
Towards interpolation in an SMT-solver with integrated
superposition∗

Maria Paola Bonacina Moa Johansson
Dipartimento di Informatica

Università degli Studi di Verona
Strada Le Grazie 15, I-39134 Verona, Italy

mariapaola.bonacina@univr.it moakristin.johansson@univr.it

Abstract
Interpolation is a technique for extracting intermediate formulæ from a proof. It has applications in

formal verification, where interpolation may enable a program analyser to discover information about
intermediate program locations and states. We study interpolation in the theorem proving method
DPLL(Γ+T), which integrates tightly a superposition based prover Γ in a DPLL(T) based SMT-solver
to unite their respective strengths. We show how a first interpolation system for DPLL(Γ+T) can be
obtained from interpolation systems for DPLL, equality sharing and Γ. We describe ongoing work on an
interpolation system for Γ, by presenting and proving complete an interpolation system for the ground
case, followed by a discussion of ongoing work on an extension to the general case. Thanks to the mod-
ular design of DPLL(Γ+T), its interpolation system can be extended easily beyond the ground case once
a general interpolation system for Γ becomes available.

1 Introduction
Interpolation is a theorem proving technique which has recently found several applications in verifica-
tion. Informally, interpolants are formulæ ‘in-between’ other fomulæ in a proof: for a proof of A ` B
with interpolant I , A ` I and I ` B, with I only containing symbols shared between A and B.
Interpolation was first proposed for abstraction refinement in software model checking, initially for
propositional logic and propositional satisfiability [16], and then for quantifier free fragments of first-
order theories and their combinations [21, 17, 11, 5, 8, 3]. In the Counter-Example Guided Abstraction
Refinement paradigm, interpolants from the proof of unsatisfiability of the formula produced from a
spurious counter-example may capture intermediate states in an error trace, and can be used to refine
the abstraction by re-introducing predicates from the interpolants to exclude states leading to spurious
errors.

Interpolation has also found applications for invariant generation in the context of inference systems
for first-order logic with equality [18, 13, 9]. Here, one assumes that a k-step unwinding of a loop does
not satisfy the post-condition. The formulæ expressing this produces a contradiction if the loop does
satisfy the post-condition. An interpolant, containing only the symbols occurring in the loop body, can
be extracted and used to guide the construction of a loop invariant [18].

A third application of interpolation is to supplement annotation generation by a weakest pre-condition
calculus [19]. In this context, interpolation allows a static analyser to avoid inserting irrelevant program
variables in annotations, such as procedure summaries.

∗Research supported in part by grant no. 2007-9E5KM8 of the Ministero dell’Istruzione Università e Ricerca, Italy, and by
COST Action IC0901 of the European Union.

The aim of this work is to develop an interpolation system for DPLL(Γ+T) [2], a new theorem
proving method which integrates a first-order inference system Γ, based on resolution and superposition,
into the DPLL(T) framework for satisfiability modulo theories. The motivation for DPLL(Γ+T) is to
unite the strengths of resolution based provers, such as automated treatment of quantifiers, with those
of SMT-solvers, such as built-in theories and scalability on large ground problems. All these features
are crucial for applications to verification. For instance, formulæ with quantifiers are necessary to state
invariants and to axiomatise theories without decision procedures. Heuristic techniques for instantiating
variables in SMT-solvers can be used, but they can be fragile and require a lot of user effort to get right
[15]. Thus, DPLL(Γ+T) has properties attractive to the application areas, exemplified above, where
also interpolation has uses. Hence an interpolating version of DPLL(Γ+T) would be of interest for the
formal verification community. The work described in this paper is still in progress; we describe how
a first interpolation system for DPLL(Γ+T), thanks to its modular design, is built from interpolation
systems for DPLL, equality sharing and Γ.

We will use the propositional interpolation system for DPLL independently discovered by Huang,
Krajı́ček and Pudlàk [10, 20, 14], later reformulated and proved correct in the context of satisfiability
modulo theories by Yorsh and Musuvathi [21]. We call this algorithm HKPYM from the initials of
the authors. Yorsh and Musuvathi also gave an interpolation system for equality sharing, which we
refer to as EQSH [21]. EQSH requires that the satisfiability procedures for the built in theories can
produce proofs and interpolants. Then HKPYM and EQSH can be integrated to yield an interpolation
system for DPLL(T) [21, 5, 8]. What remains for an interpolation system for DPLL(Γ + T) is an
interpolation system for Γ. We present a novel complete interpolation system for Γ in the ground case
and give a modular interpolation system for DPLL(Γ+T). We consider our interpolation system for
superposition to be clearer and more general than previous work, because its working is specified for
each generative inference, which was not done before. We conclude with a discussion of related work
and an overview of ongoing work aiming at extending the ground interpolation system for Γ to proofs
involving substitutions, under suitable restrictions. The interpolation system for DPLL(Γ+T) is currently
restricted to the ground case, but easily extendable to the non-ground case once such an interpolation
system for Γ is available, which is the ultimate goal of this project.

2 Preliminaries
We assume the basic definitions commonly used in theorem proving. Equality in the inference systems
will be denoted by ' and the symbol ./ stands for either ' or 6'.

Let A and B be two formulæ. We denote by ΣA, and ΣB , the set of constant, function and predicate
symbols that occur in A, and B, respectively, and we use \ for set difference. A non-variable symbol is
A-coloured, if it is in ΣA\ΣB , B-coloured, if it is in ΣB \ΣA, and transparent, if it is in ΣT = ΣA∩ΣB .
This extends to terms, literals and clauses:

Definition 2.1 A term, literal or clause is transparent if all its symbols are transparent, A-coloured
if it contains at least one A-coloured symbol, and the rest are transparent (similarly for B-coloured).
Otherwise it is AB-mixed.

A clause is colourable if it contains no AB-mixed literals. We use, ambiguously, LA for the language
of terms, literals or formulæ made of symbols in ΣA; LB and LT are defined similarly for ΣB and ΣT ,
respectively. We let LX stand for either LA, LB or LT .

A theory is presented by a set T of sentences, meaning that the theory is the set of all logical con-
sequences of T . It is customary to call T itself a theory. Let ΣT be the signature of T , and LT the
language of terms, literals or formulæ built from ΣT . Then, let LT be the language of terms, literals
or formulæ built from ΣT ∪ ΣT : in other words, whenever a theory is involved, theory symbols are
considered transparent:

Definition 2.2 (Theory Interpolant) A formula I is a theory interpolant of formulæ A and B such that
A `T B, if (i) A `T I , (ii) I `T B and (iii) I is in LT . A formula I is a reverse theory interpolant of
formulæ A and B such that A,B `T ⊥, if (i) A `T I , (ii) B, I `T ⊥ and (iii) I is in LT .

Reverse interpolants are more widely used in the context of theorem proving, since practical theorem
provers work refutationally. In keeping with most of the literature, in the following we shall write
“interpolant” for “reverse interpolant”, unless the distinction is relevant. Furthermore, when it is clear
from the context, we may omit the “theory” prefix and just write “interpolant”. Similarly, we may use `
instead of `T .

Definition 2.3 (Projection) Let C be a disjunction (conjunction) of literals. The projection of C on
language LX , denoted C|X , is the disjunction (conjunction) obtained from C by removing any literal
whose atom is not in LX . By convention, if C is a disjunction and C|X is empty, then C|X =⊥; if C is
a conjunction and C|X is empty, then C|X = >.

Many approaches to interpolation work by annotating each clause C in a refutation of A and B with
auxiliary formulæ, called partial interpolants:

Definition 2.4 (Partial interpolant) A partial interpolant PI(C) of a clause C occurring in a refutation
of A ∪B is an interpolant of A ∧ ¬(C|A) and B ∧ ¬(C|B).

By Definition 2.2 applied to Definition 2.4, a partial interpolant needs to satisfy the following re-
quirements:

Proposition 2.1 A partial interpolant for a clause C have to satisfy:

1. A ∧ ¬(C|A) ` PI(C) or, equivalently, A ` C|A ∨ PI(C)

2. B ∧ ¬(C|B) ∧ PI(C) `⊥ or, equivalently, B ∧ PI(C) ` C|B , and

3. PI(C) is transparent.

We now give a brief overview of the DPLL(T) and DPLL(Γ +T) theorem proving methods for
satisfiability modulo theories. DPLL(T) combines propositional reasoning by DPLL with decision pro-
cedures for specific theories. DPLL(Γ+T) is a further extension which also features an interface to a
first-order prover with resolution and superposition. We refer to [2] for a description of DPLL(Γ+T),
which includes DPLL(T). DPLL(Γ+T) works with hypothetical clauses, where the hypotheses are
the connection between Γ-inferences and the partial model M maintained by DPLL(T). Hypothetical
clauses have the form H . C, where C is a clause and the hypothesis H is a set of ground literals. The
literals in H come from M and are the literals that were used as premises to infer C by a Γ-inference.
DPLL(Γ+T) employs model-based theory combination [6], which is a version of equality sharing where
only equalities between ground terms are propagated. DPLL(Γ+T) can be described as a transition sys-
tem with two kinds of states: M || F (candidate model and set of clauses) and M || F || C (candidate
model, set of clauses and conflict clause). Let S = R] P stand for the set of input clauses, where R is
a set of non-ground clauses, without occurrences of T -symbols, while P is a set of ground clauses that
typically do contain T -symbols. A transition system derivation for DPLL(Γ+T) is defined as follows:

Definition 2.5 (Transition system derivation) Let U stand for DPLL(Γ+T), and S be the input set
R] P . A transition system derivation, or U-derivation, is a sequence of state transitions:
∆0 =⇒U ∆1 =⇒U . . .∆i =⇒U ∆i+1 =⇒U . . ., where ∀i ≥ 0, ∆i is of the form Mi ||Fi or Mi ||Fi ||Ci,
each transition is determined by a transition rule in U and ∆0 = ||F0, where F0 = {∅ . C | C ∈ S}.

A transition system derivation is characterised by the sets F ∗ =
⋃

i≥0 Fi of all generated clauses
and C∗ = {Ci|i > 0} of all conflict clauses. A DPLL(Γ+T) refutation is a refutation by propositional
resolution plus T -conflict clauses, which are derived when one of the theory solvers discovers an incon-
sistency with the current model, and inferences performed by Γ. We denote the proof tree produced by
the T -solver for a T -conflict clause C, by ΠT (C).

Definition 2.6 (DPLL(Γ+T)-proof tree) Given a DPLL(Γ+T)-derivation,

∆0 =⇒
U

∆1 =⇒
U

. . .∆i =⇒
U

∆i+1 =⇒
U

. . . ,

for all C ∈ C∗ and H . C ∈ F ∗, the DPLL(Γ+T)-proof tree ΠU (C) of C is defined as follows:

• If C ∈ F0, ΠU (C) consists of a node labelled by C;

• If C is generated by resolving conflict clause C1 with justification C2, ΠU (C) consists of a node
labelled by C with sub-trees ΠU (C1) and ΠU (C2);

• If C is a T -conflict clause, ΠU (C) = ΠT (C);

• If H . C is inferred by a Γ-based transition from hypothetical clauses {H1 . C1, . . . ,Hm . Cm}
and literals {lm+1, . . . , lk}, ΠU (H . C) consists of a node labelled by H . C with m sub-trees
ΠU (H1 . C1), . . . ,ΠU (Hm . Cm).

If the derivation halts reporting unsatisfiable, ΠU (2) is a DPLL(Γ+T)-refutation.

Hypotheses need to be discharged when the hypothetical clause H . 2 is generated. The system then
switches to conflict resolution mode, with ¬H as the conflict clause. A refutation is reached only when
¬H is reduced to 2. Thus, a DPLL(Γ+T)-refutation is obtained by attaching a non-ground proof tree
with H .2, or ¬H , as root, to a ground proof tree with ¬H among its leaves and 2 as root.

An interpolation system is a mechanism to annotate each clause C in a refutation of A and B with
a partial interpolant. To define an interpolation system, one needs to define the partial interpolants that
it associates to the clauses in a proof. Since each clause in a proof is generated by some inference rule,
the definition of an interpolation system needs to cover all possibilities. The fundamental property of an
interpolation system is completeness:

Definition 2.7 (Complete interpolation system) An interpolation system is complete for inference sys-
tem Γ, or transition system U , if for all sets of clauses A and B, such that A∪B is unsatisfiable, and for
all refutations of A ∪B by Γ, or U , respectively, it generates an interpolant of (A,B).

The key property of partial interpolants is that PI(2) is an interpolant of A and B. Thus, in order to
prove that an interpolation system is complete, it is sufficient to show that it annotates the clauses in any
refutation with clauses that are indeed partial interpolants.

3 An Interpolation System for DPLL(Γ + T)
A complete interpolation system for DPLL(Γ + T) must be able to compute partial interpolants for each
clause in the proof tree in Def. 2.6, that is: propositional resolvents, T -conflict clauses, and clauses
derived by Γ. The latter are covered by the new interpolation system given in this section. Propositional
resolvents are dealt with by a propositional interpolation system such as HKPYM [10, 20, 14, 21]. Since
T is a combination, T -conflict clauses are handled by EQSH [21], which requires that the component
theories are equality interpolating:

Definition 3.1 (Equality Interpolating Theory) A theory T is equality interpolating if for all T -formulæ
A and B, whenever A ∧B |=T ta ' tb, where ta is an A-coloured ground term and tb is a B-coloured
ground term, then A ∧B |=T ta ' t ∧ tb ' t for some transparent ground term t.

Several theories used in practice are indeed equality interpolating, for example quantifier-free theo-
ries of uninterpreted functions and linear arithmetic [21]. Without this requirement, the notion of trans-
parency is not stable: if ta ' tb without any transparent t such that ta ' t and tb ' t, the congruence
class of ta and tb includes no transparent term, which means a coloured term should “become” transpar-
ent, to serve as a representative for terms of both colours. This is clearly undesirable as transparent terms
are those used to build interpolants. A similar issue arises for Γ, which also reasons about equalities. If

an AB-mixed equality ta ' tb is derived, it can be used to simplify clauses in A, introducing B-coloured
symbols, which now should be considered transparent as they have become shared between A and B.
Proofs without AB-mixed equalities were termed colourable in [8]:

Definition 3.2 (Colourable proof) A proof is colourable if it contains no AB-mixed literals.

We proceed to connect the notion of equality-interpolating theory with the following requirement,
that appeared in [18], under the name AB-oriented ordering, and then in [12]:

Definition 3.3 (Separating ordering) An ordering � is separating if t � s whenever s is transparent
and t is not, for all ground terms, or literals, s and t.

If the theory is equality-interpolating, whenever ta ' tb holds, ta ' t and tb ' t also hold, and a
separating ordering ensures that, if ta ' t and tb ' t are derived, t replaces ta and tb, or becomes the
representative of the congruence class of ta and tb.

Lemma 3.1 If the ordering is separating, all ground Γ-proof-trees are colourable.

The proof is by induction on the structure of the proof tree (see [1]). To get a superposition based
theorem prover to produce ground colourable proofs, it is thus sufficient to adopt a separating ordering.
Separating orderings exist, and were implemented, for instance, in Vampire [9]. From now on, we
assume that the built-in theories Ti, 1 ≤ i ≤ n, are equality-interpolating, and that the ordering � for
Γ-inferences is separating, so that all ground proofs are colourable. Under these assumptions, we present
a complete interpolation system for Γ in the ground case, where the inferences rules, with premises and
consequences labelled for later reference, are as follows (see [2] for full details):

Resolution:
p1 : (C ∨ l) p2 : (D ∨ ¬l)

c : (C ∨D)
∀m ∈ C : l � m ∀m ∈ D : ¬l � m

Paramodulation:
p1 : (C ∨ s ' r) p2 : (D ∨ l[s])

c : (C ∨ l[r] ∨D)
(i) (ii) (iii)

Superposition:
p1 : (C ∨ s ' r) p2 : (D ∨ l[s] ./ t)

c : (C ∨ l[r] ./ t ∨D)
(i) (ii) (iv) (v)

where (i) s � r, (ii) ∀m ∈ C : (s ' r) � m, (iii) ∀m ∈ D : l[s] � m, (iv) l[s] � t, (v) ∀m ∈ D : (l[s] ./
t) � m; and Simplification inferences are instances of Paramodulation/Superposition, where c replaces
p2, C is empty, and (i) is the only side condition.

Definition 3.4 (GΓI interpolation system) Let c : C be a clause that appears in a ground Γ-refutation
of A ∪B:

• If c : C ∈ A, then PI(c) =⊥, if c : C ∈ B, then PI(c) = >.

• If c : C is generated from premises p1 and p2 by a Γ-inference, PI(c) is defined as follows:

– Resolution: c : C ∨D generated from p1 : C ∨ l and p2 : D ∨ ¬l
∗ l is A-coloured: PI(c) = PI(p1) ∨ PI(p2)

∗ l is B-coloured: PI(c) = PI(p1) ∧ PI(p2)

∗ l is transparent: PI(c) = (l ∨ PI(p1)) ∧ (¬l ∨ PI(p2))

– Paramodulation/Superposition/Simplification: c : C ∨ l[r]∨D generated from p1 : C ∨ s ' r
and p2 : D ∨ l[s]

∗ s ' r is A-coloured: PI(c) = PI(p1) ∨ PI(p2)

∗ s ' r is B-coloured: PI(c) = PI(p1) ∧ PI(p2)

∗ s ' r, l[s] are transparent: PI(c) = (s ' r ∨ PI(p1)) ∧ (l[s] ∨ PI(p2))

∗ s ' r is transparent, l[s] is not: PI(c) = (s ' r ∨ PI(p1)) ∧ (s 6' r ∨ PI(p2)).

Superposition is treated like Paramodulation, with l[s] replaced by l[s] ./ t, and the case for Simplifi-
cation is subsumed by those for Paramodulation and Superposition. As we assume a separating ordering,
transparent terms are smaller than coloured ones and we do not need to consider the case where s ' r is
coloured and l[s] is transparent for paramodulation inferences. In such a case, s must be transparent, as
it also occurs in the transparent literal l[s], and r must be coloured. The separating ordering would thus
re-orient such an equation to r ' s, and only inferences rewriting a coloured term are allowed.

Theorem 1 If the ordering is separating, GΓI is a complete interpolation system for all ground Γ-
refutations.

Proof: By induction on the structure of the proof. We need to prove that for all clauses c : C in the
refutation, the partial interpolants satisfy the requirements in Proposition 2.1.
Base cases: c : C is an input clause. Trivial.
Inductive cases:
Inductive hypothesis: for k ∈ {1, 2} it holds that:

1. A ∧ ¬(pk|A) ` PI(pk) or, equivalently, A ` pk|A ∨ PI(pk)

2. B ∧ ¬(pk|B) ∧ PI(pk) `⊥ or, equivalently, B ∧ PI(pk) ` pk|B
3. PI(pk) is transparent.

Resolution: c : C ∨D generated from p1 : C ∨ l and p2 : D ∨ ¬l
• l is A-coloured: l|A = l, (¬l)|A = ¬l, l|B =⊥= (¬l)|B

1. A ` (C ∨D)|A ∨PI(p1)∨PI(p2). From inductive hypothesis (1) we have A ` (C ∨ l)|A ∨
PI(p1) and A ` (D ∨ ¬l)|A ∨ PI(p2). A resolution step gives A ` (C ∨D)|A ∨ PI(p1) ∨
PI(p2) as desired.

2. B ∧ (PI(p1)∨PI(p2)) ` (C ∨D)|B . From inductive hypothesis (2) we have B ∧PI(p1) `
C|B and B ∧ PI(p2) ` D|B from which the inductive conclusion follows.

3. Transparency of the partial interpolant follows from the inductive hypothesis.
• l is B-coloured: Symmetric to the previous case.
• l is transparent: l|A = l = l|B , (¬l)|A = ¬l = (¬l)|B

1. A ∧ ¬(C ∨ D)|A ` (l ∨ PI(p1)) ∧ (¬l ∨ PI(p2)) or, equivalently, A ∧ ¬C|A ∧ ¬D|A `
(l∨PI(p1))∧(¬l∨PI(p2)). From inductive hypothesis (1) we have A∧¬C|A ` l∨PI(p1)
and A ∧ ¬D|A ` ¬l ∨ PI(p2), which together give the desired result.

2. B ∧ (l ∨ PI(p1))∧ (¬l ∨ PI(p2)) ` (C ∨D)|B . By case analysis on l in PI(c): if l is true,
l holds, l subsumes l ∨ PI(p1) and simplifies ¬l ∨ PI(p2) to PI(p2); if l is false, ¬l holds,
¬l subsumes ¬l ∨ PI(p2) and simplifies l ∨ PI(p1) to PI(p1); so that we need to establish:
(a) B ∧ l ∧ PI(p2) ` (C ∨ D)|B . From inductive hypothesis (2) we have B ∧ PI(p2) `

D|B ∨ ¬l whence B ∧ l ∧ PI(p2) ` D|B .
(b) B ∧ ¬l ∧ PI(p1) ` (C ∨D)|B . From inductive hypothesis (2) we have B ∧ PI(p1) `

C|B ∨ l whence B ∧ ¬l ∧ PI(p1) ` C|B .
3. Transparency of the partial interpolant follows from the inductive hypothesis and the assump-

tion that l is transparent.

Paramodulation/Superposition/Simplification: c : C ∨ l[r] ∨ D generated from p1 : C ∨ s ' r and
p2 : D ∨ l[s]

• s ' r is A-coloured: either s and r are both A-coloured, or, since s � r, s is A-coloured and
r is transparent; since there are no AB-mixed literals, either l[s] and l[r] are both A-coloured, or
l[s] is A-coloured and l[r] is transparent; thus, we have: (s ' r)|A = (s ' r), l[s]|A = l[s],
l[r]|A = l[r], (s ' r)|B =⊥, l[s]|B =⊥

1. A ` (C ∨ l[r] ∨ D)|A ∨ PI(p1) ∨ PI(p2). Inductive hypothesis (1) gives A ` C|A ∨ s '
r ∨ PI(p1) and A ` D|A ∨ l[s] ∨ PI(p2); Thus, the inductive conclusion follows by a
paramodulation step.

2. B ∧ (PI(p1) ∨ PI(p2)) ` (C ∨ l[r] ∨ D)|B . From inductive hypothesis (2) we have B ∧
PI(p1) ` C|B and B ∧ PI(p2) ` D|B , which proves the inductive conclusion.

3. The partial interpolant is transparent by inductive hypothesis.
• s ' r is B-coloured: Symmetric to the previous case.
• s ' r and l[s] are transparent: l[r] is also transparent, and all three literals are unaffected by

projections.
1. A ∧ ¬(C|A) ∧ ¬l[r] ∧ ¬(D|A) ` (s ' r ∨ PI(p1)) ∧ (l[s] ∨ PI(p2)). From inductive

hypothesis (1) we have A ∧ ¬C|A ` s ' r ∨ PI(p1) and A ∧ ¬D|A ` l[s] ∨ PI(p2), which
together give the desired result.

2. B∧ (s ' r∨PI(p1))∧ (l[s]∨PI(p2))) ` (C ∨ l[r]∨D)|B . We do a case analysis on s ' r
and l[s]:
(a) If s ' r and l[s] are both true, then l[r] is true.
(b) If s ' r is true and l[s] is false, then PI(p2) must be true and D ∨ l[s] is equivalent to

D, so that induction hypothesis (2) gives B ∧ PI(p2) ` D|B .
(c) If s ' r is false and l[s] is true, then PI(p1) must be true and C ∨ s ' r is equivalent to

C, so that induction hypothesis (2) gives B ∧ PI(p1) ` C|B .
(d) If s ' r and l[s] are both false, then PI(p1) and PI(p2) must be true and induction

hypothesis (2) gives B ∧ PI(p1) ` C|B and B ∧ PI(p2) ` D|B .
3. Transparency of the partial interpolant follows from the inductive hypothesis and the assump-

tion that s ' r and l[s] are transparent.
• s ' r is transparent, l[s] is not:

1. A ` (C ∨ l[r] ∨ D)|A ∨ (s ' r ∨ PI(p1)) ∧ (s 6' r ∨ PI(p2)). This is equivalent to:
A ∧ ((s 6' r ∧ ¬PI(p1)) ∨ (s ' r ∧ ¬PI(p2))) ` (C ∨ l[r] ∨ D)|A. We perform a case
analysis on s ' r:
(a) If s ' r is false, s ' r ∧ ¬PI(p2) is false, and it suffices to establish A ∧ s 6' r ∧
¬PI(p1) ` (C∨l[r]∨D)|A. By induction hypothesis (1) we have A∧s 6' r∧¬PI(p1) `
C|A, which suffices.

(b) If s ' r is true, s 6' r ∧ ¬PI(p1) is false, and it suffices to establish A ∧ s ' r ∧
¬PI(p2) ` (C ∨ l[r]∨D)|A or, equivalently, A∧ s ' r ∧¬PI(p2) ` (C ∨ l[s]∨D)|A
since s ' r holds. By induction hypothesis (1) we have A ∧ ¬PI(p2) ` (l[s] ∨D)|A,
and we are done.

2. B ∧ (s ' r ∨ PI(p1)) ∧ (s 6' r ∨ PI(p2))) ` (C ∨ l[r] ∨D)|B . By case analysis on s ' r:
(a) If s ' r is true, s ' r ∨ PI(p1) is subsumed, s 6' r is false and PI(p2) must be true.

Thus, it suffices to establish B∧s ' r∧PI(p2) ` (C ∨ l[r]∨D)|B , which is equivalent
to B ∧ s ' r ∧ PI(p2) ` (C ∨ l[s] ∨D)|B , since s ' r holds. By induction hypothesis
(2) we have B ∧ PI(p2) ` l[s]|B ∨D|B , which closes this case.

(b) If s 6' r is true, s 6' r ∨ PI(p2) is subsumed, s ' r is false and PI(p1) must be true.
Thus, we need to establish B ∧ s 6' r ∧ PI(p1) ` (C ∨ l[r] ∨ D)|B . By induction
hypothesis (2) we have B ∧ s 6' r ∧ PI(p1) ` C|B , which suffices.

3. Transparency follows from the transparency of s ' r and the inductive hypothesis.

2

Having obtained a complete interpolation system for Γ, we can now define an interpolation system
for DPLL(Γ+T):

Definition 3.5 (I∗ interpolation system) Let c : C be a clause that appears in a DPLL(Γ+T)-refutation
of A ∪B:

• If c : C ∈ A, then PI(c) =⊥, if c : C ∈ B, then PI(c) = >.

• If c : C is a T -conflict clause, PI(c) is the T -interpolant of ((¬C)|A, (¬C)|B) produced by EQSH
from the refutation ¬C `T ⊥;

• If c : C ∨D is a propositional resolvent of p1 : C ∨ l and p2 : D ∨ ¬l then:

– If l is A-coloured, then PI(c) = PI(p1) ∨ PI(p2),
– If l is B-coloured, then PI(c) = PI(p1) ∧ PI(p2) and
– If l is transparent, then PI(c) = (l ∨ PI(p1)) ∧ (¬l ∨ PI(p2)).

• If c : C is a hypothetical clause H . C inferred by a generative Γ-based transition from premises
{H1.C1, . . . ,Hm.Cm} and {lm+1, . . . , lk}, then PI(c) is the partial interpolant produced by the
interpolation system GΓI for the Γ-inference inferring C from premises C1, . . . , Cm, lm+1, . . . , lk.

The partial interpolant for a hypothetical clause H . C is given by the partial interpolant for the corre-
sponding regular clause C, because the Γ-inference embedded in a Γ-based transition ignores hypothe-
ses, and, when H . 2 is generated, the hypotheses in H are discharged by propositional resolution
steps, whose partial interpolant is computed as in HKPYM. In summary, the modular construction of
DPLL(Γ+T) allows us to define its interpolation system from the interpolation systems of its compo-
nents. Furthermore, this allows us to simply replace GΓI by a general interpolation system for Γ once
available. The requirement that all theories in T are equality-interpolating guarantees that the T -conflict
clauses do not introduce in the proof AB-mixed literals, and the completeness of I∗ thus follows from
the completeness of its component interpolation systems.

4 Related Work
Interpolation for coloured superposition proofs was first considered by McMillan [18], and further stud-
ied, with some criticism that restricted it to ground proofs, by Kovàcs and Voronkov [13]. Coloured is
a stronger requirement than colourable: each inference may involve at most one colour, so that not only
AB-mixed literals, but also AB-mixed clauses are forbidden. The main similarity between our work
and these is the adoption of a separating ordering, where transparent literals are smaller than coloured
ones. However, our approach differs is several ways: Firstly, in the ground case, we relax the require-
ment of coloured proofs, and only require the notion of colourable proofs from [8]. We showed that
when a separating ordering is used, every ground Γ-refutation is colourable. Secondly, the target infer-
ence system in [13] is LASCA (Linear Arithmetic Superposition CAlculus), which is superposition with
linear arithmetic built in. We do not consider arithmetic within Γ, because in DPLL(Γ+T) arithmetic
is handled by the DPLL(T) part, and therefore by an interpolating decision procedure for arithmetic
(e.g. [17]). Thirdly, our notion of partial interpolant is different from [13], which focused on proving
existence of partial interpolants1 only for transparent ground clauses in coloured proof-trees. No explicit
interpolation system is given in either [13] or [18]. We define explicitly the partial interpolants for every
generative rule in Γ. Thus, we consider the interpolation system I∗ to be more concrete and representing
a more direct generalisation of propositional interpolation systems to ground first-order logic.

Christ and Hoenicke considers interpolation in the presence of quantifiers in the context of DPLL(T)
[4]. They assume instantiations are found by heuristic methods, such as triggering, rather than by unifi-
cation as in superposition. The interpolation method is based on McMillan’s ground interpolation sys-
tem for resolution [17], extended to introduce quantifiers in interpolants, when instantiations introduce
coloured terms. This approach thus goes beyond colourable proofs for resolution. Equality reasoning is
assumed to be handled by an interpolating decision procedure.

Our interpolation system for ground superposition also covers proofs in EUF (Equality with Un-
interpreted Functions). McMillan’s interpolation system for EUF in [17] consists of inference rules
for reflexivity, symmetry, congruence, transitivity and contradiction, instrumented to compute formulas

1Referred to as C-interpolants in [13].

akin to partial interpolants for each inference step. There are several versions of each rule, depending
on side conditions relating to the colour of the inferences leading up to the conclusion. The interpola-
tion system by Fuchs et al. [7], on the other hand, works on colourable congruence graphs, generated
by the congruence closure algorithm. While we rely on the separating ordering to ensure that no AB-
mixed literals are present in the proof, Fuchs et al. use the fact that EUF is equality interpolating and
perform some modifications on the congruence graph, introducing transparent constants to separate A-
coloured and B-coloured terms as needed, essentially implementing the requirement that the theory be
equality-interpolating. While our interpolation system will include all transparent literals derived from
A, the specialised congruence closure method can summarise chains originating only from A, and only
consider adding the last transparent term in such a chain. This means that it tend to produce shorter
interpolants, which for some applications may be desirable. At this stage of research, we have focused
on completeness of the interpolation system, with analysis of the properties of interpolants for various
applications left as further work. Last, the algorithm in [7] is restricted to EUF only, while our aim is a
much more general interpolation system.

5 Current and Future Work
We reported on ongoing work on interpolation for the theorem proving method DPLL(Γ+T). We showed
how an interpolation system for DPLL(Γ+T) can be constructed modularly from interpolation systems
for DPLL, equality sharing and for Γ, a first-order resolution and superposition based prover. We pre-
sented and proved correct a novel interpolation system for Γ in the ground case for colourable proofs.
Current work in progress aims at extending the interpolation system to general proofs with substitution
under suitable restrictions. The interpolation system for general Γ-proofs can then simply be plugged
into the interpolation system for DPLL(Γ+T), to extend it beyond ground proofs. In order to generalise
the ground interpolation system for Γ to some class of proofs in full first order logic, we need to extend
our approach to handle variables and substitutions. In the ground case, we can ensure colours are stable
by imposing a separating ordering, which prevents equations between A-coloured and B-coloured terms
from being generated. In the general case, a separating ordering is no longer sufficient to ensure that
proofs are colourable, as we may unify two literals of different colour, which may have the side effect
of generating AB-mixed literals by substitution. One way of avoiding AB-mixed literals is to impose
the restriction that the proof is coloured. For coloured proofs, we have that substitution and projec-
tion commute, allowing a straightforward extension from the ground interpolation system of the cases
where both pivots, or literals paramodulated from and into, have the same colour. However, non-ground
coloured proofs also have to deal with the cases where one of the premises is transparent and the other
coloured. Thus, excluding AB-mixed literals is not enough to ensure colours are stable, as substitutions
may also paint transparent literals as a side effect. Our current work is concerned with extending the
interpolation system to these inferences, in which the partial interpolants may contain quantifiers. One
of the approaches we are studying is procrastination, suggested by McMillan [18], which involves the
addition of a special inference rule that delays superposition steps and record restrictions on variable
instantiations. We are also considering instance purification [4], where coloured literals occurring in
partial interpolants are replaced by quantified variables.

References
[1] M.P. Bonacina and M. Johansson. On theorem proving with interpolation for program checking.

Technical report, Università degli Studi di Verona, April 2011.

[2] M.P. Bonacina, C.A. Lynch, and L. de Moura. On deciding satisfiability by theorem proving
with speculative inferences. Journal of Automated Reasoning, In press:1–29. Published online 22
December 2010 (doi: 10.1007/s10817-010-9213-y).

[3] A. Brillout, D. Kroening, P. Rümmer, and T. Wahl. An interpolating sequent calculus for quantifier-
free Presburger arithmetic. In Proceedings of the International Joint Conference on Automated
Reasoning, volume 6173 of LNAI, pages 384–399. Springer, 2010.

[4] J. Christ and J. Hoenicke. Instantiation-based interpolation for quantified formulae. Satisfiability
Modulo Theories Workshop, 2010.

[5] A. Cimatti, A. Griggio, and R. Sebastiani. Efficient interpolant generation in satisfiability modulo
a theory. In Proceedings of the Conference on Tools and Algorithms for Construction and Analysis
of Systems, volume 4963 of LNCS, pages 397–412. Springer, 2008.

[6] L. de Moura and N. Bjørner. Model-based theory combination. In Proceedings of the Workshop on
Satisfiability Modulo Theories 2007, volume 198(2) of ENTCS, pages 37–49. Elsevier, 2008.

[7] A. Fuchs, A. Goel, J. Grundy, S. Krstić, and C. Tinelli. Ground interpolation for the theory of equal-
ity. In Proceedings of the International Conference on Tools and Algorithms for the Construction
and Analysis of Systems, pages 413–427. Springer, 2009.

[8] A. Goel, S. Krstić, and C. Tinelli. Ground interpolation for combined theories. In Proceedings of
the Conference on Automated Deduction, volume 5663 of LNAI, pages 183–198. Springer, 2009.

[9] K. Hoder, L. Kovàcs, and A. Voronkov. Interpolation and symbol elimination in Vampire. In
Proceedings of the International Joint Conference on Automated Reasoning, volume 6173 of LNAI,
pages 188–195, 2010.

[10] G. Huang. Constructing Craig interpolation formulas. In Proceedings of the First Annual Interna-
tional Conference on Computing and Combinatorics, pages 181–190. Springer, 1995.

[11] D. Kapur, R. Majumdar, and C.G. Zarba. Interpolation for data structures. In Premkumar Devambu,
editor, Proceedings of the ACM SIGSOFT Symposium on the Foundations of Software Engineering.
ACM Press, 2006.

[12] L. Kovàcs and A. Voronkov. Finding loop invariants for programs over arrays using a theorem
prover. In Proceedings of the Conference on Fundamental Approaches to Software Engineering,
pages 470–485. Springer, 2009.

[13] L. Kovàcs and A. Voronkov. Interpolation and symbol elimination. In Proceedings of the Confer-
ence on Automated Deduction, volume 5663 of LNAI, pages 199–213. Springer, 2009.

[14] J. Krajı́ček. Interpolation theorems, lower bounds for proof systems, and independence results for
bounded arithmetic. Journal of Symbolic Logic, 62(2):457–486, 1997.

[15] D. Leinenbach and T. Santen. Verifying the Microsoft Hyper–V hypervisor with VCC. In Proceed-
ings of the Second World Congress on Formal Methods, volume 5850 of LNCS, pages 806–809.
Springer, 2009.

[16] K.L. McMillan. Interpolation and SAT-based model checking. In Proceedings of the Conference
on Computer Aided Verification, volume 2725 of LNCS, pages 1–13. Springer, 2003.

[17] K.L. McMillan. An interpolating theorem prover. Theoretical Computer Science, 345(1):101–121,
2005.

[18] K.L. McMillan. Quantified invariant generation using an interpolating saturation prover. In Pro-
ceedings of the Conference on Tools and Algorithms for Construction and Analysis of Systems,
volume 4963 of LNCS, pages 413–427. Springer, 2008.

[19] K.L. McMillan. Lazy annotation for program testing and verification. In Proceedings of the Con-
ference on Computer Aided Verification, volume 6174 of LNCS, pages 104–118. Springer, 2010.

[20] P. Pudlàk. Lower bounds for resolution and cutting plane proofs and monotone computations.
Journal of Symbolic Logic, 62(3):981–998, 1997.

[21] G. Yorsh and M. Musuvathi. A combination method for generating interpolants. In Proceedings
of the Conference on Automated Deduction, volume 3632 of LNAI, pages 353–368, 2005. Early
version in MSR-TR-2004-108, October 2004.

