
On interpolation in decision procedures⋆

Maria Paola Bonacina and Moa Johansson

Dipartimento di Informatica, Università degli Studi di Verona
Strada Le Grazie 15, I-37134 Verona, Italy

mariapaola.bonacina@univr.it moakristin.johansson@univr.it

Abstract. Interpolation means finding intermediate formulae between
given formulae. When formulae decorate program locations, and describe
sets of program states, interpolation may enable a program analyzer to
discover information about intermediate locations and states. This mech-
anism has an increasing number of applications, that are relevant to pro-
gram analysis and synthesis. We study interpolation in theorem prov-
ing decision procedures based on the DPLL(T) paradigm. We survey
interpolation systems for DPLL, equality sharing and DPLL(T), recon-
structing from the literature their completeness proofs, and clarifying
the requirements for interpolation in the presence of equality.

1 Introduction

Automated deduction and program verification have always been connected,
as described, for instance, in [34] and [1]. A theorem proving technique that
has recently found application in verification is interpolation. Informally, in-
terpolants are formula ‘in between’ other formulæ in a proof, containing only
their shared symbols. Interpolation was proposed for abstraction refinement in
software model checking, first for propositional logic and propositional satisfi-
ability [25], and then for quantifier-free fragments of first-order theories, their
combinations, and satisfiability modulo theories [18, 26, 35, 21, 11, 12, 17, 6, 7, 9].
Considered theories include equality [26, 16], linear rational arithmetic [26, 21],
Presburger or linear integer arithmetic [21, 6], or fragments thereof [12], and
arrays without extensionality [21, 7, 8]. In these papers the theory reasoning is
done either by specialized sequent-style inference systems [18, 26, 6, 7] or by sat-
isfiability procedures, such as congruence closure for equality [16], integrated in
a DPLL(T) framework [35, 11, 12, 17]. Subsequently, interpolation was suggested
for invariant generation, and in the context of inference systems for first-order
logic with equality, based on resolution and superposition [27, 23, 19]. An early
lead towards this application can be traced back to [10]. More recently, inter-
polation was related to abstract interpretation [14] and applied to improve the
quality of annotations [28].

The aim of this paper is to present the core of the state of the art in inter-
polation for the proofs generated by theorem provers for satisfiability modulo

⋆ Research supported in part by MIUR grant no. 2007-9E5KM8 and EU COST Action
IC0901.

theories, also known as SMT-solvers, based on the DPLL(T) paradigm (e.g., [31,
33]), where DPLL refers to the Davis-Putnam-Logemann-Loveland procedure for
propositional satisfiability, and T =

⋃n
i=1 Ti is a union of theories.

In this paper we present:

– A framework of definitions for interpolation, including that of completeness
of an interpolation system;

– Two interpolation systems for propositional logic, HKPYM [20, 24, 32] and
MM [25, 26], already surveyed in [15], with a reconstruction of the proof of
completeness of HKPYM in [35];

– An analysis of interpolation in the presence of equality, which explains the
relation between the notion of equality-interpolating theory of [35] and that of
separating ordering of [27, 23, 19] and provides a proof of the result that the
quantifier-free fragment of the theory of equality is equality-interpolating,
which was sketched in [35];

– The interpolation system of [35] for equality sharing [29], which we name
EQSH, with a reconstruction of its proof of completeness in [35] and the
observation that it applies also to model-based theory combination [13];

– The interpolation system for DPLL(T) obtained in [35] by uniting HKPYM
and EQSH, which we name HKPYM–T.

We emphasize the contributions of [35], because it is where the crucial notion
of equality-interpolating theory appeared, and because all subsequent papers
that we are aware of refer to [35] for the proofs of completeness of HKPYM
and EQSH, whence HKPYM–T. However, those proofs appeared only in the
technical report companion to [35], and with discrepancies in definitions and
notations between [35] and the technical report. Thus, we choose to present
them here.

2 A framework of definitions for interpolation

We assume the basic definitions commonly used in theorem proving. Let A and
B be two formulæ with respective signatures ΣA and ΣB:

Definition 1. A non-variable symbol is A-colored, if it is in ΣA\ΣB; B-colored,
if it is in ΣB \ΣA; and transparent, if it is in ΣT = ΣA ∩ΣB.

Let LX denote, ambiguously, the language of ΣX -terms, ΣX -literals or ΣX -
formulæ, where X stands for either A, B or T .

Definition 2. A formula I is an interpolant of formulæ A and B such that
A ⊢ B, or an interpolant of (A, B), if (i) A ⊢ I, (ii) I ⊢ B and (iii) I ∈ LT .

The following classical result is known as Craig’s Interpolation Lemma:

Lemma 1. Let A and B be closed formulæ such that A ⊢ B. If ΣT contains at
least one predicate symbol, an interpolant I of (A, B) exists and it is a closed
formula; otherwise, either B is valid and I is ⊤, or A is unsatisfiable and Iis ⊥.

From now on we consider only closed formulæ. Since most theorem provers work
refutationally, it is useful to adopt the following:

Definition 3. A formula I is a reverse interpolant of formulæ A and B such
that A, B ⊢⊥, if (i) A ⊢ I, (ii) B, I ⊢⊥ and (iii) I ∈ LT .

A reverse interpolant of (A, B) is an interpolant of (A,¬B). A theory is pre-
sented by a set T of sentences, meaning that the theory is the set of all logical
consequences of T . If ΣT is the signature of T , LT is redefined to be the language
built from ΣT ∪ΣT , so that theory symbols are transparent:

Definition 4. A formula I is a theory interpolant of formulæ A and B such
that A ⊢T B, if (i) A ⊢T I, (ii) I ⊢T B and (iii) I ∈ LT . A formula I is
a reverse theory interpolant of formulæ A and B such that A, B ⊢T⊥, if (i)
A ⊢T I, (ii) B, I ⊢T⊥ and (iii) I ∈ LT .

The distinction between interpolant and reverse interpolant appeared in [23].
Since we consider refutational systems, and in keeping with most of the litera-
ture, we write “interpolant” for “reverse interpolant” and omit “theory,” unless
relevant. Because most systems work with clauses, that are disjunctions of liter-
als, from now on A and B are sets of clauses.

Definition 5. A ground term, literal, or clause is transparent, if all its symbols
are; A-colored, if it contains at least one A-colored symbol, and the others are
transparent; B-colored, if it contains at least one B-colored symbol, and the others
are transparent; and AB-mixed, otherwise. A clause is colorable if it contains
no AB-mixed literals.

Some authors use A-local in place of A-colored, B-local in place of B-colored,
and AB-common, or global, in place of transparent. In the following “colored”
may mean non-transparent.

Definition 6. Let C be a disjunction (conjunction) of literals. The projection
C|X of C on LX is the disjunction (conjunction) obtained by removing from C

any literal whose atom is not in LX . If C is a disjunction and C|X is empty,
then C|X =⊥; if C is a conjunction and C|X is empty, then C|X = ⊤.

Projection commutes with negation (¬(C|X) = (¬C)|X) and distributes over
conjunction and disjunction: (C∨D)|X = C|X∨D|X and (C∧D)|X = C|X∧D|X .
Since transparent literals of C belong to both C|A and C|B, if C is a conjunction,
C|A ⇒ C|T and C|B ⇒ C|T ; if C is a disjunction, C|T ⇒ C|A and C|T ⇒ C|B .
Alternatively, transparent literals may be put only in the projection on LB:

Definition 7. Let C be a disjunction (conjunction) of literals. The asymmetric
projections of C are C\B = C|A \ C|T and C ↓B= C|B.

Since [25], approaches to interpolation work by annotating each clause C in
a refutation of A and B with auxiliary formulæ, unnamed in [25, 26], named
C-interpolants in [23], and partial interpolants in [35, 15, 6]:

Definition 8. A partial interpolant PI(C) of a clause C occurring in a refuta-
tion of A∪B is an interpolant of gA(C) = A∧¬(C|A) and gB(C) = B∧¬(C|B).

If C is the empty clause, which is written 2 and represents a contradiction,
PI(C) is an interpolant of (A, B). Since A ∧B ⊢ C, gA(C) ∧ gB(C) = A ∧B ∧
¬C ⊢⊥, and it makes sense to seek an interpolant of gA(C) and gB(C), which
may be seen as an interpolant of (A, B) in a proof of C. We also write c|X , PI(c),
gA(c) and gB(c) if c is the label of clause C, written c : C. By Definition 3 applied
to Definition 8, a partial interpolant needs to satisfy the following requirements:

1. gA(C) ⊢ PI(C) or A ∧ ¬(C|A) ⊢ PI(C) or A ⊢ C|A ∨ PI(C)
2. gB(C) ∧ PI(C) ⊢⊥ or B ∧ ¬(C|B) ∧ PI(C) ⊢⊥ or B ∧ PI(C) ⊢ C|B, and
3. PI(C) is transparent.

Indeed, since the signatures of gA(C) and gB(C) are ΣA and ΣB, transparency
is always with respect to A and B.

3 Transition systems, proofs and interpolation systems

DPLL and DPLL(T) are presented as transition systems (e.g., [31, 4]) that op-
erate in two modes, search mode and conflict resolution mode. In search mode,
the state has the form M ||F , where F is a set of clauses and M is a sequence
of assigned literals, that represents a partial assignment to ground literals, pos-
sibly with a justification, and therefore a partial model, or a set of candidate
models. An assigned literal can be either a decided literal or an implied literal. A
decided literal represents a guess, and has no justification (decision or splitting).
An implied literal lC is a literal l justified by a clause C: all other literals of C

are false in M so that l needs to be true (unit propagation). If there is a clause C

whose literals are all false in M , C is in conflict, it is called conflict clause, and
the system switches to conflict resolution mode, where the state has the form
M ||F ||C. In conflict resolution mode, a conflict clause C ∨ ¬l may be resolved
with the justification D ∨ l of l in M to yield a new conflict clause C ∨D (ex-
planation). Any clause thus derived can be added to F (learning). Backjumping
unassigns at least one decided literal and drives the system back from conflict
resolution mode to search mode. In state M ||F ||2, unsatisfiability is detected.

Definition 9. Let U1 stand for DPLL and U2 for DPLL(T), and S be the input
set of clauses. A transition system derivation, or Uj-derivation, where j ∈ {1, 2},
is a sequence of state transitions ∆0 =⇒Uj

∆1 =⇒Uj
. . .∆i =⇒Uj

∆i+1 =⇒Uj
. . .,

where ∀i ≥ 0, ∆i is of the form Mi ||Fi or Mi ||Fi ||Ci, each transition is deter-
mined by a transition rule in Uj, ∆0 = ||F0 and F0 = S.

As noticed first in [36], according to [34], a proof produced by DPLL is
made of propositional resolution steps between conflict clauses (explanations).
Let C∗ = {Ci|i > 0} be the set of all conflict clauses in a derivation:

Definition 10. For DPLL-derivation ∆0 =⇒U1
. . . ∆i =⇒U1

∆i+1 =⇒U1
. . ., for

all C ∈ C∗ the DPLL-proof tree ΠU1
(C) of C is defined as follows:

– If C ∈ F0, ΠU1
(C) consists of a node labelled by C;

– If C is generated by resolving conflict clause C1 with justification C2, ΠU1
(C)

consists of a node labelled by C with subtrees ΠU1
(C1) and ΠU1

(C2).

If the derivation halts reporting unsatisfiable, ΠU1
(2) is a DPLL-refutation.

Since a justification C2 is either an input clause or a learnt clause, which was
once a conflict clause, ΠU1

(C2) is defined.
DPLL(T) builds into DPLL a T -satisfiability procedure, that decides whether

a set of ground T -literals has a T -model. In most cases, T is a union of the-
ories

⋃n

i=1 Ti, and a T -satisfiability procedure is obtained by combining n Ti-
satisfiability procedures, that we name Qi, for 1 ≤ i ≤ n, according to equal-
ity sharing [29] (see Chapter 10 of [5] for a modern presentation). The Ti’s are
quantifier-free fragments of first-order theories such as the theory of equality, lin-
ear arithmetic or theories of common data structures. For the theory of equality,
also known as equality with uninterpreted, or free, symbols (EUF), the satisfia-
bility procedure is based on congruence closure (e.g., [30], and Chapter 9 of [5]
for a modern presentation).

Equality sharing requires that the Ti’s are pairwise disjoint, which means
the only shared symbol, beside constants, is equality, and stably infinite, which
means that any quantifier-free Ti-formula has a Ti-model if and only if it has
an infinite one. Equality sharing separates occurrences of function symbols
from different signatures to ensure that each Qi’s deals with Ti-literals: for
example, f(g(a)) ≃ b, where f and g belong to different signatures, becomes
f(c) ≃ b ∧ g(a) ≃ c, where c is a new constant. Each Qi propagates all disjunc-
tions of equalities between shared constants that are Ti-entailed by the problem.
If a theory is convex, whenever a disjunction is entailed, a disjunct is also entailed,
and therefore it is sufficient to exchange equalities. Model-based theory combina-
tion [13] is a version of equality sharing that assumes that each Qi maintains a
candidate Ti-model, and replaces propagation of entailments by addition to M

of equalities that are true in the current candidate Ti-model. These equalities
are guesses, because it is not known whether they are true in all Ti-models con-
sistent with M . If one of them turns out to be inconsistent, backjumping will
withdraw it and update the Ti-model.

In DPLL(T), the T -satisfiability procedure propagates T -consequences of
M to the DPLL engine: if whenever literals l1, . . . , ln are true, some literal l

must also be true in T , l is added to M with the T -lemma ¬l1 ∨ . . .∨ ¬ln ∨ l as
justification (theory propagation); if a subset l1, . . . , ln of M is T -inconsistent, the
system switches to conflict resolution mode with T -conflict clause ¬l1∨ . . .∨¬ln.
Proofs produced by DPLL(T) are ground, but not propositional, and include also
T -conflict clauses. Thus, we need to assume that the Qi’s and their combination
produce proofs, that we denote by ΠT (C):

Definition 11. For DPLL(T)-derivation ∆0 =⇒U2
. . .∆i =⇒U2

∆i+1 =⇒U2
. . .,

for all C ∈ C∗ the DPLL(T)-proof tree ΠU2
(C) of C is defined as follows:

– If C ∈ F0, ΠU2
(C) consists of a node labelled by C;

– If C is generated by resolving conflict clause C1 with justification C2, ΠU2
(C)

consists of a node labelled by C with subtrees ΠU2
(C1) and ΠU2

(C2);
– If C is a T -conflict clause, ΠU2

(C) = ΠT (C).

If the derivation halts reporting unsatisfiable, ΠU2
(2) is a DPLL(T)-refutation.

An interpolation system is a mechanism to annotate clauses in a proof with
partial interpolants; its most important property is completeness:

Definition 12. An interpolation system is complete for transition system U , if
for all sets of clauses A and B, such that A ∪ B is unsatisfiable, and for all
U-refutations of A ∪B, it generates an interpolant of (A, B).

Since PI(2) is an interpolant of (A, B), in order to prove that an interpolation
system is complete, it is sufficient to show that it annotates the clauses in any
refutation with clauses that are partial interpolants.

We conclude recalling that stable infiniteness is connected to interpolation:
the set of disjunctions of equalities exchanged by T1 and T2 in equality sharing
is a reverse interpolant of (F1, F2), where Fi, for i ∈ {1, 2}, is the conjunction
of input Ti-literals after separation. Stable-infiniteness ensures that quantifier-
free interpolants suffice (cf. Chapter 10 of [5] for details). This is obviously
not sufficient to make a combination of interpolating satisfiability procedures
interpolating, because (F1, F2) is a partition of the input based on the signatures
of T1 and T2, whereas we need to generate interpolants of an arbitrary partition
(A, B) of the input where both A and B may mix T1-symbols and T2-symbols.

4 Propositional interpolation systems

If the input S = A∪B is a set of propositional clauses, the set of literals that may
appear in a refutation is determined once and for all by the set of literals that
occur in S. Since input literals are either A-colored or B-colored or transparent,
there are no AB-mixed literals in proofs. Interpolation systems attach a partial
interpolant to every resolution step, distinguishing whether the literal resolved
upon is A-colored or B-colored or transparent. The first interpolation system for
propositional resolution, called HKP in [15] from the initials of three indepen-
dent authors, appeared in [20, 24, 32]. We call it HKPYM, because Yorsh and
Musuvathi reformulated it and reproved it complete in the context of DPLL(T):

Definition 13 (HKPYM interpolation system). Let c : C be a clause that
appears in a refutation of A ∪B by propositional resolution:

– If c : C ∈ A, then PI(c) =⊥,
– If c : C ∈ B, then PI(c) = ⊤,
– If c : C ∨D is a propositional resolvent of p1 : C ∨ l and p2 : D ∨ ¬l then:
• If l is A-colored, then PI(c) = PI(p1) ∨ PI(p2),
• If l is B-colored, then PI(c) = PI(p1) ∧ PI(p2) and
• If l is transparent, then PI(c) = (l ∨ PI(p1)) ∧ (¬l ∨ PI(p2)).

The system of [25, 26], that we call MM, allows a more informative interpolant
for clauses in A and treats transparent literals resolved upon like B-colored ones:

Definition 14 (MM interpolation system). Let c : C be a clause that ap-
pears in a refutation of A ∪B by propositional resolution:

– If c : C ∈ A, then PI(c) = C|T ,
– If c : C ∈ B, then PI(c) = ⊤,
– If c : C ∨D is a propositional resolvent of p1 : C ∨ l and p2 : D ∨ ¬l then:
• If l is A-colored, then PI(c) = PI(p1) ∨ PI(p2),
• If l is B-colored or transparent, then PI(c) = PI(p1) ∧ PI(p2).

Intuitively, HKPYM is symmetric with respect to A and B, and assumes the
symmetric notion of projection (cf. Definition 6), while MM is slanted towards
B, and assumes the asymmetric notion of projection (cf. Definition 7). In [35],
projection is defined to be asymmetric; however, the proof of completeness of
HKPYM in the companion technical report, requires projection to be symmetric.
The following proof fixes this discrepancy:

Theorem 1 (Yorsh and Musuvathi, 2005). HKPYM is a complete interpo-
lation system for propositional resolution.

Proof: We need to prove that for all clauses c : C in the refutation, PI(c) satifies
Requirements (1), (2) and (3) listed at the end of Section 2. The proof is by
induction on the structure of the refutation.
Base case:

– If c : C ∈ A, then ¬(C|A) = ¬C; and gA(c) = A ∧ ¬C =⊥, since C ∈ A.
Since PI(c) =⊥, both (1) and (2) reduce to ⊥ ⊢ ⊥, which is trivially true,
and PI(c) is trivially transparent.

– If c : C ∈ B, then ¬(C|B) = ¬C; and gB(c) = B ∧ ¬C = ⊥, since C ∈ B.
Since PI(c) = ⊤, (1) is trivial, (2) reduces to ⊥ ⊢ ⊥, which is trivially true,
and PI(c) is trivially transparent.

Induction hypothesis: for k ∈ {1, 2} PI(pk) satifies Requirements (1), (2) and (3).
Induction case:

(a) l is A-colored: PI(c) = PI(p1) ∨ PI(p2).
First we observe that p1|A ∧ p2|A ⇒ C|A ∨ D|A (*). Indeed, since l is A-
colored, p1|A = (l∨C)|A = l∨C|A and p2|A = (¬l∨D)|A = ¬l∨D|A. Then,
p1|A ∧ p2|A = (l ∨C|A) ∧ (¬l ∨D|A)⇒ C|A ∨D|A by resolution.
We show (1) gA(c)⇒ PI(c):
gA(c) = A ∧ ¬((C ∨D)|A) = A ∧ ¬(C|A ∨D|A)
A ∧ ¬(C|A ∨D|A)⇒ A ∧ ¬(p1|A ∧ p2|A) by (*)
A∧¬(p1|A∧p2|A) = A∧(¬p1|A∨¬p2|A) = (A∧¬p1|A)∨(A∧¬p2|A) = gA(p1)∨
gA(p2) and gA(p1) ∨ gA(p2)⇒ PI(p1) ∨ PI(p2) by induction hypothesis.
We show (2) gB(c) ∧ PI(c)⇒⊥:
gB(c) ∧ PI(c) = B ∧ ¬((C ∨D)|B) ∧ PI(c) = B ∧ ¬(C|B ∨D|B) ∧ PI(c) =

B ∧ ¬(C|B) ∧ ¬(D|B) ∧ (PI(p1) ∨ PI(p2))⇒
(B ∧ ¬(C|B) ∧ PI(p1)) ∨ (B ∧ ¬(D|B) ∧ PI(p2)) =
(B ∧ ¬((l ∨C)|B) ∧ PI(p1)) ∨ (B ∧ ¬((¬l ∨D)|B) ∧ PI(p2)) =
(because l 6∈ LB and, therefore, C|B = (l ∨ C)|B and D|B = (¬l ∨D)|B)
= (B ∧ ¬(p1|B) ∧ PI(p1)) ∨ (B ∧ ¬(p2|B) ∧ PI(p2)) =
(gB(p1)∧PI(p1))∨ (gB(p2)∧PI(p2))⇒⊥ ∨ ⊥=⊥ by induction hypothesis.
Requirement (3) follows by induction hypothesis.

(b) l is B-colored: PI(c) = PI(p1) ∧ PI(p2).
Similar to Case (a), we have that p1|B ∧ p2|B ⇒ C|B ∨D|B (**).
We show (1) gA(c)⇒ PI(c):
gA(c) = A ∧ ¬((C ∨D)|A) = A ∧ ¬(C|A ∨D|A) = A ∧ ¬(C|A) ∧ ¬(D|A) =
A ∧ ¬((l ∨ C)|A) ∧ ¬((¬l ∨D)|A) =
(because l 6∈ LA and, therefore, C|A = (l ∨ C)|A and D|A = (¬l ∨D)|A)
= A ∧ ¬(p1|A) ∧ ¬(p2|A) = (A ∧ ¬(p1|A)) ∧ (A ∧ ¬(p2|A)) = gA(p1) ∧ gA(p2)
and gA(p1) ∧ gA(p2)⇒ PI(p1) ∧ PI(p2) by induction hypothesis.
We show (2) gB(c) ∧ PI(c)⇒⊥:
gB(c) ∧ PI(c) = B ∧ (¬((C ∨D)|B)) ∧ PI(p1) ∧ PI(p2) =
B ∧ (¬(C|B ∨D|B)) ∧ PI(p1) ∧ PI(p2)⇒ by (**)
B∧ (¬(p1|B ∧p2|B))∧PI(p1)∧PI(p2) = B∧ (¬(p1|B)∨¬(p2 |B))∧PI(p1)∧
PI(p2) = [(B ∧ ¬(p1|B)) ∨ (B ∧ ¬(p2|B))] ∧ PI(p1) ∧ PI(p2) =
(gB(p1) ∧ PI(p1) ∧ PI(p2)) ∨ (gB(p2) ∧ PI(p1) ∧ PI(p2))⇒
(gB(p1)∧PI(p1))∨ (gB(p2)∧PI(p2))⇒⊥ ∨ ⊥=⊥ by induction hypothesis.
Requirement (3) follows by induction hypothesis.

(c) l is transparent: PI(c) = (l ∨ PI(p1)) ∧ (¬l ∨ PI(p2)).
We show (1) gA(c)⇒ PI(c), or, equivalently, gA(c) ∧ ¬PI(c)⇒⊥:
gA(c) ∧ ¬PI(c) = A ∧ (¬(C|A ∨D|A)) ∧ ¬[(l ∨ PI(p1)) ∧ (¬l ∨ PI(p2))] =
A ∧ ¬(C|A) ∧ ¬(D|A) ∧ [¬(l ∨ PI(p1)) ∨ ¬(¬l ∨ PI(p2))] =
[A∧¬(C|A)∧¬(D|A)∧¬(l∨PI(p1))]∨[A∧¬(C|A)∧¬(D|A)∧¬(¬l∨PI(p2))]⇒
[A ∧ ¬(C|A) ∧ ¬(l ∨ PI(p1))] ∨ [A ∧ ¬(D|A) ∧ ¬(¬l ∨ PI(p2))] =
[A∧¬(C|A)∧¬l∧¬PI(p1)]∨ [A∧¬(D|A)∧ l∧¬PI(p2)] = (l is transparent)
= [A ∧ ¬((l ∨ C)|A) ∧ ¬PI(p1)] ∨ [A ∧ ¬((¬l ∨D)|A) ∧ ¬PI(p2)] =
(gA(p1)∧¬PI(p1))∨(gA(p2)∧¬PI(p2))⇒⊥ ∨ ⊥=⊥ by induction hypothesis.
We show (2) gB(c) ∧ PI(c)⇒⊥:
gB(c) ∧ PI(c) = B ∧ ¬(C|B ∨D|B) ∧ [(l ∨ PI(p1)) ∧ (¬l ∨ PI(p2))] =
B ∧ ¬(C|B) ∧ ¬(D|B) ∧ [(l ∨ PI(p1)) ∧ (¬l ∨ PI(p2))] (***)
at this point we reason that l is either true or false; if l is true, l holds, l

subsumes l ∨ PI(p1) and simplifies ¬l ∨ PI(p2) to PI(p2); if l is false, ¬l
holds, ¬l subsumes ¬l∨PI(p2) and simplifies l∨PI(p1) to PI(p1); thus, (***)
implies [B∧¬(C|B)∧¬(D|B)∧l∧PI(p2)]∨[B∧¬(C|B)∧¬(D|B)∧¬l∧PI(p1)]
which implies [B ∧ ¬(D|B) ∧ l ∧ PI(p2)] ∨ [B ∧ ¬(C|B) ∧ ¬l ∧ PI(p1)] =
[B ∧ ¬(D|B ∨ ¬l) ∧ PI(p2)] ∨ [B ∧ ¬(C|B ∨ l) ∧ PI(p1)] = (l is transparent)
= (B ∧ ¬(p2|B) ∧ PI(p2)) ∨ (B ∧ ¬(p1|B) ∧ PI(p1)) =
(gB(p2)∧PI(p2))∨ (gB(p1)∧PI(p1))⇒⊥ ∨ ⊥=⊥ by induction hypothesis.
Requirement (3) holds by induction hypothesis and l being transparent. 2

5 Interpolation and equality

In propositional logic the notion of being A-colored, B-colored and transparent
is stable: if a literal is transparent in the initial state of a derivation, it will be
transparent in all. Once equality is added, even in the ground case, this is no
longer obvious. Assume that ta is an A-colored ground term, tb is a B-colored
ground term, and the AB-mixed equation ta ≃ tb is derived. The congruence
classes of ta and tb have to be merged. Assume that the congruence class of ta
only contains A-colored terms, that of tb only contains B-colored terms, and ta
and tb are the representatives of their congruence classes. If tb were chosen as the
representative of the new class, it should become transparent. If either one of the
two classes already contains a transparent term t, the AB-mixed equation ta ≃ tb
is not problematic, because t can be the representative of the new class. The issue
is the same if we reason about equality by rewriting: if an AB-mixed equation
ta ≃ tb is generated, where both ta and tb are in normal form with respect to
the current set of equations, and ta ≻ tb in the ordering, all occurrences of ta,
including those in A, should be replaced by tb, which should become transparent.
In order to prevent such instability of transparency, one needs to require that
all theories are equality-interpolating, a property that appeared first in [35]:

Definition 15. A theory T is equality-interpolating if for all T -formulæ A and
B, whenever A ∧B |=T ta ≃ tb, where ta is an A-colored ground term and tb is
a B-colored ground term, then A ∧ B |=T ta ≃ t ∧ tb ≃ t for some transparent
ground term t.

Then, in congruence closure, it is sufficient to adopt t as the representative of the
new congruence class. Operationally, as suggested in [35], if ta ≃ tb is generated
before ta ≃ t and tb ≃ t, one may add a new transparent constant c and the
equations ta ≃ c and tb ≃ c: if the theory is equality-interpolating, c ≃ t will be
generated eventually, so that c is only a name for t. In a rewrite-based setting,
one needs to assume the following:

Definition 16. An ordering ≻ is separating if t ≻ s whenever s is transparent
and t is not, for all terms, or literals, s and t.

Thus, both ta and tb will be rewritten to t. This requirement on the ordering
appeared in [27], under the name AB-oriented ordering, and then in [22], where
it was justified intuitively in terms of symbol elimination: since interpolants
have to be transparent, the ordering should orient equations in such a way that
rewriting eliminates colored symbols. However, it was not related to the notion
of equality-interpolating theory.

Ground proofs made only of equalities and containing no AB-mixed equality
were termed colorable in [17]. We adopt the name and apply it to any proof made
of clauses:

Definition 17. A proof is colorable if all its clauses are.

If A-local, B-local and AB-common, or global, are used in place of A-colored,
B-colored and transparent, respectively, acceptable proofs are called local.

It was proved in [35] that the quantifier-free fragments of the theories of
equality, linear arithmetic and non-empty, possibly cyclic lists are equality-
interpolating. The proof that the theory of lists is equality-interpolating relies
on that for the theory of equality. However, the proof for the latter was only
sketched in [35] (cf. Lemma 2 in [35]), and therefore we reconstruct it here using
the notion of separating ordering:

Lemma 2. If the ordering is separating, all ground proofs by resolution and
rewriting are colorable.

Proof : By induction on the structure of the proof:
Base Case: By definition, there are no AB-mixed literals in the input.
Induction Hypothesis: The premises do not contain AB-mixed literals.
Induction Case:

– Resolution: Since a ground resolvent is made of literals inherited from its
parents, it does not contain AB-mixed literals by induction hypothesis.

– Rewriting: let s ≃ r be a ground equation such that s ≻ r, and l[s] be the
literal it applies to. By induction hypothesis, neither s ≃ r nor l[s] are AB-
mixed. Thus, since the ordering is separating and s ≻ r, either r has the
same color as s or it is transparent. If s and r have the same color, also l[s]
and l[r] have the same color. If s is colored and r is transparent, then l[r]
either has the same color as l[s] or it is transparent, the latter if s was its
only colored term. In either case, l[r] is not AB-mixed. 2

To show the following we only need to consider purely equational proofs, that
are represented as equational chains. Unfailing, or ordered, completion reduces
any ground equational proof s

∗
↔ t to a rewrite proof, or valley proof in the form

s
∗
→ ◦

∗
← t (see [2] for a recent treatment with ample references):

Theorem 2. The quantifier-free fragment of the theory of equality is equality-
interpolating.

Proof : Assume ground completion employs a separating ordering. If A ∧ B |=
ta ≃ tb, where ta is an A-colored ground term and tb is a B-colored ground
term, then, since unfailing completion is refutationally complete, it generates a
contradiction from A∪B ∪ {ta 6≃ tb}. The only rôle of ta 6≃ tb in the derivation is
to be rewritten, until a contradiction is generated in the form t 6≃ t. The resulting
proof is made only of rewriting steps and therefore it is a rewrite proof ta

∗
→ t

∗
←

tb. Since the ordering is separating, this proof contains no AB-mixed equations
by Lemma 2, which means that it must contain at least a transparent term.
Since the ordering is separating, the smallest term t is transparent. It follows
that A ∧B |= ta ≃ t ∧ tb ≃ t, because the inferences are sound. 2

From now on, we assume that the built-in theories Ti, 1 ≤ i ≤ n, are equality-
interpolating, so that there are no AB-mixed literals, and all proofs are colorable.

6 Interpolation for equality sharing and DPLL(T)

The treatment of interpolation for equality sharing in [35] temporarily assumes
that the theories in T =

⋃n

i=1 Ti are convex, so that it is sufficient to propagate
equalities. We do not need to assume convexity, not even as a temporary as-
sumption, neither we need to deal with propagation of disjunctions, because we
adopt model-based theory combination, where only equalities are propagated.
For equality sharing, the input A ∪ B is a set of ground T -literals, or unit
T -clauses. Separation applies in such a way to respect colors: for example, if
f(g(a)) ≃ b, where f and g belong to the signatures of different theories, be-
comes f(c) ≃ b ∧ g(a) ≃ c, the new constant c is stipulated to be A-colored,
B-colored or transparent, depending on whether g(a) is A-colored, B-colored or
transparent, respectively.

Every Qi deals with a set Ai ∪ Bi ∪K, where Ai contains the Ti-literals in
A, Bi contains the Ti-literals in B, and K is the set of propagated equalities.
Although for equality sharing it suffices to propagate equalities between shared
constants, in DPLL(T) the propagation is done by adding the literal to M ,
and model-based theory combination may propagate equalities between ground
terms. Thus, we assume that K is a set of equalities between ground terms.

We assume that each Qi is capable of generating Ti-interpolants for its
proofs. A crucial observation in [35] is that these Ti-interpolants cannot be
Ti-interpolants of (A, B), since the input to Qi is Ai ∪ Bi ∪ K. They are Ti-
interpolants of some partition (A′, B′) of Ai ∪ Bi ∪ K. This is where the as-
sumption that theories are equality-interpolating plays a rôle: K contains no
AB-mixed literals. Therefore, it is possible to define A′ and B′ based on colors
as defined by the original (A, B) partition, using projections with respect to A

and B: let A′ be (Ai∪Bi∪K)|A = Ai∪K|A and B′ be (Ai∪Bi∪K)|B = Bi∪K|B.
It follows that LA′ = LA, LB′ = LB, and what is transparent with respect to
(A′, B′) is transparent with respect to (A, B), so that Ti-interpolants of (A′, B′)
can be used to build the T -interpolant of (A, B):

Definition 18. For all ground literals l, such that Ai ∪ Bi ∪ K ⊢Ti
l, where

Ai is the set of Ti-literals in A, Bi is the set of Ti-literals in B, and K is
a set of propagated equalities between ground terms, the theory-specific partial
interpolant of l, denoted by PIi

(A′,B′)(l), is the Ti-interpolant of (A′∧¬(l|A), B′∧

¬(l|B)) generated by Qi, where A′ = Ai ∪K|A and B′ = Bi ∪K|B.

Note how there is no need to require that only equalities between shared con-
stants are propagated.

In equality sharing the refutation is found by one of the theories, and therefore
has the form Ai ∪ Bi ∪ K ⊢Ti

⊥ for some i. The method of [35] shows how
to extract a T -interpolant of (A, B) from such a refutation, by combining the
theory-specific partial interpolants computed by the Qi’s for the propagated
equalities in K. We state it as an interpolation system for equality sharing:

Definition 19 (EQSH interpolation system). Let C be a literal, or unit
clause, that appears in a refutation of A ∪B by equality sharing:

– If C ∈ A, then PI(C) = ⊥,
– If C ∈ B, then PI(C) = ⊤,
– If Ai ∪Bi ∪K ⊢Ti

C for some i, 1 ≤ i ≤ n, then

PI(C) = (PIi
(A′,B′)(C) ∨

∨

l∈A′

PI(l)) ∧
∧

l∈B′

PI(l),

where A′ = Ai ∪K|A and B′ = Bi ∪K|B.

If there were only one theory, K would be empty, and the partial interpolant in
the inductive case of Definition 19 would be equal to the theory-specific partial
interpolant in that theory.

Theorem 3 (Yorsh and Musuvathi, 2005). EQSH is a complete interpola-
tion system for equality sharing.

Proof: We need to prove that for all unit clauses C in the refutation, PI(C)
satifies Requirements (1), (2) and (3), listed at the end of Section 2, in theory
T . The base case is the same as for Theorem 1. The inductive case, for a C such
that Ai ∪Bi ∪K ⊢Ti

C for some i, 1 ≤ i ≤ n, requires another induction on K:
Base case: if K = ∅, then A′ = Ai, B′ = Bi, and PI(C) = PIi

(A′,B′)(C).

By Definition 18, PI(C) is a Ti-interpolant of (Ai ∧¬(C|A), Bi ∧¬(C|B)); since
Ai ⊆ A and Bi ⊆ B, PI(C) is also a T -interpolant of A∧¬(C|A) and B∧¬(C|B).
Induction case: if K 6= ∅, then A′ = Ai ∪ K|A, B′ = Bi ∪ K|B and PI(C) =
(PIi

(A′,B′)(C) ∨
∨

l∈K|A
PI(l)) ∧

∧
l∈K|B

PI(l), because PI(l) = ⊥ for all l ∈ Ai

and PI(l) = ⊤ for all l ∈ Bi.
We continue with the main claim:
Induction hypothesis: for all l ∈ K|A, PI(l) is a T -interpolant of (A∧¬(l|A), B∧
¬(l|B)), that is, a T -interpolant of (A∧¬l, B), because l|A = l and l|B = ⊥, since
l ∈ K|A; for all l ∈ K|B, PI(l) is a T -interpolant of (A∧¬(l|A), B∧¬(l|B)), that
is, a T -interpolant of (A, B ∧ ¬l), because l|A = ⊥ and l|B = l, since l ∈ K|B;
so that the inductive hypothesis is:

– For all l ∈ K|A,
(1A) A ∧ ¬l ⊢T PI(l) or, equivalently, A ⊢T l ∨ PI(l),
(2A) B ∧ PI(l) ⊢T⊥,
(3A) PI(l) is transparent; and
– For all l ∈ K|B,
(1B) A ⊢T PI(l),
(2B) B ∧ ¬l ∧ PI(l) ⊢T⊥, or, equivalently, B ∧ PI(l) ⊢T l,
(3B) PI(l) is transparent.

Induction case:

1. A ∧ ¬(C|A) ⊢T PI(C):
By Definition 18, Ai ∧K|A ∧¬(C|A) ⊢Ti

PIi
(A′,B′)(C), or, equivalently, Ai ∧

¬(C|A) ⊢Ti
¬K|A ∨ PIi

(A′,B′)(C) (*), where ¬K|A is the disjunction ¬l1 ∨

. . . ∨ ¬lq, if K|A is the conjunction l1 ∧ . . . ∧ lq. By induction hypothesis

(1A), we have A ⊢T lj ∨ PI(lj) for 1 ≤ j ≤ q (**). By q resolution steps
between (*) and (**), and since A ⇒ Ai, it follows that A ∧ ¬(C|A) ⊢T
PIi

(A′,B′)(C) ∨
∨

l∈K|A
PI(l). By induction hypothesis (1B), A ⊢T PI(l) for

all l ∈ K|B. Therefore, we conclude that A ∧ ¬(C|A) ⊢T (PIi
(A′,B′)(C) ∨∨

l∈K|A
PI(l)) ∧

∧
l∈K|B

PI(l).

2. B ∧ ¬(C|B) ∧ PI(C) ⊢T⊥:
By Definition 18, Bi ∧ K|B ∧ ¬(C|B) ∧ PIi

(A′,B′)(C) ⊢Ti
⊥. Since B ⇒ Bi,

we have B∧K|B ∧¬(C|B)∧PIi
(A′,B′)(C) ⊢Ti

⊥ (*). By induction hypothesis

(2A), B ∧ PI(l) ⊢T⊥ for all l ∈ K|A, and thus B ∧
∨

l∈K|A
PI(l) ⊢T⊥,

and B ∧ K|B ∧ ¬(C|B) ∧
∨

l∈K|A
PI(l) ⊢T⊥ (**). Combining (*) and (**)

gives B∧K|B∧¬(C|B)∧(PIi
(A′,B′)(C)∨

∨
l∈K|A

PI(l)) ⊢T⊥, or, equivalently,

B∧¬(C|B)∧(PIi
(A′,B′)(C)∨

∨
l∈K|A

PI(l)) ⊢T ¬K|B (†), where ¬K|B is the

disjunction ¬l1∨ . . .∨¬lq, if K|B is the conjunction l1∧ . . .∧ lq. By induction
hypothesis (2B), B ∧ PI(lj) ⊢T lj for 1 ≤ j ≤ q (‡). By q resolution steps
between (†) and (‡), we get B ∧ ¬(C|B) ∧ (PIi

(A′,B′)(C) ∨
∨

l∈K|A
PI(l)) ∧∧

l∈K|B
PI(l) ⊢T⊥, that is, B ∧ ¬(C|B) ∧ PI(C) ⊢T⊥.

3. PI(C) is transparent, because PIi
(A′,B′)(C) is transparent by Definition 18,

and the PI(l)’s are transparent by induction hypotheses (3A) and (3B). 2

This proof does not depend on assuming that K contains only equalities between
shared constants, neither does it depend on assuming that K contains all such
equalities entailed by the theories. Thus, EQSH is a complete interpolation sys-
tem for equality sharing, regardless of whether equality sharing is implemented
in its original form, or by model-based theory combination.

Having an interpolation system for DPLL and an interpolation system for
equality sharing, we have all the ingredients for an interpolation system for
DPLL(T). Let A and B be two sets of ground T -clauses, for which we need to find
a T -interpolant. Let CPT be the set of the T -conflict clauses that appear in the
DPLL(T)-refutation of A∪B (cf. Definition 11). Such a refutation shows that A∪
B is T -unsatisfiable, by showing that A∪B∪CPT is propositionally unsatisfiable.
An interpolation system for DPLL(T) will be given by an interpolation system
for propositional resolution plus partial interpolants for the T -conflict clauses.
A clause C is a T -conflict clause, because its negation ¬C, which is a set, or
conjunction, of literals, was found T -unsatisfiable. Then, (¬C)|A ∧ (¬C)|B is
T -unsatisfiable, and we can compute a T -interpolant of ((¬C)|A, (¬C)|B) by
EQSH. This T -interpolant provides the partial interpolant for C.

We call the resulting interpolation system HKPYM–T, because it is obtained
by adding to HKPYM (cf. Definition 13) another case for T -conflict clauses. The
case for T -conflict clauses is a third base case, because they are sort of input
clauses from the point of view of the propositional engine:

Definition 20 (HKPYM–T interpolation system). Let c : C be a clause
that appears in a DPLL(T)-refutation of A ∪B:

– If c : C ∈ A, then PI(c) =⊥,

– If c : C ∈ B, then PI(c) = ⊤,
– If c : C is generated by T-Conflict, PI(c) is the T -interpolant of

((¬C)|A, (¬C)|B) produced by EQSH from the refutation ¬C ⊢T⊥;
– If c : C ∨D is a propositional resolvent of p1 : C ∨ l and p2 : D ∨ ¬l then:
• If l is A-colored, then PI(c) = PI(p1) ∨ PI(p2),
• If l is B-colored, then PI(c) = PI(p1) ∧ PI(p2) and
• If l is transparent, then PI(c) = (l ∨ PI(p1)) ∧ (¬l ∨ PI(p2)).

The case analysis on literals resolved upon remains unchanged, because the re-
quirement that all theories in T are equality-interpolating guarantees that the
T -conflict clauses do not introduce in the proof AB-mixed literals. The com-
pleteness of HKPYM–T follows from the completeness of HKPYM and EQSH.

7 Future work

We are working on interpolation for superposition [3] in order to obtain an in-
terpolation system for the theorem proving method DPLL(Γ +T) [4], which
integrates a superposition-based inference system Γ into DPLL(T). Interpola-
tion for ground superposition proofs was approached in [27] and then explored
further in [23], using a notion of colored proof, which is stronger than colorable,
since it excludes AB-mixed clauses. The observation that a separating ordering
makes proofs colorable (cf. Lemma 2) generalizes easily to ground proofs in a
full-fledged superposition-based inference system [3]. The analysis of interpola-
tion and equality reported here means that for DPLL(Γ+T) we need to assume
that the built-in theories in T are equality-interpolating and the ordering used
by Γ is separating. The remark that the interpolation system of [35] for equality
sharing works also for model-based theory combination is another step towards
interpolation in DPLL(Γ+T), since DPLL(Γ+T) uses model-based theory com-
bination.

References

1. Maria Paola Bonacina. On theorem proving for program checking – Historical
perspective and recent developments. In Maribel Fernandez, editor, Proc. of the

12th Int. Symp. on Principles and Practice of Declarative Programming, pages
1–11. ACM Press, 2010.

2. Maria Paola Bonacina and Nachum Dershowitz. Abstract canonical inference.
ACM Trans. on Computational Logic, 8(1):180–208, 2007.

3. Maria Paola Bonacina and Moa Johansson. On theorem proving with interpolation
for program checking. Technical report, Dipartimento di Informatica, Università
degli Studi di Verona, April 2011.

4. Maria Paola Bonacina, Christopher A. Lynch, and Leonardo de Moura. On de-
ciding satisfiability by theorem proving with speculative inferences. Journal of

Automated Reasoning, In press:1–29. Published online 22 December 2010 (doi:
10.1007/s10817-010-9213-y).

5. Aaron R. Bradley and Zohar Manna. The Calculus of Computation – Decision

Procedures with Applications to Verification. Springer, 2007.

6. Angelo Brillout, Daniel Kroening, Philipp Rümmer, and Thomas Wahl. An in-
terpolating sequent calculus for quantifier-free Presburger arithmetic. In Jürgen
Giesl and Reiner Hähnle, editors, Proc. of the 5th Int. Joint Conf. on Automated

Reasoning, volume 6173 of LNAI, pages 384–399. Springer, 2010.
7. Angelo Brillout, Daniel Kroening, Philipp Rümmer, and Thomas Wahl. Program

verification via Craig interpolation for Presburger arithmetic with arrays. Notes
of the 6th Int. Verification Workshop, 2010. Available at http://www.philipp.

ruemmer.org/.
8. Roberto Bruttomesso, Silvio Ghilardi, and Silvio Ranise. Rewriting-based

quantifier-free interpolation for a theory of arrays. In Proc. of the 22nd Int. Conf.

on Rewriting Techniques and Applications, LIPICS. Leibniz-Zentrum für Infor-
matik, Dagsthul Publishing, 2011.

9. Roberto Bruttomesso, Simone Rollini, Natasha Sharygina, and Aliaksei Tsitovich.
Flexible interpolation generation in satisfiability modulo theories. In Proc. of the

14th Int. Conf. on Computer-Aided Design, pages 770–777. IEEE Computer Soci-
ety Press, 2010.

10. Ritu Chadha and David A. Plaisted. On the mechanical derivation of loop invari-
ants. Journal of Symbolic Computation, 15(5-6):705–744, 1993.

11. Alessandro Cimatti, Alberto Griggio, and Roberto Sebastiani. Efficient interpolant
generation in satisfiability modulo a theory. In C. R. Ramakrishnan and Jakob
Rehof, editors, Proc. of the 14th Conf. on Tools and Algorithms for Construction

and Analysis of Systems, volume 4963 of LNCS, pages 397–412. Springer, 2008.
12. Alessandro Cimatti, Alberto Griggio, and Roberto Sebastiani. Interpolation gen-

eration for UTVPI∗. In Renate Schmidt, editor, Proc. of the 22nd Conf. on Auto-

mated Deduction, volume 5663 of LNAI, pages 167–182. Springer, 2009.
13. Leonardo de Moura and Nikolaj Bjørner. Model-based theory combination. In Sava

Krstić and Albert Oliveras, editors, Proc. of the 5th Workshop on Satisfiability

Modulo Theories, CAV 2007, volume 198(2) of ENTCS, pages 37–49. Elsevier,
2008.

14. Vijay D’Silva. Propositional interpolation and abstract interpretation. In An-
drew D. Gordon, editor, Proc. of the European Symp. on Programming, volume
6012 of LNCS, pages 185–204. Springer, 2010.

15. Vijay D’Silva, Daniel Kroening, Mitra Purandare, and Georg Weissenbacher. In-
terpolant strength. In Proc. of the Int. Conf. on Verification, Model Checking, and

Abstract Interpretation, volume 5944 of LNCS, pages 129–145. Springer, 2010.
16. Alexander Fuchs, Amit Goel, Jim Grundy, Sava Krstić, and Cesare Tinelli. Ground

interpolation for the theory of equality. In Stefan Kowalewski and Anna Philippou,
editors, Proc. of the 15th Conf. on Tools and Algorithms for Construction and

Analysis of Systems, volume 5505 of LNCS, pages 413–427. Springer, 2009.
17. Amit Goel, Sava Krstić, and Cesare Tinelli. Ground interpolation for combined

theories. In Renate Schmidt, editor, Proc. of the 22nd Conf. on Automated De-

duction, volume 5663 of LNAI, pages 183–198. Springer, 2009.
18. Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Ken L. McMillan.

Abstractions from proofs. In Xavier Leroy, editor, Proc. of the 31st ACM SIGACT-

SIGPLAN Symp. on Principles of Programming Languages, pages 232–244. ACM
Press, 2004.

19. Kryštof Hoder, Laura Kovàcs, and Andrei Voronkov. Interpolation and symbol
elimination in Vampire. In Jürgen Giesl and Reiner Hähnle, editors, Proc. of the

5th Int. Joint Conf. on Automated Reasoning, volume 6173 of LNAI, pages 188–
195. Springer, 2010.

20. Guoxiang Huang. Constructing Craig interpolation formulas. In Proc. of the 1st

Annual Int. Conf. on Computing and Combinatorics, pages 181–190. Springer,
1995.

21. Deepak Kapur, Rupak Majumdar, and Calogero G. Zarba. Interpolation for data
structures. In Premkumar Devambu, editor, Proc. of the 14th ACM SIGSOFT

Symp. on the Foundations of Software Engineering. ACM Press, 2006.
22. Laura Kovàcs and Andrei Voronkov. Finding loop invariants for programs over

arrays using a theorem prover. In Proc. of the Conf. on Fundamental Approaches

to Software Engineering, pages 470–485. Springer, 2009.
23. Laura Kovàcs and Andrei Voronkov. Interpolation and symbol elimination. In

Renate Schmidt, editor, Proc. of the 22nd Conf. on Automated Deduction, volume
5663 of LNAI, pages 199–213. Springer, 2009.

24. J. Kraj́ıček. Interpolation theorems, lower bounds for proof systems, and indepen-
dence results for bounded arithmetic. Journal of Symbolic Logic, 62(2):457–486,
1997.

25. Ken L. McMillan. Interpolation and SAT-based model checking. In Warren J.
Hunt and Fabio Somenzi, editors, Proc. of the 15th Conf. on Computer Aided

Verification, volume 2725 of LNCS, pages 1–13. Springer, 2003.
26. Ken L. McMillan. An interpolating theorem prover. Theoretical Computer Science,

345(1):101–121, 2005.
27. Ken L. McMillan. Quantified invariant generation using an interpolating saturation

prover. In C. R. Ramakrishnan and Jakob Rehof, editors, Proc. of the 14th Conf.

on Tools and Algorithms for Construction and Analysis of Systems, volume 4963
of LNCS, pages 413–427. Springer, 2008.

28. Ken L. McMillan. Lazy annotation for program testing and verification. In Byron
Cook, Paul Jackson, and Tayssir Touili, editors, Proc. of the 22nd Conf. on Com-

puter Aided Verification, volume 6174 of LNCS, pages 104–118. Springer, 2010.
29. Greg Nelson and Derek C. Oppen. Simplification by cooperating decision proce-

dures. ACM Trans. on Programming Languages and Systems, 1(2):245–257, 1979.
30. Greg Nelson and Derek C. Oppen. Fast decision procedures based on congruence

closure. Journal of the ACM, 27(2):356–364, 1980.
31. Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli. Solving SAT and SAT

modulo theories: From an abstract Davis–Putnam–Logemann–Loveland procedure
to DPLL(T). Journal of the ACM, 53(6):937–977, 2006.

32. Pavel Pudlàk. Lower bounds for resolution and cutting plane proofs and monotone
computations. Journal of Symbolic Logic, 62(3):981–998, 1997.

33. Roberto Sebastiani. Lazy satisfiability modulo theory. Journal on Satisfiability,

Boolean Modelling and Computation, 3:141–224, 2006.
34. Natarajan Shankar. Automated deduction for verification. ACM Computing Sur-

veys, 41(4):40–96, 2009.
35. Greta Yorsh and Madanlal Musuvathi. A combination method for generating

interpolants. In Robert Nieuwenhuis, editor, Proc. of the 20th Conf. on Automated

Deduction, volume 3632 of LNAI, pages 353–368, 2005. Early version in MSR-TR-
2004-108, October 2004.

36. Lintao Zhang and Sharad Malik. Validating SAT solvers using an independent
resolution-based checker: practical implementations and other applications. In
Proc. of the Conf. on Design Automation and Test in Europe, pages 10880–10885.
IEEE Computer Society Press, 2003.

