) directly on embedded function arguments instead of composing them with a \(\text{Value} \lambda \) constructor. For example, the cases for \(\text{Lam} \) and \(\text{While} \lambda \) are as follows:

\[
\begin{align*}
\text{eval}\lambda \, : : & \quad \text{FunC}\lambda \, a \rightarrow a \\
\text{eval}\lambda \, (\text{Lam} \, f) & \quad = \text{eval}\lambda \, \circ \, f \, \circ \, \text{Value}\lambda \\
\text{eval}\lambda \, (\text{While}\lambda \, c \, b \, i) & \quad = \text{head} \, \$ \, \text{dropWhile} \, (\text{eval}\lambda \, c) \, \$ \, \text{iterate} \, (\text{eval}\lambda \, b) \, \$ \, \text{eval}\lambda \, i
\end{align*}
\]

8. Scaling up to a full implementation

In this paper we have used a simple implementation to be able to focus on the basic ideas. In order to scale up the method to a full-blown EDSL implementation such as Feldspar [5], there are a few things that need to be taken care of:

- The front end needs to be extended with more primitive functions. For example, in Feldspar we have reimplemented many of Haskell’s Prelude functions, including most methods of classes such as \(\text{Eq} \), \(\text{Ord} \), \(\text{Integral} \), \(\text{Floating} \), etc.

- In order to avoid duplication of code and run-time computation, there has to be a way to discover and represent shared sub-expressions.

- Despite high-level optimizations in the shallow embedding (such as fusion; see section 5), there are often opportunities to simplify the generated ASTs in order to generate more efficient code.

- We need a translator from expressions to C code (or similar).

The following sub-sections explain the above points in a bit more detail. However, we will not cover C code generation – we just point to the fact that \(\text{FunC} \) is at such a low level of abstraction that code generation from it does not require too much imagination.
8.1. **AST representation**

The three latter points in the above list involve traversing and transforming FunC expressions in various ways. This turns out to be very inconvenient when using higher-order abstract syntax (HOAS), as in this paper. Instead a first-order representation is generally preferred when the AST needs to be examined. At the same time, HOAS comes with some definite advantages:

- It makes it easy to define higher-order front end functions (such as the `while` loop in this paper).
- It makes evaluation both easy to define and very efficient due to the fact that substitution is performed directly by the function embedded in the AST.

One way to get the best of both worlds is to have two versions of the AST: a higher-order one and a first-order one with a function converting from the former to the latter. The higher-order one is used in the front end and possibly for evaluation, while the first-order one is used in the rest of the implementation. The disadvantage of this approach is that it requires two separate but very similar data types as representations of the same AST.

Two EDSLs that use a combination of higher-order and first-order ASTs are Feldspar (until version 0.7) [5] and Accelerate [25].

In order to avoid having two separate representations of the same AST, it is possible to make a higher-order front end directly for a first-order AST by using a technique based on circular programming [4]. We plan to use this technique to get rid of the HOAS representation in future versions of Feldspar.

8.2. **Handling sharing**

It is easy to write EDSL programs that result in duplicated sub-expressions. For example, the expression `let a = bigExpr in a+a` results in an AST that contains two copies of `bigExpr`. This is because Haskell bindings are inlined as part of Haskell’s evaluation when generating an AST. This loss of sharing is problematic for two reasons: (1) it makes the AST larger which can slow down the compiler and lead to larger generated code, and (2) it leads to duplicated computations in the generated code which can increase its run time.

The problem with large ASTs is more severe than it may seem at first. An expression with nested duplications – for example

```haskell
let a = ... in let b = x + x in let c = b + b in ...
```

– generates an AST which is exponentially larger than the corresponding Haskell expression.

Such expressions do actually occur in practice. The following innocent-looking function from Feldspar’s source uses bit manipulation to compute the number of leading zeros in a machine word:
nlz x = bitCount $ complement $ foldl go x $ takeWhile (P.< bitSize' x) $ P.map (2 P.ˆ) [(0::Integer)..]

where
 go b s = b .| (b .>>> value s)

Here, foldl is the normal left fold for Haskell lists, which means that nlz builds up an unrolled expression by repeatedly applying the go function. The problem with this is that the b parameter is used twice in the body of go which means that the size of the resulting expression is \(O(2^n)\), where \(n\) is the number of calls to go. (The function has now been fixed by inserting an explicit sharing construct for b.)

Several techniques can be used to handle sharing in EDSLs:

Implicit sharing. Standard common sub-expression elimination (CSE) can be employed to remove duplications in the generated code. However, it does not fix the problem with large ASTs slowing down the compiler. This is because CSE has to traverse the whole expression in order to know which sub-expressions to share.

Observable sharing. By observing how the AST is stored in the heap, it is possible to recreate the sharing structure of the Haskell expression that generated the AST [11, 19]. The problem with observable sharing is that it is somewhat fragile: a Haskell compiler is free to store data structures as it likes, and the amount of sharing may very well depend on the implementation at hand, optimization flags, etc.

Explicit sharing. A different approach is to be completely explicit about sharing. In FunC, we could represent explicit sharing by the following construct:

\[
\text{Share} ::= (\text{FunC } a \rightarrow \text{FunC } b) \rightarrow \text{FunC } a \rightarrow \text{FunC } b
\]

These three techniques can be combined in various ways. Kiselyov proposes using a combination of explicit and implicit sharing [23]. Hash-consing is used to introduce sharing of equal sub-expressions, and an explicit sharing construct can be used to manage the size of the expression. Similarly, it is possible to use observable sharing to speed up implicit sharing. This approach is taken by Elliott et al. in the Pan EDSL [14], and it has the advantage of not being sensitive to the unpredictable behavior of observable sharing.

There is a slight complication when using observable sharing together with HOAS: sharing has to be detected while converting the HOAS to a first-order representation [25]. It cannot be done before the conversion because a HOAS data structure is not easily inspectable, and it cannot be done after the conversion because by then the conversion has destroyed all sharing.

8.3. Simplification

Despite high-level optimizations in the shallow embedding (such as fusion, see section 5), there are often opportunities to simplify the generated ASTs in order to generate more efficient code.
Many simplification rules can be performed directly in the front end using “smart constructors” [14]. For example, the following definitions of (+) and (<|>) can return simpler expressions depending on the form of the arguments:

\[
(+) :: \text{FunC} \text{ Int} \to \text{FunC} \text{ Int} \to \text{FunC} \text{ Int} \\
\text{a} + \text{Lit} 0 = \text{a} \\
\text{Lit} 0 + \text{b} = \text{b} \\
\text{a} + \text{b} = \text{Prim2} "(+)" (+) \text{ a b}
\]

\[
(<|>) :: \text{FunC} \text{ (Array Int a)} \to \text{FunC} \text{ Int} \to \text{FunC} \text{ a} \\
\text{Arr} \text{ l f <|> i} = \text{f i} \\
\text{arr} \text{ <|> i} = \text{ArrIx} \text{ arr i}
\]

The disadvantage of simplification in the front end is that it is limited to context-free rules. More sophisticated optimizations must therefore be done as separate passes on the generated AST (after conversion to a first-order representation in the case of HOAS).

Elliott et al. [14] and McDonnel et al. [25] give more information on optimization of EDSL programs.

9. Conclusion

The technique described in this paper is a simple, yet powerful, method that gives a partial solution to the expression problem. By having a deep core language, we can add new interpretations without problem. And by means of the \texttt{Syntactic} class, we can add new language types and constructs with minimal effort.

The method offers an advantageous power-to-weight ratio: each construct in the deep embedding typically enables several new functions in the shallow embedding. For example, the three constructs related to immutable arrays (section 4.5) enables us to define wide range of operations for the \texttt{Vector} type (only a few of which are shown in the paper).

Shallow embeddings allows for utilizing evaluation in the host language for optimization purposes. For example, pairs can be removed statically, operations on \texttt{Vector} can be fused automatically and monadic computations are normalized. These advantages come simply due to the fact that we use shallow embeddings, we do not have to make any extra effort to enable these optimizations.

We have presented a diverse selection of language extensions to demonstrate the idea of combining deep and shallow embeddings. The technique has been used with great success by the Feldspar team during the implementation of Feldspar.

10. Related Work

The Feldspar EDSL [3] is based on the techniques described in this paper. We have found that Feldspar’s design with a simple core language extended with shallow high-level libraries makes it easy to explore new ideas without investing a lot of implementation effort.
The Lightweight Modular Staging framework [30] for Scala enables the implementation of deeply embedded DSLs and offers significant infrastructure for optimization and code generation. Rompf et al. note the benefit of implementing parts of an EDSL as shallow embeddings that expand to a simpler core language – something which they call “deep linguistic reuse” [29].

Gibbons and Wu [16] give an insightful overview of deep and shallow embeddings and discuss their relation in depth. Inspired by our work, they also consider “intermediate embeddings”, where a deeply embedded core language is extended using shallow embeddings.

A practical example of the combination of deep and shallow embedding is the embedded DSL Hydra which targets Functional Hybrid Modelling [20]. Hydra has a shallow embedding of signal relations on top of a deep embedding of equations. However, it does not have anything corresponding to our Syntactic class. Furthermore, it does not seem to take advantage of any fusion-like properties of the embedding nor make any instances of standard Haskell classes.

The work by Elliott et al. on compiling embedded languages [14] has been a great source of inspiration for us. In particular, they use a type class Syntactic whose name gave inspiration to our type class. However, their class is only used for overloading if expressions, and not as a general mechanism for extending the embedded language. Just like Elliott et al., we note that deeply embedded compilation relates strongly to partial evaluation. The shallow embeddings we describe can be seen as a compositional and predictable way to describe partial evaluation.

Deep embeddings have the disadvantage of leaking some implementation details to the user (e.g. a deeply embedded integer expression has type FunC Int while a Haskell integer is just an Int). In the Yin-Yang system, Jovanović et al. [21] use Scala macros to translate shallow EDSL programs to the corresponding deep EDSL programs. This allows the user to work in a friendlier shallow embedding while still reaping the benefits of the deep embedding (i.e. higher performance) when needed. Yin-Yang also simplifies EDSL development by automatically generating deep embeddings from shallow ones. In a similar line of work, Scherr and Chiba [31] propose a technique called implicit staging for Java which hides the implementation details of the deep embedding from the user.

Our focus in this paper has been on deep and shallow embeddings. But these are not the only techniques for embedding a language into a meta language. Another popular technique is the Finally Tagless technique [8]. The essence of Finally Tagless is to have an interface which abstracts over all interpretations of the language. In Haskell this is realized by a typeclass where each method corresponds to one language construct. Concrete interpretations are realized by creating a data type and making it an instance of the type class. For example, creating an abstract syntax tree would correspond to one interpretation and would have its own data type, evaluation would be another one. Since new interpretations and constructs can be added modularly (corresponds to adding new interpretation types and new interface classes respectively), Finally Tagless can be said to be a solution to the expression problem.

Our technique can be made to work with Finally Tagless as well. Creating
a new embedding on top of an existing embedding simply amounts to creating a subclass of the type class capturing the existing embedding. However, care has to be taken if one would like to emulate a shallow embedding on top of a deep embedding and provide the kind of guarantees that we have shown in this paper. This will require an interpretation which maps some types to their abstract syntax tree representation and some types to their corresponding shallow embedding. Also, it is not possible to define general instances for standard Haskell classes for languages using the Finally Tagless technique. Instances can only be provided by particular interpretations.

The implementation of Kansas Lava [15] uses a combination of shallow and deep embedding. However, this implementation is quite different from what we are proposing. In our case, we use a nested embedding, where the deep embedding is used as the semantic domain of the shallow embedding. In Kansas Lava, the two embeddings exist in parallel — the shallow embedding is used for evaluation and the deep embedding for compilation. It appears that this design is not intended for extensibility: adding new interpretations is difficult due to the shallow embedding, and adding new constructs is difficult due to the deep embedding.

At the same time, Kansas Lava contains a type class \texttt{Pack} [17] that has some similarities to our \texttt{Syntactic} class. Indeed, using \texttt{Pack}, Kansas Lava implements support for optional values by mapping them to a pair of a boolean and a value. However, it is not clear from the publications to what extent \texttt{Pack} can be used to develop high-level language extensions and optimizations.

While our work has focused on making shallow extensions of deep embeddings, it is also possible to have the extensions as deep embeddings. This approach was used by Claessen and Pace [10] to implement a simple language for behavioral hardware description. The behavioral language is defined as a simple recursive data type whose meaning is given as a function mapping these descriptions into structural hardware descriptions in the EDSL Lava [6].

The way we provide fusion for vectors was first reported in [13] for the language Feldspar. The same technique was used in the language Obsidian [35] but it has never been documented that Obsidian actually supports fusion. The programming interface is very closely related to that provided by the Repa library [22], including the idea of guaranteeing fusion and providing programmer control for avoiding fusion. Although similar, the ideas were developed completely independently. It should also be noted that our implementation of fusion is vastly simpler than the one employed in Repa.

Section 6 presents a solution for the \textit{monad reification problem}, i.e. observing the structure of monadic computations and converting them to a first order representation. Strictly speaking we don’t solve the full problem here since we don’t generate first order terms, but it is an easy step to add. The version presented here is a simplified and extended presentation of the solution in [26]. Other solutions include [33, 32]. Compiled EDSLs which feature a \texttt{Monad} instance include Feldspar [26], Obsidian [34] and Sunroof [7].

Being able to use do notation to generate a first order representation of monads is sometimes referred to as the ‘monad reification problem’. A priori it
seems to be impossible because the type of bind allows the resulting computation to depend on the result of the first one.

The solution we have presented here doesn’t solve the full monad reification problem since we use higher order abstract syntax and not first order abstract syntax. However, using the continuation monad as we have done here can be used to generate first order terms as well.

Acknowledgments

The authors would like to thank the Feldspar team for comments and discussions on the ideas presented in this paper. The first author would like to thank the participants of the DSL conference 2011 for the their constructive feedback, when part of the material in this paper was presented as an invited tutorial. Thanks to Philip Wadler for pointing out that the evaluator should be strict and for identifying bugs in our implementation of Option. This research is funded by Ericsson and the Swedish Foundation for Strategic Research. The Feldspar project is an initiative of and is partially funded by Ericsson Software Research and is a collaboration between Chalmers, Ericsson and ELTE University.

[31] Maximilian Scherr and Shigeru Chiba. Implicit staging of EDSL expressions: A bridge between shallow and deep embedding. In Richard Jones,

