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Abstract. Automating proofs by induction can be challenging, not least
because proofs might need auxiliary lemmas, which themselves need to
be proved by induction. In this paper we survey various techniques for
automating the discovery of such lemmas, including both top-down tech-
niques attempting to generate a lemma from an ongoing proof attempt, as
well as bottom-up theory exploration techniques trying to construct inter-
esting lemmas about available functions and datatypes, thus constructing
a richer background theory.

1 Introduction

Induction is a proof method often needed to reason about repetition, for in-
stance about recursive datatypes and functions in computer programs. However,
automating proofs by induction in a theorem prover can be challenging as in-
ductive proofs often need auxiliary lemmas, including both generalisations of
the conjecture at hand as well as discovery of completely new lemmas. The
lemmas themselves may also need induction to prove. On a theoretical level, this
is captured by the cut rule of inference:

Γ, ψ ` φ Γ ` ψ
Γ ` φ

Reasoning backwards, this rule states we can prove the goal φ, given Γ , if
it is possible to: 1) prove the goal φ from Γ with the extra assistance of a
lemma ψ, and 2) lemma ψ can be proved from Γ . Note that this potentially
introduces an infinite branching point in the search space, as ψ can be any
formula. Furthermore, there is a risk that ψ cannot be proved from Γ , if it turns
out to be an over-generalisation or otherwise invalid lemma. In some logics, the
cut rule is redundant: we say that the logic allows cut-elimination. If so, there
is no need to worry about having to introduce auxiliary lemmas. However, in
logics allowing e.g. structural induction over recursive datatypes, cut-elimination
is in general not possible. For these reasons, most major proof assistants such as
Isabelle/HOL [37], ACL2 [29] and others, treat induction interactively, the human
user takes the main responsibility for how to apply induction as well as inventing
and proving any extra lemmas that might be needed. There are however several
methods for automating lemma discovery in the context of inductive proofs,



which we survey in this paper. For a more general history of the automation
of mathematical induction, and a survey of some historical systems that have
implemented a variety of methods for induction we refer to [35].

Various techniques for discovering lemmas have been explored since the early
days of automating induction in the influential Boyer-Moore prover in the 1970’s
[3]. Initially, lemma discovery methods focused on generalisations of the conjecture
at hand, guided by heuristics [2], while later methods also attempted to construct
lemmas of other shapes, using information from failed proofs, introduction of
meta-variables and higher-order unification [22]. These methods have in common
that they work top-down, trying to derive a lemma from the conjecture we are
trying to prove. The search space for top-down methods can be large, especially
when more complex lemmas are required. A different approach is to instead
proceed by generating lemmas bottom-up, using techniques for theory exploration.
Here, candidate lemmas are constructed more freely given a set of functions
and datatypes, with the intention of creating a richer background theory in
which to prove subsequent theorems. This method has been successful in current
state-of-the-art automated inductive provers [10].

The remainder of the paper is structured as follows: In Section 2 we survey
some standard techniques for lemma discovery by generalisation which have been
adapted and implemented in many provers since the early days of automated
induction. In Section 3 we discuss primarily proof critics, techniques used to
analyse failed proof attempts in various ways to come up with elaborate lemmas
while avoiding over-generalisations. In Section 4 we then survey several systems
for theory exploration, and their performance for automating inductive proofs.
Lemma discovery by analysis of large mathematical libraries and machine learning
is yet a relatively under-explored area, which we address in Section 5. Recently,
there has also been work on integrating induction in first-order and SMT-solvers,
which we discuss in Section 6.

Notation. In subsequent examples we will use the notation x::xs for the list
cons-operator and the symbol @ to denote list append. We use t 7→ s to denote
simplification of a term t to s.

2 Lemma Discovery by Generalisation

The Boyer-Moore prover was one of the first systems to attempt to automate
proofs by induction [3]. The prover was structured according to a waterfall model
centred around a pool of open subgoals (see Figure 1). First a simplification
procedure was applied, and if that did not prove the subgoal additional methods
were attempted, e.g. trying to prove the goal using an assumption (such as
applying an induction hypothesis) or attempting to generalise the goal. The last
step of the waterfall was to apply a new induction, after which the resulting
base-case(s) and step case(s) re-entered the waterfall from the beginning. This
waterfall structure is still used by the decedents of the original Boyer-Moore



prover, such as present day ACL2 [29], and has also been re-implemented in HOL
Light [38].
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Fig. 1. The Boyer-Moore waterfall model. Destructor elimination is a heuristic used
to remove so called destructor functions, making implied term structures explicit by
replacing variables with terms. Cross-fertilisation is concerned with the application
of an equational assumption (often an inductive hypothesis) as a rewrite rule. The
Generalisation step will try to replace sub-terms by variables. The Elimination of
irrelevance step is also a kind of generalisation which attempts to discard an unnecessary
hypothesis.

The generalisation step in the waterfall may suggest candidate lemmas that
could be useful for proving the original conjecture using several heuristics for
replacement of some sub-term(s) with fresh variables. The main heuristic would
pick the minimal non-variable common sub-term, i.e. occurring more than once,
for generalisation. Generalisations which introduced a new variable in a position
to which induction could potentially be applied were preferred, as such lemmas
more likely would be provable by induction. However, deciding which sub-term(s)
to generalise can be non-trivial. If the wrong one is picked the result might be
an over-generalisation, producing a non-theorem. An overview of generalisation
methods for induction can be found in [2], where it is also pointed out that
generalisation methods are safest considered in conjunction with counter-example
checking, to avoid wasting time proving non-theorems.

Example 1. Consider a small functional program implementing insertionSort :

sorted [] = True
sorted [x] = True
sorted (x::y::ys) = x <= y /\ sorted(y::ys)

insert x [] = [x]
insert x (y::ys) = if x <= y then (x::y::ys) else y::( insert x ys)



insertionSort [] = []
insertionSort (x::xs) = insert x (insertionSort xs)

Suppose we want to prove that it produces a sorted list: sorted(insertionSort xs).
Applying structural induction on xs results in:

Base Case: sorted(insertionSort []) 7→ sorted([]) 7→ True

Step Case: sorted(insertionSort xs)︸ ︷︷ ︸
ind. hyp.

=⇒ sorted(insertionSort(x :: xs))︸ ︷︷ ︸
ind. concl.

Applying one step of rewriting to the induction conclusion, using the definition
of insertionSort, results in the new subgoal:

sorted(insertionSort xs) =⇒ sorted(insert x (insertionSort xs))

Now, note that the sub-term insertionSort xs appear in both the induction
hypothesis and in the conclusion. The Boyer-Moore generalisation heuristic would
replace this sub-term with a fresh variable, producing the key lemma for proving
our original conjecture:

sorted ys =⇒ sorted(insert x ys)

However, it was observed that the lemma generation heuristics too often pro-
duced useless or false conjectures and the Boyer-Moore family of provers instead
moved towards becoming interactive, where the user provides the appropriate
lemmas. ACL2 still uses the waterfall model from Figure 1 including generalisa-
tion techniques, but rely on the user to steer the prover away from unproductive
parts of the search space, such as trying to prove an over-generalisation.

Sophisticated generalisation methods have also been implemented in many
other systems supporting proofs by induction, such as the INKA system [21].
These include replacement of common sub-terms with new variables as well as
replacement of independent sub-terms. Aderhold further enhanced these methods
in the VeriFun system [1], an interactive verification system for functional pro-
grams. These methods include common sub-term generalisation where induction
is applicable to the new variable, a method for renaming variables apart, removing
conditions and as well as techniques specific to systems applying destructor-style
induction. Moreover, he includes a counter-example checker to filter out any over-
generalisations. These methods were demonstrated to be useful in for instance
the verification proofs of several sorting algorithms.

Zeno [42] is an automated inductive prover for proving properties about a
subset of Haskell programs. It can generate lemmas by the common sub-term
technique shown in Example 1, and applies a counter-example finder to avoid
over-generalisations.

To summarise, lemma discovery by generalisation can work very well, as we
saw in Example 1, but can also be expensive, as it will increase the size of the



search space of the prover and may over-generalise and produce false statements.
To avoid the prover wasting time trying to prove false conjectures, it can be
beneficial to combine generalisation with counter-example checking. For these
reasons, it is not always obvious when generalisation should be applied. In [31],
experimental evaluation suggested that generalisation was difficult to control
and often produced over-generalisations if attempted before applying induction.
Better results were obtained if generalisation was deferred until induction had
been tried and failed to complete the proof. In the next section, we will survey
techniques for lemma discovery which are applied only when no other options
remain. We will also consider the discovery of lemmas that cannot be found by
the generalisation methods described so far, such as the following:

Example 2. In this example, we consider a proof requiring a lemma with some
“extra” term structure introduced, which could not be found just by sub-term
generalisation.

len [] = 0
len (x::xs) = Suc(len xs)

rotate 0 xs = xs
rotate (Suc n) [] = []
rotate (Suc n) (x::xs) = rotate n (xs @ [x])

Consider proving that rotating a list around its length results in the same list as
you started with: rotate (len xs) xs = xs. Applying structural induction on xs
results in:

Base Case: rotate (len []) [] = [] 7→ [] = [] 7→ True

Step Case: rotate (len xs) xs = xs︸ ︷︷ ︸
ind.hyp.

=⇒ rotate (len (x :: xs)) (x :: xs) = (x :: xs)︸ ︷︷ ︸
ind.concl.

Rewriting to the induction conclusion using the definitions of rotate and len
results in:

rotate (len xs) xs = xs =⇒ rotate (len xs) (xs @ [x ]) = (x :: xs)

At this point, common sub-term generalisation will not help us find the missing
lemma. What is required is a lemma which both has an extra variable, as well as
some additional term-structure compared to our original conjecture:

rotate (len ys) (ys @ zs) = zs @ ys

Our conjecture is a special case of this lemma, with zs happening to be the empty
list. Figuring out what the structure of this lemma is a difficult task, and we
discuss methods for doing so in sections 3 and 4.

3 Lemma discovery from failed proofs

Proof-planning was introduced by Bundy [6], and motivated by the need to control
proof search for inductive proofs in the NuPRL system [13]. The heuristics of the



Boyer-Moore prover were used as inspiration. It was observed that the Boyer-
Moore prover could prove a large number of theorems by induction using the
same heuristics, but it was never made explicit exactly how and in which order
these heuristics had been applied in a particular proof. A proof-plan was thus
suggested as an explicit description of a strategy to solve a particular family
of proofs, such as proofs by induction. Proof-plans could then be composed by
methods, each a declarative wrapper for a tactic1 including explicit heuristic
information about under what condition the tactic should be applied, what effects
it would have if successful and so on. Other motivations for proof-plans were the
desire to produce human readable proof descriptions and, importantly, to deal
with failure of methods by attempting to recover and patch the proof. The idea
of proof-planning critics was introduced to handle such failures [22]. Rippling
became an important method in proof planning for guiding rewriting in step-
cases of inductive proofs towards being able to apply the inductive hypothesis [7].
Rippling uses annotations (called wave-fronts) on the rewrite rules and sub-goals
to keep track of which parts match the inductive hypothesis and which ones
do not, and steers rewriting towards minimising these differences. The rippling
method fails if some crucial lemma is missing. Depending on the which one of the
pre-conditions of the rippling method had failed (see chapter 3 of [7] for details),
one of several lemma discovery critics would be triggered:

Lemma Calculation. If an inductive proof failed after the inductive hypothesis
had been applied, this critic would apply common sub-term generalisation
(similar to what was described in Section 2) to the remaining goal, and
attempt to prove the resulting conjecture as a lemma. This simple critic often
worked well in practice.

Generalisation. The generalisation techniques described in Section 2 could not
deal with more complicated generalisations, such as Example 2. Rippling
would in these cases fail, as its heuristics would realise that it would not be
possible to apply the inductive hypothesis without introducing a generalisation
of the conjecture, containing some extra new universally quantified variable
(a sink in rippling terminology). To figure out where and how such a new
variable should be introduced, a schematic lemma, containing some higher-
order meta-variables would be constructed. The system would then apply
middle-out reasoning [20], trying to prove the schematic lemma by induction
and expecting to instantiate the meta-variables by subsequent rewrites and the
eventual application of the inductive hypothesis. The lemma from Example 2
can be found in this manner, although it requires that some lemmas about
the append-functions are already present (see [7], section 3.7.2).

Lemma Speculation. If rippling got stuck before the inductive hypothesis
could be applied, the lemma speculation critic would be triggered. Similarly
to the generalisation critic, an underspecified lemma would be constructed
and applied to the goal: the right-hand side chosen to match some suitable
sub-term to rewrite, and the left-hand side consisting of a higher-order meta-
variable expected to be instantiated by middle-out reasoning as before. Note

1 a small program executing one or several proof steps automatically.



that there might be several possible such schematic lemmas, and that higher-
order unification is required to complete the instantiation of the lemma which
may require a fair bit of search.

These proof-planning critics for rippling were implemented in the OYSTER-
CLAM system [8,22]. The original paper on proof critics in CLAM also contained
a set of benchmarks of theorems needing inductive proofs and lemmas (including
examples 1 and 2). These were later digitalised and made available to developers of
inductive theorem provers in the TIP benchmark library [11], and are commonly
used to evaluate inductive theorem provers.

An advantage of proof-planning was to clarify exactly when a critic should
be triggered, minimising the risk of producing over-generalisations and allowing
for more complex lemmas to be automatically synthesised by using middle-out
reasoning and higher-order unification. A similar lemma discovery method, based
on the instantiation of meta-variables in schematic lemmas was also proposed
for the RRL system [28]. Here, the instantiation of the schematic lemma was
guided by constraints and not rippling. The lemma calculation and lemma
speculation critics were also later implemented in IsaPlanner system [15,16].
However, experimental evaluation of lemma speculation in IsaPlanner was largely
negative, the critic was found to be rarely applicable, and the complexities of the
many options of how and where to introduce meta-variables could lead to a large
search space for higher-order unification [24].

In the context of lemma speculation, we also mention the work by Sonnex on
the Elea system [43]. This system takes quite a different approach to automating
induction inspired by ideas from functional programming and super-compilation.
Elea supports lemma discovery when otherwise stuck by introducing meta-
variables and attempting to synthesise functions of a special shape, so called
fold-functions, which restricts the search space.

Nagashima and Parsert presented a conjecture generation method for Is-
abelle/HOL based on generalisation and mutation of stuck subgoals [36]. Here,
existing rewrite rules are used to suggest mutations of the goal, and counter-
example checking filters out non-theorems. However, no evaluation was provided
comparing it to other lemma discovery techniques.

4 Bottom-up lemma discovery: theory exploration

The lemma discovery techniques covered so far have all tried to somehow construct
a missing lemma from an ongoing proof attempt of a given conjecture. A different
approach is that of theory exploration: starting from the bottom up in a new
theory given the set of available symbols (such as functions and datatypes) what
are the basic, interesting lemmas? In the context of automating induction, the
system should try to find and prove as many useful lemmas as possible, and then
try to tackle harder proofs in this richer theory, hoping that the key lemmas
have already been discovered. The term theory exploration was first coined by
Buchberger [4] to describe the workflow of a human mathematician starting
a new theory, and how it differs from that of an automated theorem prover,



which proves theorems in isolation. Instead, he argues, mathematical software
should support an exploratory workflow, by which new concepts are introduced
and their relationship to existing concepts explored before proofs of complex
theorems are attempted. This is largely how interactive theorem provers are
used, and motivated the design of the Theorema system by Buchberger’s group
[5]. Theorema introduced the concept of knowledge schemas representing some
interesting mathematical knowledge, and which could be instantiated in new
theories, but did not automate the process.

In the following sections we survey theory exploration systems that have been
applied to inductive theories. All system have in common that they first generate
terms and/or equations followed by some form of evaluation on concrete values,
or counter-example checking. Finally, they attempt automated inductive proofs,
using previously discovered and proved lemmas if needed. However, they differ
in heuristics for how they generate the conjectures, how to evaluated them, and
how to judge their interestingness.

4.1 MATHsAiD

MATHsAiD [33], was primarily designed for theory exploration in algebra, but
has also been applied to simple inductive theories about natural numbers [32].
MATHsAiD first heuristically constructs a set of potential left-hand sides, called
terms of interest starting with smaller terms and using some heuristics such as
specifically looking for common properties like associativity, commutativity and
distributivity. Next, MATHsAiD selects a variable in each term of interest, and
instantiates it with some concrete value “TWO” (e.g. for natural numbers, this
would be suc(suc 0), for lists a list of two elements). It then applies (bounded)
forward reasoning from each potential left-hand side term, using function def-
initions as rewrite rules, until arriving at a different term, also containing an
instance of “TWO”. At this point, a candidate equation can be constructed by
replacing “TWO” by a variable again. MATHsAiD successfully discovered and
proved basic lemmas about addition and multiplication in Peano arithmetic, but
its wider application to inductive theories was not explored.

4.2 IsaCoSy

IsaCoSy was the first theory exploration system designed specifically for discov-
ering basic inductive lemmas that would be useful in more difficult subsequent
proofs [25]. As the name suggests, it was built on top of the Isabelle/HOL proof
assistant [37], and used IsaPlanner [15], to prove discovered candidate conjectures.
The key idea to restrict the search-space of possible conjectures was to only gen-
erate new terms that were irreducible, i.e. terms not possible to reduce further by
rewriting using any equations proved so far. IsaCoSy would generate equational
terms starting from the minimal size of left- and right-hand sides (single constants,
variables) and generate all possible irreducible type-correct terms of that size.
Next, the equations would be filtered through a counter-example finder and those
surviving passed on to IsaPlanner for proof. IsaCosy then generated constraints



from any theorems found to avoid generating any reducible terms in the next
iteration when the term size was increased (up to a maximum size given by the
user). IsaCosy demonstrated high recall on theories of lists and natural numbers
from Isabelle’s library. Although precision was lower, one could argue that the
lemmas suggested would be reasonable additions to the library. IsaCoSy also
performed better at finding lemmas required by difficult inductive proofs than
IsaPlanner’s lemma speculation critic [24]. On the downside, the runtimes could
be very long, primarily due to the non-optimised implementation and the many
calls to Isabelle’s counter-example finder.

4.3 IsaScheme

IsaScheme was another theory exploration system for Isabelle/HOL [34], using
the above-mentioned idea of user-defined schemas from Theorema [5], to generate
conjectures and functions, but automating the process of instantiating them.
Conjecture schemas would typically capture common patterns such as associa-
tivity, distributivity etc. After the instantiation of a schema, IsaScheme would
check that the resulting conjecture did not follow trivially from known facts
(similar to IsaCoSy’s irreducibility heuristic), then pass it on to a counter-example
checker and finally for proof using IsaPlanner. IsaScheme furthermore included a
Knuth-Bendix completion pass, as lemmas could be discovered in the “wrong”
order - a new conjecture might be a generalisation of a previous one (which then
was discarded) and which also ensured that the lemmas discovered formed a
terminating set of rewrite rules.

4.4 QuickSpec and HipSpec/Hipster

QuickSpec [12,41] was originally designed to be a system for automatically invent-
ing and testing equational specifications of Haskell programs. While QuickSpec
itself does not perform any proofs, it is considerably faster at generating conjec-
tures compared to other systems like e.g. IsaCoSy and IsaScheme. QuickSpec
does not generate whole equations at once, but rather just terms which would
make candidate left- and right hand sides, up to a given maximum size. All terms
are initially placed in a single equivalence class. Next, QuickSpec calls Haskell’s
testing tool QuickCheck [9], to generate random values for all variables in terms
(variables were assumed to be shared), followed by evaluation and splitting of the
equivalence class(es) accordingly. After many rounds of testing when equivalence
classes have stabilised, equations can be extracted. This way, it is never necessary
to counter-example check individual equalities, testing and equation-generation
is integrated.

The HipSpec system [10], integrated QuickSpec in an inductive theorem prover,
and successfully proved most of the difficult theorems from the CLAM-critics
benchmark set available in the TIP library [22,11]. HipSpec itself was a rather
lightweight prover, it simply applied induction to conjectures and passed the
resulting proof obligations to an external automated prover (first-order or SMT-
solver). It did however achieve state-of-the-art results by first letting QuickSpec



come up with a set of candidate lemmas about the functions occurring in the
problem, proving these, and then tackling the main conjectures. This included
a fully automatic proof of the rotate-length lemma from Example 2, with all
required lemmas found by theory exploration.

Hipster [26,23] is a sister-system to HipSpec, which also use QuickSpec for
conjecture generation but conducts formally checked proofs in Isabelle/HOL. As
QuickSpec treats the program as a black box, it might re-discover equations
representing e.g. function definitions or equations already present in Isabelle’s
library, which are unnecessary to present to an Isabelle user (but might be
interesting if exploring a program for which the source code is not available). To
judge which conjectures are likely interesting to a human user, Hipster is therefore
parametrised by two tactics: one for routine reasoning and one for hard reasoning.
The idea is that lemmas that are proved by the routine tactic, are somewhat
trivial and therefore discarded and not displayed to the user, while lemmas
requiring the hard reasoning tactic are judged interesting and returned. Common
configurations are to use Isabelle’s simplifier (rewriting) or Sledgehammer (a
method for calling external first-order automated provers [39]) as routine tactics,
and some form of induction as the hard reasoning tactic, but any tactics could be
used. Hipster is under ongoing development, and is currently employing the most
recent version of QuickSpec [41]. Hipster has added capabilities for conditional
lemma discovery which were lacking from HipSpec, as well as support for co-
induction [17]. Hipster can thus discover and prove the required lemmas from
both Example 1 (insertion sort) and Example 2 (rotate-length).

5 Machine Learning and Lemmas by Analogy

Many proof assistants have large libraries with already formalised mathematics,
including many common lemmas. Heras et al. [19] demonstrated a small prototype
system for ACL2 where machine learning was used for identifying similarities
between a new conjecture and existing ones in the library. From such a similar
library fact, one could examine its proof and, if any lemmas had been used,
extract a lemma schema from it. Next, a restricted form of theory exploration
searched for new lemmas appropriate for the current case. This worked well for
examples of the kind of lemmas needed in inductive proofs of the equivalence
between recursive functions and their tail-recursive counterparts, but has not
been more widely applied or evaluated.

Gauthier et al. also experiment with conjecturing lemmas based on statistical
analysis and machine learning from the Mizar mathematical library [18], although
they do not consider lemmas for inductive theories and proofs.

Exploring the use of machine learning seems a promising direction for further
work. In particular, it could potentially help reducing the search space for theory
exploration to specifically target a sub-space where we are more likely to find
a lemma which is useful for a particular proof attempt at hand. The theory
exploration systems described in Section 4 typically search broadly for lemmas,
meaning that they typically also discover and prove a lot of extra things, which



might be undesirable if speed is an issue, or if the term size of the lemma required
is large.

6 Induction in first-order provers and SMT solvers

More recently, there has been work in integrating induction also in automated
superposition based first-order provers [14,44], and SMT-solvers [30,40].

The induction method implemented in the SMT-solver CVC4 employs local
theory exploration integrated in the DPLL(T) engine to generate extra lemmas
during a proof attempt [40]. The lemma generation module enumerates terms,
similarly to QuickSpec, up to a given maximum size. It then heuristically chooses
a subset of these candidates (typically around 3) depending on the current
context, which will enter the proof search. These heuristic filters include removing
reducible terms, similarly to the heuristics used in IsaCoSy, as well as generating
ground instances of terms (similar to how QuickSpec used QuickCheck) to detect
if any such assignment in the current context falsifies any speculated equations.
The performance of CVC4 is comparable to that of other inductive provers
mentioned, but it does not quite reach the numbers proved by HipSpec on the
proof-critics benchmarks from the TIP library [11,22], which require slightly more
difficult lemmas.

Wand developed an extension to superposition calculus to include a type
system and induction over datatypes for his PhD thesis [44], which was imple-
mented in the Pirate system. Pirate supports several generalisation techniques
for conjecturing lemmas from stuck subgoals, and thus belong to the category of
top-down lemma discovery methods. Pirate is reported to perform similarly to
HipSpec on the TIP-benchmarks.

Cruanes extended the superposition prover Zipperposition with support for
induction [14]. The prover uses an architecture supporting interleaving several
inductive proof attempts simultaneously, in the same saturation loop, anticipating
that proving lemmas will be needed in many inductive proofs. Once a lemma has
been proved, it can be used automatically as a normal axiom. While this system
itself only supports some simpler generalisations as a lemma discovery method, it
is argued that it could easily be integrated with other techniques such as theory
exploration. The capability for interleaving several proof attempts seems as if it
could be very useful for theory exploration, where the system often gets a list of
conjectures to prove, where some will need others as lemmas.

7 Summary

Lemma discovery is crucial in all but the simplest inductive proofs, and many
methods have been implemented. They fall primarily into three groups: Generali-
sations, proof critics and theory exploration. Variants of generalisation techniques
have proved useful in many contexts, in particular those based on replacing
(common) sub-terms with new variables, which are easy to implement and often
work well. However, there is a risk of over-generalisation so these techniques are



safest employed in conjunction with counter-example checking or user interaction.
The rippling-based proof critics discussed in Section 3 are today largely obsolete,
as most modern inductive provers have abandoned rippling in favour of more
general automated rewriting techniques, which do a good enough job without
requiring quite as many annotations and heuristics as rippling. Furthermore,
theory exploration based techniques can find also the more difficult lemmas which
were previously requiring advanced proof critics. Theory exploration has many
advantages, it is not dependent on any particular proof technique or prover and
it can be run once when a new theory is initiated to provide basic lemmas, after
which many harder conjectures from standard benchmark suites are provable.
One potential downside is that to find very large lemmas, the search space
might also grow rapidly. Theory exploration is also not very good at finding
complex conditional lemmas, as it is difficult to generate random ground values
which satisfies arbitrary conditions automatically. Furthermore, it can be time
consuming to explore functions that have high computational complexity, as
evaluation of ground instances then takes a long time. As mentioned in Section
5, one possibility is to exploit existing libraries and machine learning for guiding
and restricting lemma discovery.

Strengths and weaknesses:

Generalisation

+ Can quickly and effectively find the right lemma, if correct generali-
sation found (see Example 1).

- Might over-generalise and produce non-theorems unless coupled with
a good counter-example finder, or included in an interactive envi-
ronment where a human can catch such cases.

- Not always clear when to apply generalisation. Should it be applied
before or after attempting induction, and if so, should one defer until
after the induction hypothesis has been applied (lemma calculation)
or allow more eager generalisation, such as the Boyer-Moore provers?

Proof Critics
+ Clear under which conditions the critic is supposed to be applied.
+ Reduces risk of generating over-generalisations.
+ Can find (some) lemmas that are not generalisations of terms (see

Example 2).
- Relies heavily on rippling heuristic, might need work to transfer to

other context.
- Some critics rely on middle-out reasoning and higher-order unification

which may lead to a rather large search space.
Theory Exploration

+ Bottom-up, can explores theory to find lemmas up-front, not (only)
after failed proof attempt. Automatically finds and proves both
lemmas required for Examples 1 and 2.

+ Not reliant on any particular proof-technique.



+/- Relies on evaluation of random ground values for variables in terms.
Often fast, but can be computationally heavy if highly complex
functions given to the system.

- So far limited to simple conditional lemmas, as automated generation
of random values satisfying arbitrary conditions is a non-trivial
problem.

- Scalability. Can be difficult to search for very large lemmas featuring
many different functions as the search space then increase a lot. Term
sizes up to 7-9 on each side of an equality is usually OK though.

Finally, we note that automated lemma discovery seems to fit in nicely as
a complement to the recent success of hammers in interactive theorem proving
systems. Such systems, e.g. Sledgehammer [39] for Isabelle and HOLyHammer for
HOL Light [27], use machine learning to select a subset of all the available facts in
the provers library, and sends them to an external and powerful first-order prover
or SMT-solver. If a proof is found, the external prover reports back which lemmas
it used and the interactive theorem prover reconstructs it using its internal
trusted tactics, without having to re-do all the search. However, in a new theory,
the key facts might not yet be there, why lemma discovery techniques could be
helpful, especially if the hammer had access to a first-order prover supporting
induction, as discussed in Section 6.
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