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Abstract

This thesis describes and compares three physical fault injection techniques—heavy-ion
radiation, pin-level fault injection and electromagnetic interference—and their use in the
validation of the fault-tolerant, distributed, real-time system MARS. The study had two
main objectives. One was to make the first direct comparison of three different physical
fault injection techniques, which was possible as they were all applied on the same fault-
tolerant computer system. The second objective was to make a thorough investigation of
the target system to evaluate the coverage of the built-in fault tolerance features of the
MARS system. The MARS system consists of computer nodes that must befail-silent, i.e.
if the node fails to produce a correct result, it should not produce any result at all. Afail-
silence violation occurs if the node produces an erroneous result.

The experimental results show fairly large differences between the fault injection tech-
niques in a study of the distribution of the error detections among the various error detec-
tion mechanisms (EDMs) built into the MARS system. This suggests that the techniques
are somewhat complementary. The heavy-ion radiation technique stressed the system to
the greatest extent, as indicated by the relatively large number of fail-silence violations
that occurred for this technique, e.g. it was the only technique that caused any fail-silence
violations when all the EDMs were activated in the MARS system. It also showed the
largest spread in the detections among the EDMs. The pin-forcing technique managed to
exercise the hardware EDMs located outside the CPU more effectively than the heavy-ion
radiation and electromagnetic interference techniques, which instead were more effective
in exercising the application level EDMs (i.e. double time redundant execution of tasks
and message checksum calculations).

Each technique managed to cause many error types that the MARS designers had not
anticipated. All three techniques were particularly effective in exercising EDMs imple-
mented at the hardware level of the MARS system (all such mechanisms were exercised).
However, the techniques were unable to exercise many of the mechanisms implemented
by the MARS system software. In fact, most such mechanisms were never exercised by
any of the techniques.

The EDMs implemented at the hardware level detected the largest amount of errors gen-
erated by the three fault injection techniques, while the mechanisms implemented at the
application level detected the smallest amount of errors. Still, the application level mech-
anisms were shown to be necessary, and also quite efficient, for improving the fail-silence
coverage.

Keywords: Fault Tolerance, Coverage, Experimental Evaluation, Fault Injection, Physi-
cal Techniques, Real-Time Systems, EMI, Pin-Level Fault Injection, Heavy-Ion Radia-
tion
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1 Introduction

The area offault-tolerant computing is becoming increasingly more important as comput-
ers gain popularity in safety-critical applications in the vehicle, aeronautics, military and
aerospace industries.

[Laprie 1985] established the following fundamental taxonomy in this area: A systemfail-
ure occurs when the service provided by a system deviates from the specified service. The
failure occurs because anerror is present in the system (e.g. some unit providing an incor-
rect value). The phenomenological cause of that error (e.g., a programmer’s mistake, a
physical line stuck at ground potential or an electromagnetic perturbation) is called afault.

A system that can continue to provide its specified service even when it is affected by a
fault is called afault-tolerant system, i.e. when the fault causes an error in the system, it
is detected and some action is taken to prevent a system failure from occurring.

To evaluate fault-tolerant computer systems, they can be subjected tofault injection,
which is a way of accelerating the occurrences of faults so that the fault tolerance mech-
anisms of the system can be thoroughly tested. There are several ways to inject faults into
computer systems depending onwhen in the development process of the system the fault
injection is made andwhere in the system it is made [Iyer and Tang 1993]. There are two
fundamental techniques used for fault injection:Software simulations made in the design
phase andphysical fault injectionmade on prototypes. Physical fault injection therefore
injects faults into a real hardware version of the target system, while software simulations
use a software-implemented model of the target system.

Physical fault injection can be divided into (i)hardware-implemented fault injection,
made with the aid of additional hardware in the system, and (ii)software-implemented
fault injection (SWIFI), made by introducing faults into the contents of memory or regis-
ters or by emulation of hardware and software faults. The techniques examined in this the-
sis all belong to the first category. Although SWIFI has many advantages, e.g. it has higher
flexibility and lower cost compared with the other techniques, the correspondence
between the faults implemented by software and the actual hardware faults occurring in
the system has not yet been established with confidence.

The target system for the fault injection experiments conducted in this study is MARS (the
MAintainable Real-time System), a time-triggered, fault-tolerant, distributed computer
system developed at the Technical University of Vienna [Kopetzet al. 1989]. It consists
of several computer nodes communicating by means of a synchronous time division mul-
tiple access (TDMA) strategy. The nodes contain extra hardware and software for fault
tolerance and can be configured to operate in redundancy, i.e. when two nodes execute the
same tasks.

This study had two main objectives. One was to make the first direct comparison of three
physical fault injection techniques, which was possible because they were all applied on
the same fault-tolerant computer system [Karlssonet al. 1995]. Thus it was also possible
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to investigate the usefulness of the techniques and whether or not they are complementary,
i.e. whether or not they exercise different error detection mechanisms. This also lead to a
very thorough investigation of the MARS system. The second objective was therefore to
evaluate the coverage of the built-in fault tolerance features of the MARS system.

The three physical fault injection techniques used in the experiments were:heavy-ion
radiation, used at Chalmers University of Technology, Göteborg, Sweden;pin-level fault
injection, used at LAAS-CNRS, Toulouse, France; andelectromagnetic interference, used
at the Technical University of Vienna, Vienna, Austria. The study, which was launched
within the framework of the PDCS-2 project of the ESPRIT program (Basic Research
Project No. 6362), therefore engaged these three sites, and a common experimental set-
up using five MARS nodes was implemented at each site to conduct a coherent set of
experiments.

Chapter 2 gives an overview of the MARS system, the hardware that is used for operation
and for error detection, and how the operating system and the application software is con-
structed and executed. Chapter 3 gives a description and a general comparison of the three
physical fault injection techniques used for validating the MARS system. The common
experimental set-up used at the three sites is described in Chapter 4, and the results
obtained using this set-up are given in Chapter 5. In Chapter 6, the results are analysed
and compared in greater detail. Finally, the conclusions of this study are given in
Chapter 7.
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2 The MARS System

This chapter gives an overview of the target system MARS (MAintainable Real-time Sys-
tem), which was used for the fault injection experiments conducted in this study. The
hardware, software and fault tolerance features built into the system are described.

2.1 MARS System Introduction

One approach toward achieving fault-tolerant distributed real-time systems is to use a
number of autonomous,fail-silent processing nodes that are interconnected by a real-time
network and communicate by exchanging messages [Powellet al. 1988]. The MARS sys-
tem has been realized on the basis of this approach. The fundamental fault tolerance prop-
erty of each processing node in the MARS system is therefore to be fail-silent, i.e. the
node is shut down when an error is detected within it to avoid error propagation. If the
node would continue to operate despite an error, the error may result in an erroneous mes-
sage, i.e. afail-silence violation, which may further lead to a system failure when the mes-
sage is used by the application (e.g. controlling a rolling mill). The advantage of using
fail-silent nodes rather than nodes that always try to produce correct results lies in their
much simpler design and therefore more cost-effective manufacturing.

There are two types of fail-silence violations that can occur in the MARS system: One
occurs when the message produced by the node is erroneous, a fail-silence violation in the
value domain; and another when a node sends a message (correct or not) at an illegal point
in time (when a different message from another node is expected), a fail-silence violation
in thetime domain.

2.2 Timeliness

The issue of timeliness is always important in discussions of real-time systems. All rele-
vant actions in the MARS system must be scheduled before operation, i.e. the MARS sys-
tem is strictlytime triggered in order to guarantee proper timing behaviour.

The following main actions are considered [Reisingeret al. 1995]:

• the points in time at which a processing node may send a message (a Time Division Mul-
tiple Access (TDMA) protocol is used) and the types of messages that may be sent at
specific points in time,

• the start times and deadlines of all processes,
• the points in time when sensor values are read and actuator values are written, and
• the processing steps for recovery and integration of failed nodes (for preventing a prop-

erly detected fault from affecting the correct timing behaviour of the system).

Thus the system designer needs to determine the following:
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• the maximum execution time of each process,
• the maximum time for communication,
• the operating system overhead, and
• the overhead of hardware activities that influence the timing behaviour of the node.

The precise global time base needed by every time triggered system in order to synchro-
nize the actions within different processing nodes of the system is maintained by a distrib-
uted, fault-tolerant clock synchronization algorithm described in [Kopetz and
Ochsenreiter 1987].

2.3 MARS Hardware Architecture

The MARS system consists of independent computer units called FTUs (Fault-Tolerant
Units) that communicate on a redundant real-time bus, known as the MARS bus. These
FTUs consist of up to three autonomous processing nodes known as SRUs (Smallest
Replaceable Units), hereafter callednodes. Various error detection mechanisms are incor-
porated into the nodes for achieving fail-silence. In order to form an FTU, two nodes can
be configured to run in active redundancy together with an optional third node running as
a stand-by shadow node, i.e. not active on the MARS bus, but still executing the same soft-
ware as the other two nodes (see Figure 1). When an error is detected in an active node,
this node is shut down and the shadow node is made active on the bus, thus restoring the
initial degree of redundancy. The MARS system is therefore said to have a two-layered
approach for achieving fault tolerance, i.e. a bottom layer responsible for error detection
and error confinement (node shut down) and a top layer providing enough redundancy to
be able to tolerate silent failures of parts of the system (handling redundant data and
reconfiguration of the system in case of a node failure) [Grünsteidl and Kopetz 1991].

Communication between FTUs is carried out on two redundant real-time buses using a
TDMA-based protocol [Grünsteidl and Kopetz 1991; Grünsteidl, Kantz and Kopetz
1991]. Each FTU is given a certain time slot in which to communicate with the other FTUs
in the system, further divided into SRU time slots for each active node of the FTU. During
the first SRU time slot, Node 0 sends a message on the first real-time bus and Node 1 sends
a message on the second real-time bus. During the next SRU time slot, the transmission
channels are switched so that Node 0 now sends the same message on the second real-time
bus, while Node 1 sends on the first real-time bus. Due to the fail-silence property of one
node, all four redundant messages sent are assumed to be correct and may be used inter-
changeably by the other nodes in the system.

The structure of each node is also given in Figure 1 and described in detail in [Steininger
and Reisinger 1993]. The node consists of two self-contained computer units, theappli-
cation unit, executing the application dedicated to the system, and thecommunication
unit, dealing with communication with other nodes, clock synchronization, membership
service etc. The only way for the two units of the node to communicate is via a bidirec-
tional FIFO.
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 Figure 1: The MARS hardware

Each unit is built around a Philips 68070 CPU (clocked with a frequency of 15 MHz),
which is a Motorola 68000-based CPU that includes a MMU, two-channel DMA control-
ler, UART (RS232) interface, Inter-IC (I2C) bus and an interrupt controller [Philips Sem-
iconductors 1991]. Both units have their own memory, ports and additional hardware for
error detection (for preventing fail-silence violations in the value domain). The commu-
nication unit is also equipped with two LANCE (Ethernet) chips (Am7990) for commu-
nication on the MARS bus, together with two Clock Synchronization Units (CSU) for
maintaining a global time base. Additionally, a Time Slice Controller (TSC) that super-
vises access to the MARS bus for preventing faulty nodes from disturbing non-faulty ones
(thus preventing fail-silence violations in the time domain) and a watchdog timer are built
into the communication unit.

2.4 MARS Software Architecture

The operating system software in MARS is based on a microkernel architecture [Reis-
inger 1993] (see Figure 2). The kernel deals only with bootstrapping, error handling,
scheduling according to pre-calculated dispatching tables and clock interrupt handling
solely used for dispatching purposes.

Redundant real-time buses
(TDMA protocol used)

Shadow Node

Node 1

Node 0

FTU

APPLICATION UNIT COMMUNICATION UNIT

bidir.
FIFO
(8kB)

CPU
68070

bidir.
FIFO
(8kB)

EPROM
(64kB)

DRAM
2MB/8MB

SRAM
(512kB)

EPROM
(256kB)

IO-port
(16bit)

CPU
68070

I/O-
port
(8bit)

SRAM
(256B)

IO-port
(16bit)

EEPROM
(256B)

I/O-
port
(8bit)

SRAM
(256B)

LANCE
+CSU

LANCE
+CSU

T
S
C

Par. port
LAN

LAN

I2C Bus

RS232

Par. portPar. port

Par. port

FIFO

I2C Bus
RS232

Task Task

Task



2    The MARS System

6

The remaining parts of the operating system are implemented as tasks at the application
level. These tasks deal with communication, I/O, clock synchronization etc.

 Figure 2: The MARS software

All tasks execute in a periodic receive-calculate-send loop [Krüger and Nossal 1993] (see
Figure 3). They first enter a receive phase where data is received from other tasks, the data
is then processed in a calculate phase and, finally, the resulting data are sent to other tasks
in a send phase. This periodic receiving and sending of messages has several advantages,
e.g. the maximum execution time of the task is easier to calculate and the concept of time
redundant execution (see Section 2.5.3) is easier to implement. Tasks are often related and
can therefore be grouped together to formteams, which are able to use and manipulate the
same data. The data (also known asmessages) are either stored in a global area shared by
all tasks in a team or sent by various system tasks to other tasks executing anywhere in the
MARS system (i.e. even to other nodes).

 Figure 3: Periodic receive-calculate-send loop for MARS tasks
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All scheduling is done using pre-calculated dispatching tables known as Application Def-
inition Files (ADFs) in order to guarantee the proper timing behaviour of the system. A
schedule consists of a list ofchains containing lists ofthreads (tasks) that are to be exe-
cuted sequentially, i.e. there is no preemption. Chains may preempt each other, however,
in order to allow very short threads (with execution times shorter than the period of the
clock interrupt) to execute without degrading system performance. The time for executing
the whole list of chains (i.e. the time for executing one receive-calculate-send sequence of
all tasks in the MARS system) is known as theapplication cycle.

2.5 Fault Tolerance Features

Several Error Detection Mechanisms (EDMs) are built into each MARS node in order to
fulfil the fail-silence property. They are categorized into three levels according to where
in the system architecture they operate (i.e., hardware level, system software level, or
application level) (see Figure 4).

Immediately upon the detection of an error by any of these mechanisms, an exception han-
dler, which is mapped to the mechanism that detected the error, is executed. The exception
handler collects information about the mechanism together with the status of the CPU
(register contents, MMU setup, current address used etc.) and stores this in a non-volatile
SRAM connected to the I2C bus. The input of the watchdog timer is triggered for the last
time at the start of the exception handler routine, causing the node to be reset by the watch-
dog timer after 280 ms. After reset, the stored error report is transmitted on the serial
RS232 ports of the node to make later analysis possible.

 Figure 4: MARS error detection mechanisms

LEVEL 1
Hardware

CPU: Bus error, Address error, Illegal opcode, Privilege violation, Division
by zero, Stack format error, Uninitialized vector interrupt, Spurious interrupt
Additional hardware (NMI): Power failure, Parity error,
FIFO over/underflow, Memory fault, Illegal access to MARS bus,
Error of an external device, Error of the other unit
Watchdog timer

LEVEL 2
System
Software

Compiler: Value range overflow, Loop iteration bound overflow
OS: Processing time overflow, Various checks on OS data, Various
assertions in the OS

LEVEL3
Application
Level

End-to-end checksums
Double execution of tasks
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2.5.1 Level 1: Hardware EDMs

At the bottom level are the hardware EDMs, i.e. mechanisms that are implemented in the
CPU or by using extra hardware in the node.

Built into the CPU are the following EDMs:

• Bus error: Activated by the on-chip MMU when access to an
unallowed address is made.

• Address error: Activated when access to a misaligned address
occurs (e.g. word data is accessed on an odd
address).

• Illegal opcode: Activated when an invalid instruction is read.
• Privilege violation: Activated when a privileged instruction is executed

in user mode.
• Division by zero: Activated when division by zero occurs.
• Stack format error: Activated when the contents of the stack is incor-

rect upon return from exception processing.
• Uninitialized vector interrupt: Activated when the vector number could not be

provided by the interrupting device.
• Spurious interrupt: Activated when the interrupting device does not

respond to interrupt acknowledge.

The following EDMs are implemented using extra hardware that generates a non-maska-
ble interrupt (NMI) when an error is detected. Consequently, they are called NMI EDMs:

• Power failure: Activated by an IC when the supply voltage falls
below a certain treshold value.

• Parity error: Parity bits are calculated on data transferred to
memory (DRAM or FIFO). During transfer from
memory, the parity bits are checked and any errors
are reported.

• FIFO over/underflow: Activated when the FIFO memory becomes
flooded or when data is being read from an empty
FIFO.

• Memory fault: Activated by the address decoder logic when
access to physically non-existing memory occurs.

• Illegal access to MARS bus: Activated by the TSC when the node tries to send
outside its intended time slots.

• Error in external device: Provided for external devices connected to the
node.

• Error in other unit: Activated by one unit of the node when an error
occurs in the other unit.

The error signals originating from all of these mechanisms are connected to one input
latch each. The NMI signal provided for the CPU is simply the logical OR of all values of
these input latches, and the system may know which NMI mechanisms (one or several at
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the same time) have been triggered by reading the contents of the input latches.

The extra hardware also consists of the watchdog timer that is built into the communica-
tion unit. It activates a node reset when the watchdog input remains unaffected for more
than 280 ms.

In addition to the mechanisms provided by the CPU and those provided by extra hardware,
faults can also trigger unexpected exceptions. These are exceptions to which neither the
EDMs built into the CPU nor the mechanisms implemented using extra hardware were
mapped, but the corresponding exception handlers were nevertheless provided by the sys-
tem for increased robustness.

2.5.2 Level 2: System Software EDMs

At the next level are the EDMs that are implemented in the operating system software or
generated by the compiler for the application.

EDMs generated by the compiler (Compiler Generated Run-Time Assertions, CGRTA):

• Value range overflow: Activated when arithmetic overflow occurs or var-
iable range checks fail.

• Loop iteration bound overflow: Activated when loop variables have values outside
their specified bounds.

EDMs built into the operating system:

• Processing time overflow: Activated when a task has not finished before its
deadline.

• Various checks on OS data: Integrity checks on operating system data that fail.
• Various assertions in the OS: Assertions coded into the operating system that

fail.

2.5.3 Level 3: Application Level EDMs

At the highest level are the so called application level EDMs used for implementing the
extendedfail-silence property of the node (i.e. the node is considered fail-silent even when
a detectably corrupt message is being sent) or for detecting errors caused by transient
faults:

• End-to-end checksums: Checksums (16 bit CRC) that are calculated upon
all messages sent between tasks. Detection of a
corrupt message activates this EDM. Thus, the
node is considered fail-silent even when a detecta-
bly corrupt message has been sent.

• Double execution of tasks: All tasks are executed in time redundancy using
duplicated text and data images, and the messages
produced by the two executions are compared for
detecting errors caused by transient faults.
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3 Three Physical Fault Injection Techniques

This chapter describes the three physical fault injection techniques used in the validation
of the MARS system. The heavy-ion radiation and pin-level techniques are well known
techniques that have been used in several studies in the past, while the EMI technique has
never been used for evaluating fault tolerance mechanisms before. A comparison of the
main features of the techniques, in the way that they were applied in this study, is also
given.

3.1 Heavy-Ion Radiation

The heavy-ion radiation technique is comprehensively described in [Karlssonet al. 1994].
The technique is based on the fact that heavy ions emitted from a Cf-252 source may cause
bit-flips (also known as Single Event Upsets, SEUs) in internal locations in integrated cir-
cuits. To use this technique, the packaging containing the IC must be opened and the IC
placed in a vacuum together with the Cf-252 source. This is necessary as the heavy ions
are attenuated by air molecules and other materials. A miniature vacuum chamber was
developed which contains the Cf-252 source and the irradiated IC (see Figure 5). The IC’s
pin connections are extended through the bottom plate of the miniature vacuum chamber,
so that the chamber can be plugged directly into the socket of the irradiated circuit in the
tested system. An electrically manoeuvred shutter is used for controlling the time at which
fault injection may occur by shutting the radiation on and off.

 Figure 5: Miniature vacuum chamber cross-sectional view

There are other ways of creating SEUs for circuit testing using cyclotrons [Sokolet al.
1987; Elderet al. 1988]. This is obviously a more expensive technique, and it is debatable
whether controllability is better for this technique (i.e. whether the heavy ions can be more
easily directed to specific parts of the ICs in this technique). Some controllability has been
shown to be possible for the heavy-ion radiation technique using shielding [Lidénet al.
1994].

A commercially available Cf-252 source with a nominal activity of 15 kBq was used in

Irradiated IC

Shutter

Vacuum pump connection

Cf-252 source

≈35 mm
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the heavy-ion radiation experiments. About three percent of all disintegrations generate
fission fragments (heavy ions) and the rest generate alpha particles. The alpha particles do
not affect most circuits because they deposit much less charge in silicon than do the fission
fragments (linear energy transfer of about 1.6 MeV mg-1 cm2 vs. 41-45 MeV mg-1 cm2

for most fission fragments) [Gunnefloet al. 1987].

In CMOS circuits, the heavy-ion radiation may cause latch-ups, i.e. the triggering of a par-
asitic four-layer switch (npnp or pnpn) that acts as a silicon-controlled rectifier. The latch-
up results in excessive heat dissipation, which may destroy the circuit and is indicated by
a drastic increase in the current drawn by the circuit. A special device acting as a current
guard was therefore developed to protect the circuit by shutting off the power when the
current exceeds a threshold value.

3.2 Pin-Level Injection

Pin-level fault injection is the most widely used physical fault injection technique. It has
been used for validating fault-tolerant distributed computer systems (e.g., [Damm 1986;
Walter 1990]), and for evaluating the coverage of specific mechanisms such as error detec-
tion by means of signature analysis [Schuetteet al. 1986].

 Figure 6: Pin-level fault injection using forcing

In this technique, faults are injected on the pins of the ICs of the tested system. A variety
of fault models is used; e.g.stuck-at0 or 1, in which the faulted pins are set to a logic 0
or 1,bridging, when several pins of a circuit are interconnected,inverted signal, in which
the faulted pin level is inverted, oropen connection, when the faulted pin is essentially tri-
stated. The duration of the fault may vary to simulate transient, intermittent and permanent
faults. There are two main implementations of this technique:

• Forcing: Faults are injected by multi-pin probes that are directly applied on the pins of
the ICs and associated equipotential lines (see Figure 6).

• Insertion: The target ICs are removed from the system and plugged into a separate box
where transistor switches connected to the pins of the ICs ensure proper isolation from
the rest of the system. All associated equipotential lines will therefore remain unaffected
for each input pin of the target IC, as opposed to the forcing technique where all circuits

Equipotential line

Target

IC

Stuck-at Fault
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connected to the faulted input pin are affected.

Several tools for pin-level fault injection have been developed, e.g. the tool used for FTMP
[Lala 1983], MESSALINE [Arlatet al. 1990], or RIFLE [Madeiraet al. 1994]. The tool
used in this study is MESSALINE (see Figure 7), developed at LAAS-CNRS. It supports
both implementations above, but only the forcing technique was used in this study. The
fault models supported in addition to stuck-at (0 or 1) are open connection and inverted
signal in the case of insertion, and bridging in the case of forcing. The duration of the fault
is fully controllable, as is the point in time at which the fault is activated as it is possible
to use the signals of the target system as fault triggers.

 Figure 7: General architecture of MESSALINE

3.3 Electromagnetic Interference

Electromagnetic interference (EMI) may occur in motorized vehicles and industrial
plants, causing computer failures when computers are put to use in such environments.
The use of EMI for evaluating the MARS system was therefore investigated in this study.

The EMI disturbances used in these experiments were produced by a burst generator
which generated bursts conforming to the IEC 801-4 standard (CEI/IEC), i.e. bursts with
a duration of 15 ms, a period of 300 ms, a frequency of 1.25, 2.5, 5 or 10 kHz, and voltage
levels between 225 V to 4400 V (see Figure 8). These bursts are similar to those which
arise when switching inductive loads with relays or mechanical circuit breakers.
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 Figure 8: Electromagnetic bursts

There were two ways of injecting faults using EMI in this study (see Figure 9). Alternative
1 used two conducting plates connected to the burst generator as a fault injector. The
whole computer board of the fault-injected MARS node was placed between the plates,
and small pieces of wire acting as antennas were connected to the pins of the target ICs
on the computer board. Alternative 2 used a special probe that was placed above the target
ICs in order to focus the EMI bursts to them. The probe was used both with and without
the antennas connected to the pins of the target ICs.

 Figure 9: EMI fault injection set-ups

3.4 Comparison of the Techniques

The three physical fault injection techniques used in this study can be compared according
to five attributes:Controllability, with respect to bothspace andtime, flexibility, repeata-
bility, physical reachability andtiming measurement. Table 1 gives a characterization of
the techniques according to the five attributes graded on the scalenone, low, medium and
high.
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 Table 1: Characterization of the fault injection techniques

3.4.1 Controllability Space/Time

The controllability attribute is divided into a space domain and a time domain. The space
domain corresponds to controllingwhere the faults are injected, while the time domain
corresponds to controllingwhen the faults are injected.

Heavy-ion radiation

The controllability in the space domain in the heavy-ion technique is low. It is possible to
make a selection of which circuits to irradiate and even to use shielding for a rough selec-
tion of the parts of the circuit that should be irradiated (shielding was not used in this
study, however), but the exact locations at which to inject faults can not be chosen. Con-
trollability in the time domain is impossible since the faults are generated by heavy ions
created by a random decay process of the Cf-252 source (although the shutter mechanism
described in Section 3.1 may give some control of whenno fault injection may occur).

Pin-level fault injection

Pin-level fault injection has high controllability in both the space and time domains. The
exact pin locations to fault-inject are easy to find, and timing controllability may only be
difficult when the clock frequency of the target circuit is high and one wishes to synchro-
nize fault injection with the activity of the circuit.

EMI fault injection

EMI fault injection has low controllability in the space domain, both when the probe and
the plates are used. The probe may affect circuits surrounding the target circuit, and the
plates affect the whole computer board, although antennas may give some controllability
as to the circuits the fault injection should be focused. While the time of injection can be
synchronized with the system activity, it is difficult to determine exactly when a fault is
injected, and thus the controllability in time is low as well.

3.4.2 Flexibility

The flexibility attribute expresses the effort needed to modify the experimental set-up so

Attributes Heavy-ion Pin-level EMI

Controllability, space low high low

Controllability, time none high/medium low

Flexibility low medium high/medium

Reproducibility medium high low

Physical reachability high medium medium

Timing measurement medium high low
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that another target circuit is used (if at all possible).

Heavy-ion radiation

The flexibility of heavy-ion radiation is low since considerable preparations are necessary
for changing target circuit. The circuit package must be opened and mechanical and elec-
trical adaption between the target system and miniature vacuum chamber carried out, and,
in the case of latency measurements, the development of a comparator card is needed.
Typically, only a few highly integrated key components of the system are therefore fault
injected using heavy-ion radiation.

Pin-level fault injection

The flexibility of the pin-level fault injection technique is higher than for the heavy-ion
technique, especially when a fault injection tool such as MESSALINE is used. Extra load
capacitances introduced by the connection probes may interfere with the target system
and the pins of some modern ICs may be difficult to access physically. Flexibility is there-
fore considered medium.

EMI fault injection

EMI has a high flexibility when no antenna wires are used, as there is no physical connec-
tion between the target circuit and the fault injector. Connection of antenna wires to the
pins of the target circuit faces the same accessibility problems as the pin-level technique,
and flexibility in that case is only medium.

3.4.3 Reproducibility

Reproducibility refers to the ability to do two things:

• Statistically reproduce the results when using a certain set-up in order to ensure the cred-
ibility of the fault injection experiments when used in validating a system.

• Repeat individual fault injections exactly, which is needed when the aim of the experi-
ments is to remove faults in the design of the fault tolerance mechanisms.

Heavy-ion radiation

Previous research has shown that results of heavy-ion radiation experiments are statisti-
cally reproducible among different samples of target ICs. Exact repeatability is impossible
due to the lack of controllability. Reproducibility is therefore considered low.

Pin-level fault injection

With the pin-level fault injection tool MESSALINE, it is possible to both statistically
reproduce the results and repeat individual fault injections exactly. Reproducibility is
therefore high in pin-level fault injection.

EMI fault injection

Small changes in the positioning of the probe or antenna wires in the EMI fault injection
technique may affect statistical reproducibility. The results of the EMI experiments (see
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Section 5.5) show that reproducibility is difficult to achieve. Exact repeatability is not pos-
sible for EMI. The reproducibility is therefore low.

3.4.4 Physical Reachability

Physical reachability expresses the ability to reach possible fault locations in a system.

Heavy-ion radiation

Heavy-ion radiation has a high physical reachability as the faults are injected in internal
locations of the circuits.

Pin-level fault injection

The physical reachability in pin-level fault injection varies depending on the level of inte-
gration of the target system. Physical reachability is low for systems consisting of only a
few VLSI circuits. For less integrated systems such as the MARS system, which uses a
mixture of VLSI, LSI, MSI and SSI circuits, physical reachability can be considered
medium.

EMI fault injection

EMI fault injection demonstrates a physical reachability similar to that of pin-level injec-
tion as most faults are injected via digital input/output signals. However, faults may also
occur internally in ICs as a result of disturbances propagated through the power supply
lines.

3.4.5 Timing Measurement

Timing measurement expresses the ability to acquire timing information about monitored
events, such as measurements of error detection latency.

Heavy-ion radiation

Measurement of error detection latency using heavy-ion radiation requires the use of the
golden chip technique, in which the target IC must operate synchronously with a reference
IC that is not subjected to fault injection to detect fault occurrences. This may be hard to
achieve for certain ICs, e.g. when a varying number of wait state cycles are inserted during
memory accesses. Timing measurement capability is therefore medium in heavy-ion radi-
ation.

Pin-level fault injection

Timing measurement capability is high in the pin-level fault injection technique, as the
time of injection is explicitly known.

EMI fault injection

EMI fault injection has a low ability to acquire timing information even when the golden
chip technique is used, as it is difficult to confine the disturbances to the target circuit only.
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4 Common Experimental Set-up

The fault injection experiments were conducted at three sites: Heavy-ion radiation using
Cf-252 at Chalmers University of Technology, Göteborg, Sweden; pin-level fault injec-
tion using the MESSALINE tool with forcing at LAAS-CNRS, Toulouse, France; and
electromagnetic interference using conducting plates or probe, at the Technical University
of Vienna, Vienna, Austria.

This chapter describes the operation of the common experimental set-up used at each site
(similar to the one used in [Damm 1988]) for conducting a coherent set of experiments
and the method applied for measuring the coverage of the built-in fault tolerance features
of the MARS system.

4.1 Test Application Used

The test application used in the experiments is based on the rolling ball experiment
[Kopetzet al. 1991], in which a ball rolls along a circular path on a plane with the help of
servo motors controlling the two horizontal axes of the plane. By observing the ball with
a video camera it is possible to correct for external disturbances of the position of the ball.
Thus, it is a typical real-time application, chosen in order to obtain a fairly realistic work-
load. This is important since the error detection coverage is highly dependent on the activ-
ity of the system.

 Figure 10: Tasks and message flow

The rolling ball experiment is completely emulated using software that is written in Mod-
ula/R, a programming language based on Modula-2 for writing real-time applications sup-
porting the MARS architecture [Vrchoticky 1992]. The application consists of three tasks
(see also Figure 10):

1) Thedata generation task, which acts as the video camera and continuously generates
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data about the nominal and actual values of the position, speed and acceleration of the ball
for the control task.

2) Thecontrol task, which ‘controls’ the two horizontal axes of the plane. This continu-
ously receives the emulated data from the data generation task and performs some calcu-
lations on these data, i.e. it calculates the desired acceleration of the ball. The control task
does not preserve any data or state information between its periodic executions and is run
in active redundancy by two MARS nodes in this experimental set-up.

3) Thecomparator task, which receives the results delivered by the two MARS nodes that
run the control task in active redundancy and compares them. It delivers information about
any discrepancies between the results (i.e. fail-silence violations), together with status
information about the experiment, such as the number of application cycles that have been
executed (the application cycle period is 40 ms) and the number of errors encountered. It
also controls the fault injection device and the power supply of the tested node.

4.2 Hardware Configuration

The hardware configuration used in the experiments is shown in Figure 11. Five MARS
nodes and a UNIX workstation were needed. As the compiler environment for the Mod-
ula/R programming language is available only on UNIX workstations, the application
(together with most of the operating system) had to be downloaded from the workstation
to the MARS system using a MARS node configured as a gateway between the Depart-
ment’s regular Ethernet network and the MARS bus (Node 0 in Figure 11). The worksta-
tion was also responsible for collecting data from the experiments running a program
called ‘observe’ (see Section 4.4.1).

The data generation node (Node 2) executed the data generation task which provided data
for the control task running on FTU 1. FTU 1 was configured using two MARS nodes, one
which was subjected to physical fault injection, called the tested node, and one acting as
a golden node (i.e. always delivering correct data). A fifth node (Node 3) executed the
comparator task, i.e. was used for checking the output of the two nodes running the control
task, delivering status information to the workstation and for controlling the fault injection
device and power supply of the tested node.

To give an indication of the complexity of the workload used in the set-up, the size of the
code executed by the operating system and the application in both units on each MARS
node are shown in Table 2.

The fault injection device consisted of either the miniature vacuum chamber for the
heavy-ion radiation technique (HI), an injection probe directly connected to the pins of
the target ICs for pin-level fault injection using pin-forcing (PF) or the probe or plates for
the EMI technique (see Chapter 3).
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 Figure 11: Hardware configuration of the experimental set-up

 Table 2: Size of code executed at each MARS node

4.3 Detailed Operation of the Set-up

Faults were injected into the tested node until the comparator node detected a failure (i.e.
a discrepancy in the data delivered by the tested node and golden node was observed) or
when a resulting error was detected by the tested node, causing it to store an error report
(i.e. data about which error detection mechanism detected the error, together with the state
of the CPU when the error was detected, e.g. the contents of the CPU registers) in non-
volatile SRAM in each unit and then reset itself. After reset, both units of the tested node
delivered their stored error reports via serial RS232 ports to the workstation for further
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analysis. No error information was ever sent on the serial ports of the tested node if the
error was detected by the comparator node alone. The workstation then instead retrieved
the necessary error information from the status data delivered by the comparator node.

The comparator node then shut off the power to the tested node via the signal AL 6, and
the fault injection device was switched off using the signal AL 7 (see Figure 11). The
tested node was then restarted by the comparator node using AL 6 and a status message
was sent via the serial ports (also collected by the workstation).

Upon restart, the workstation downloaded the application to the tested node. When the
application had been restarted, the fault injection device was switched on using AL 7 and
a new experimental run began.

4.4 Measurements

This section gives the method for experimental assessment of the fail-silence property of
a MARS node when subjected to fault injection, as well as a precise definition of the pred-
icates considered to perform the analysis. Several fault injection campaigns utilizing the
three physical fault injection techniques described in Chapter 3 were conducted (see Sec-
tion 5.1).

4.4.1 Experimental Assessment

Each campaign consisted of a number of experimental runs. During each experimental run
a fault was injected into the tested node as described in Section 4.3; i.e. when an error
occurred, the tested node was shut down by the comparator node to clear the error condi-
tions for a new experimental run, and the power was then reinstalled and the tested node
reloaded for the next experimental run.

An assessment of the fail-silence property was made by collecting the error detection
information provided by the tested node and comparator node. This data collection was
made by a program called ‘observe’ (running on the UNIX workstation), which continu-
ously monitored the application and communication unit serial ports as well as the com-
parator node’s application unit serial port. The data delivered on these serial ports was
saved by ‘observe’ in a single file on the workstation for each experimental campaign.
Analysis of the information according to the predicates given in Section 4.4.2. was then
made some time after the campaign had been conducted, using a two step process. First,
extraction and restructuring of useful data from the collected data was carried out by a
program called ‘extract’, after which the extracted data was used for statistical analysis by
a program called ‘statcalc’. Several combinations of enabled/disabled EDMs were ana-
lysed in different campaigns (see Section 5.1) in order to study their impact on the fail-
silence property.

Although these measurements were used for assessing the fail-silence coverage and the
efficiency of the various EDMs of a MARS node, estimating thereal coverage is exceed-
ingly more complex. This is because the real fault set is usually not known in detail, and
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even less is known about the probability of the occurrence of individual faults, although
an estimate of the real coverage can be calculated as a weighted mean of the coverage fac-
tors obtained by different fault injection methods [Powellet al. 1995]. These weight fac-
tors are often very difficult or even impossible to calculate, however, due to a lack of
knowledge about the real faults.

The fault injection techniques used in this study are therefore regarded as ‘benchmark’
techniques only, used for evaluating the relative efficiency of the various EDMs of the
MARS system. The particular workload used in this study constitutes only a subset of the
complete activity set, and the techniques and locations used for fault injection span only
a subset of the complete fault set. The only way of estimating the real coverage is to use
the MARS system in its intended environment, which is impractical if one wishes to esti-
mate the value in a reasonable amount of time. However, by combining several fault injec-
tion techniques, more of the complete fault set should be sampled and the overlap between
the fault set created by reality and the techniques should grow. Thus, the possibility of
obtaining a higher confidence in the coverage value improves.

4.4.2 Predicates

The tested node can be affected by four types of failures:

(1) The EDMs within the node detect the error. This will cause it to stop sending messages
on the MARS bus.

(2) The node fails to deliver messages for one or several application cycles, but no error
is detected by the node’s EDMs.

(3) The node sends a message that is syntactically correct but has an erroneous content, a
fail-silence violation in the value domain.

(4) The node sends a message (erroneous or not) at an illegal point in time, a fail-silence
violation in the time domain.

From these failure types, the following predicates (events) can be derived:

Warmstart (WS): A warmstart (reset) of the tested node occurs when one of the node’s
EDMs detects an error (Internal WS), or when an incoming or outgoing link failure is
detected by the top-layer mechanism for achieving fault tolerance (see Section 2.3)
(External WS).

Message loss (ML): Occurs when a message is lost from the tested node, i.e. is not
received by the comparator node.

Message mismatch (MM): Occurs when the contents of the messages delivered by the
tested node and golden node differ at the comparator node.

System failure (SF): A system failure occurs when either the golden, data generation or
comparator node fails.

Coldstart (CS): A coldstart (power on) of the tested node is made after each experiment
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run, except when a system failure has occurred.

 Figure 12: Possible failure scenarios
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silence violation because no erroneous messages are sent, but the error is not detected by
the EDMs in the tested node. The assertion of MM always corresponds to a fail-silence
violation (failure type 3), regardless of other events. The SF predicate may be asserted
when either a fail-silence violation in the time domain occurs (failure type 4) or when a
hardware failure is experienced at a node other than the tested node. The CS predicate
always indicates the end of each experimental run (i.e., the end of each data set).
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Given the above failure types, the number of fail-silence violations is calculated as:

where# Exp.⊇ X counts the number of experiments in which anX-type failure was diag-
nosed (i.e. predicateX was asserted).

#FS Viol. #Exp. MM⊇ #Exp. SF⊇+=
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5 Experimental Results

This chapter presents the results obtained from the fault injection campaigns conducted at
each site using the experimental set-up described in Chapter 4. By studying the distribu-
tion of the error detections among the EDMs built into the MARS system, it is possible to
indirectly analyse the error sets generated by the three techniques in order to determine
whether or not the techniques are complementary, i.e. whether they generate different
error sets. If they are complementary, it would mean that all three techniques could be
applied in the validation of a fault-tolerant system in order to achieve higher confidence
in the results.

To achieve as much similarity as possible among the error sets, so that the fault injection
techniques could be objectively compared, faults were only injected inside, on the pins or
in the vicinity of either the application unit CPU or the communication unit CPU of the
tested node.

5.1 Experimental Combinations Used

Several fault injection campaigns using different combinations of EDMs activated in the
tested node were used in the validation of the MARS system and for comparing the fault
injection techniques (see Table 3). The following acronyms are used for the combina-
tions: NOAM (no application level mechanisms, i.e. single execution and no message
checksums used), SEMC (single execution and message checksums), DEMC (double
execution and message checksums used, i.e. all EDMs activated), and TEMC (triple exe-
cution, message checksums; where an additional, third, time-redundant test execution of
the control task was used for investigating the heavy-ion experiments, see Section 5.3).
When the acronym ends with an ‘N’ (‘No NMIs’), the NMI EDMs of the tested node were
deactivated as well.

 Table 3: Experimental combinations used

The fault injection was focused on either the application unit CPU or the communication
unit CPU of the tested node. When the acronyms are used hereafter, they may therefore
be suffixed by a letter. An ‘a’ after the acronym indicates that fault injection was focused

Combination
no.

Execution Message
Checksum

NMIs Acronym

1 Single No No NOAMN

2 Single Yes No SEMCN

3 Double Yes No DEMCN

4 Single No Yes NOAM

5 Single Yes Yes SEMC

6 Double Yes Yes DEMC

7 Triple Yes Yes TEMC
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on the application unit CPU, and a ‘c’ that the communication unit CPU was the principal
target.

5.2 Format of Presented Results

The results presented in this chapter are the distributions of the errors among the mecha-
nisms that detected the error, divided into the following categories:

• CPU indicates errors detected by the CPU EDMs.
• UEE indicates errors causing unexpected exceptions to be raised, i.e. neither the CPU

EDMs nor the EDMs provided by extra hardware were mapped to these exceptions.
• NMI indicates errors detected by the extra hardware in the unit (generating NMIs).
• OS indicates errors detected by the EDMs built into the operating system.
• CGRTA indicates errors detected by the Compiler Generated Run-Time Assertions.
• Double exec. indicates errors detected by comparing the messages produced by the two

time-redundant executions of each task.
• Checksum indicates errors detected by the end-to-end checksum EDMs.
• Other unit indicates errors that caused error information to be given by the other (fault

free) unit of the tested node only.
• No error info. indicates errors that did not produce any error information at all.
• Triple execution indicates errors detected by a comparison of the message produced by

a third time redundant execution of the control task—which was provided with fixed
input data used for verifying the double execution EDM—with the messages produced
in the normal time redundant executions of this task. (Used only for the heavy-ion radi-
ation technique).

• Fail-silence violations indicate errors that led to fail-silence violations.
• Total no. of errors indicates the number of errors observed in the combination consid-

ered.

The observed relative frequencies of the errors belonging to each category are given in the
tables presenting the results for each fault injection technique in sequence using the com-
binations described in Section 5.1. In order to verify the results statistically, the 95% con-
fidence intervals of the corresponding probabilities for the relative frequencies are given
as well. If the observed number of errors is large, the relative frequencies are approxi-
mately normally distributed. The confidence intervalse can then be calculated as

wheren is the total number of observed errors of the combination considered,fn the
observed relative frequency whose confidence level should be calculated andzα/2 calcu-
lated from the N(0,1) distribution, e.g.zα/2=1.9600 for an interval with a 95% level of con-
fidence.

e zα 2⁄
f n 1 f– n( )

n
---------------------------±=
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The errors of the “Other unit” category, i.e. errors detected by the other (fault free) unit of
the tested node, have been divided into similar categories and are presented in a similar
way in separate tables underneath the main ones.

5.3 Results of Heavy-Ion Radiation

The heavy-ion radiation technique was used for fault injection of either the application
unit CPU or communication unit CPU. The fault injection was performed using the min-
iature vacuum chamber described in Section 3.1, containing the irradiated CPU and the
Cf-252 source. As the irradiated ICs are CMOS circuits, they were protected from latch-
ups by a current guard that turned off the power to the CPUs when the current exceeded
a threshold value. All observed latch-ups have been censored out of the data given here
(about 30-50% of all errors depending on which unit was fault injected, the pressure in the
miniature vacuum chamber, the amount of time the same chip had been irradiated and the
activity of the Cf-252 source). Figure 13 shows how the latch-up intensity varied during
the experiments (the theoretical values of the Cf-252 source activity, which was measured
as 43 kBq as of April 4th 1991, are also shown). The general trend seems to be that the
latch-up intensityincreased over time during the first campaigns, contrary to what is
expected since the activity of the Cf-252 sourcedecreases. Whether this has to do with the
chip becoming increasingly more contaminated or that the energy spectrum of the Cf-252
source varies (or if another cause for this behaviour exists) is not yet clear. According to
[Johansson1993], the Cf-252 source used in the experiments was either badly manufac-
tured or had accidentally been touched, since measurements of the energy spectrum of the
source showed it to be very different from what was expected.

 Figure 13: Latch-up intensity vs. Cf-252 activity
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 Table 4: Results of heavy-ion radiation without activated NMI EDMs

Table 4 shows the distribution of error detections among the various EDMs for each of the
irradiated CPUs and those combinations given in Table 3 for which no NMI EDMs were
activated in the tested node (combinations 1 to 3). Table 5 shows the results obtained when
the NMI EDMs were activated (combinations 4 to 7). The observed relative frequencies
are given together with the corresponding confidence intervals.

The hardware EDMs, in particular the CPU mechanisms, detected most of the errors,
which is not surprising since the faults were injected into the CPU. The proportion of
errors detected by the hardware EDMs is larger for faults injected into the communication
unit CPU than for faults injected into the application unit CPU, except when the NMI
EDMs were deactivated, when the proportions are similar. In particular, the coverage of
the NMI EDMs is highest when the application unit CPU was irradiated. Unexpected
exceptions (UEE) occurred with a frequency of about 15% in the combinations in which
all NMI EDMs were used vs. 10% when no NMI EDMs were used. This is somewhat sur-
prising since one would expect the opposite, i.e. a higher frequency of UEEs to occur
when the NMIs were not used than when they were used. Unfortunately, the lack of
observability in the experiments makes it difficult to speculate on why this behaviour was
observed.

Errors detected by the OS EDMs dominate for the software EDMs. For application level
EDMs, the message checksum EDMs dominate.

Error application unit CPU irradiated comm. unit CPU irradiated
Detection NOAMNa SEMCNa DEMCNa NOAMNc DEMCNc

Mechanisms % (95% conf.) % (95% conf.) % (95% conf.) % (95% conf.) % (95% conf.)
Level 1 CPU 54.9% ±1.9% 58.2% ±2.0% 54.3% ±2.0% 55.2% ±1.6% 56.0% ±2.0%

Hardware UEE 11.2%±1.2% 11.1% ±1.3% 10.3% ±1.2% 9.9% ±1.0% 10.7% ±1.2%
Subtotal 66.1% ±1.8% 69.4% ±1.9% 64.6% ±1.9% 65.1% ±1.6% 66.7% ±1.9%

Level 2 OS 7.2% ±1.0% 8.2% ±1.1% 7.8% ±1.1% 15.2% ±1.2% 6.3% ±1.0%
System CGRTA 0.3% ±0.2% 0.3% ±0.2% 0.2% ±0.2% 0.2% ±0.1% 0.5% ±0.3%
software Subtotal 7.5% ±1.0% 8.5% ±1.1% 8.0% ±1.1% 15.4% ±1.2% 6.8% ±1.0%
Level 3 Double exec. — — — — 1.0% ±0.4% — — 0.8% ±0.4%

Application Checksum — — 1.5% ±0.5% 2.8% ±0.7% — — 2.8% ±0.7%
level Subtotal — — 1.5% ±0.5% 3.8% ±0.8% — — 3.7% ±0.8%
Other Other unit 12.0%±1.3% 12.1% ±1.3% 11.3% ±1.3% 7.8% ±0.9% 8.8% ±1.1%

No error info. 13.1% ±1.3% 8.1% ±1.1% 12.2% ±1.3% 11.4% ±1.0% 12.6% ±1.3%
Subtotal 25.1% ±1.7% 20.2% ±1.6% 23.5% ±1.7% 19.3% ±1.3% 21.4% ±1.6%

Fail-silence violations 1.3% ±0.4% 0.4% ±0.3% 0.1% ±0.1% 0.3% ±0.2% 0% —
Total no. of errors 2565 2342 2347 3555 2458

(a) Detection by the EDMs of the unit to which the faulted ICs belong
Error application unit CPU irradiated comm. unit CPU irradiated

Detection NOAMNa SEMCNa DEMCNa NOAMNc DEMCNc
Mechanisms % (95% conf.) % (95% conf.) % (95% conf.) % (95% conf.) % (95% conf.)

Level 1 CPU 0% — 0% — 0% — 0% — 0% —
Hardware UEE 0.2% ±0.2% 0.1% ±0.1% 0.2% ±0.2% <0.1% ±0.1% <0.1% ±0.1%

Subtotal 0.2% ±0.2% 0.1% ±0.1% 0.2% ±0.2% <0.1% ±0.1% <0.1% ±0.1%
Level 2 OS 11.8% ±1.2% 12.0% ±1.3% 11.1% ±1.3% 7.8% ±0.9% 8.6% ±1.1%
System CGRTA 0% — 0% — 0% — <0.1%±0.1% 0% —
software Subtotal 11.8% ±1.2% 12.0% ±1.3% 11.1% ±1.3% 7.8% ±0.9% 8.6% ±1.1%
Level 3 Double exec. — — — — 0% — — — 0% —

Application Checksum — — 0% — 0% — — — 0.2%±0.2%
level Subtotal — — 0% — 0% — — — 0.2% ±0.2%

(b) Detection by the EDMs of the other unit (detail of “Other unit” entry in Table (a) above)
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 Table 5: Results of heavy-ion radiation with activated NMI EDMs

The amount of errors that did not produce any error information is in the range of 10% for
the combinations without NMIs vs. 5% when the NMIs were used, which is not surprising
since faults that are not caught by NMI EDMs may cause an unexpected behaviour of the
rest of the system (i.e. the system is designed to be used with the NMIs).

The percentage of fail-silence violations was between 2.4% and 0.5% for the NOAMa,
SEMCa and DEMCa combinations, and between 1.3% and 0.1% for the NOAMNa,
SEMCNa and DEMCNa combinations. This is clearly an anomaly since one would expect
more fail-silence violations when less EDMs are activated. The anomaly is also confirmed
statistically, as it can not even be explained by taking into account the confidence interval
figures. However, the number of fail-silence violations is always lower for SEMC than for
NOAM, and even lower for DEMC, as would be expected. All fail-silence violations were
in the value domain except for combination NOAMNc, for which three system failures
were observed due to fail-silence violations in the time domain. This could be observed
by the assertion of the SF predicate (see Section 4.4.2) in the data collected from the
experiments (assuming there were no failures of other nodes than the tested node).

Fewer fail-silence violations were always observed when faults were injected into the
communication unit CPU than when the application unit CPU was fault-injected. This is
true regardless of whether or not the NMIs were activated.

Error application unit CPU irradiated communication unit CPU irradiated
Detection NOAMa SEMCa DEMCa TEMCa NOAMc SEMCc DEMCc

Mechanisms % (95% conf.) % (95% conf.) % (95% conf.) % (95% conf.) % (95% conf.) % (95% conf.) % (95% conf.)
Level 1 CPU 47.7% ±1.1% 49.0% ±1.8% 47.4% ±1.0% 51.3% ±1.4% 44.9% ±2.0% 43.2% ±1.8% 43.3% ±2.0%

Hardware UEE 15.0%±0.8% 16.0% ±1.3% 15.2% ±0.7% 14.7% ±1.0% 14.6% ±1.4% 14.1% ±1.3% 13.4% ±1.4%
NMI 7.0% ±0.6% 6.0% ±0.9% 6.3% ±0.5% 5.7% ±0.6% 20.2% ±1.6% 19.6% ±1.4% 19.9% ±1.6%

Subtotal 69.7% ±1.0% 71.0% ±1.7% 68.9% ±1.0% 71.7% ±1.2% 79.6% ±1.6% 76.9% ±1.5% 76.6% ±1.7%
Level 2 OS 7.8% ±0.6% 7.7% ±1.0% 7.6% ±0.5% 5.4% ±0.6% 3.6% ±0.7% 4.9% ±0.8% 5.3% ±0.9%
System CGRTA 1.0% ±0.2% 0.1% ±0.1% 0.3% ±0.1% 0.7% ±0.2% 0.4% ±0.2% 0.2% ±0.2% 0.5% ±0.3%
software Subtotal 8.8% ±0.6% 7.8% ±1.0% 7.9% ±0-6% 6.2% ±0.7% 4.0% ±0.8% 5.1% ±0.8% 5.8% ±0.9%
Level 3 Double exec. — — — — 0.8% ±0.2% 1.1% ±0.3% — — — — 0.5% ±0.3%

Application Checksum — — 2.4% ±0.6% 2.7% ±0.3% 4.6% ±0.6% — — 1.6% ±0.5% 3.1% ±0.7%
level Subtotal — — 2.4% ±0.6% 3.6% ±0.4% 5.7% ±0.6% — — 1.6% ±0.5% 3.5% ±0.7%
Other Other unit 14.0%±0.8% 13.2% ±1.2% 14.3% ±0.7% 11.3% ±0.9% 13.8% ±1.4% 13.8% ±1.2% 12.0% ±1.3%

No error info. 5.1% ±0.5% 4.2% ±0.7% 4.8% ±0.4% 4.3% ±0.6% 2.5% ±0.6% 2.5% ±0.6% 2.1% ±0.6%
Subtotal 19.1% ±0.9% 17.5% ±1.4% 19.1% ±0.8% 15.6% ±1.0% 16.3% ±1.5% 16.3% ±1.3% 14.1% ±1.4%

Triple execution — — — — — — 0.8% ±0.3% — — — — — —
Fail-silence violations 2.4% ±0.3% 1.3% ±0.4% 0.5% ±0.1% 0% — <0.1% ±0.1% 0% — 0% —

Total no. of errors 7825 2877 9036 5016 2479 2943 2437

(a) Detection by the EDMs of the unit to which the faulted ICs belong
Error application unit CPU irradiated communication unit CPU irradiated

Detection NOAMa SEMCa DEMCa TEMCa NOAMc SEMCc DEMCc
Mechanisms % (95% conf.) % (95% conf.) % (95% conf.) % (95% conf.) % (95% conf.) % (95% conf.) % (95% conf.)

Level 1 CPU 0% — 0% — 0% — 0% — 0% — 0% — 0% —
Hardware UEE <0.1%±0.0% 0.1% ±0.1% 0% — 0.1% ±0.1% 0% — 0% — <0.1% ±0.1%

NMI 2.5% ±0.3% 2.0% ±0.5% 2.7% ±0.3% 2.1% ±0.4% 4.7% ±0.8% 5.0% ±0.8% 4.2% ±0.8%
Subtotal 2.6% ±0.4% 2.1% ±0.5% 2.7% ±0.3% 2.1% ±0.4% 4.7% ±0.8% 5.0% ±0.8% 4.3% ±0.8%

Level 2 OS 11.4% ±0.7% 11.2% ±1.2% 11.6% ±0.7% 9.2% ±0.8% 8.9% ±1.1% 8.8% ±1.0% 7.8% ±1.1%
System CGRTA 0% — 0% — 0% — 0% — 0% — 0% — 0% —
software Subtotal 11.4% ±0.7% 11.2% ±1.2% 11.6% ±0.7% 9.2% ±0.8% 8.9% ±1.1% 8.8% ±1.0% 7.8% ±1.1%
Level 3 Double exec. — — — — 0% — 0% — — — — — 0% —

Application Checksum — — 0% — 0% — 0% — — — 0% — 0% —
level Subtotal — — 0% — 0% — 0% — — — 0% — 0% —

(b) Detection by the EDMs of the other unit (detail of “Other unit” entry in Table (a) above)
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The observation of fail-silence violations for the combination for which all EDMs were
activated (DEMCa) was unexpected since all transient errors should be detected by the
double execution feature of the MARS system. Two different hypotheses may explain this
behaviour. The first is obvious, a design error in the MARS system. However, as no other
fault injection technique caused any fail-silence violations for this combination (see Sec-
tions 5.4 and 5.5), another heavy-ion radiation-specific hypothesis may explain the behav-
iour. This second hypothesis is that an undetected latch-up caused the same incorrect
result to be produced by both executions of the control task.

To further investigate this hypothesis, the TEMCa combination was applied, using a third
time redundant execution of the control task which was provided with fixed input data for
which the results were known. This made it possible to detect errors by comparing the pro-
duced results with the correct results. This mechanism, which can be viewed as an on-line
test program, where the third execution is included for comparison purposes only (i.e. its
results are never used by the application), would detect any semi-permanent fault, such as
the one suggested by the latch-up hypothesis. If fail-silence violations would still have
been observed, the latch-up hypothesis could be rejected and a design error in the MARS
system would be the next logical explanation.

The results show that no fail-silence violations occurred for the TEMCa combination. As
Table 5-a shows, 0.8% of the errors (42 errors) were detected by the third execution of the
control task. This supports the latch-up hypothesis. However, the experimental set-up
used in the experiments does not provide sufficient observability to fully prove the hypoth-
esis. The absence of fail-silence violations may merely be an effect of the change of soft-
ware configuration caused by the switch from DEMCa to TEMCa, and the errors detected
by the third execution may have been caused by regular transients (which further analysis
of the collected data definitely shows to have occurred for six errors). Verification of the
latch-up hypothesis would require the use of a logic analyser in order to study the program
flow and behaviour of the microprocessor in detail. The development of such a set-up
using the golden chip technique for synchronizing logic analyser data collection with the
occurrence of an error and for measuring error detection latency, had to be discontinued.
This was due to severe adaption problems when moving the target CPU to the separate
comparator card that was needed to hold the target and golden (reference) CPUs and to
which the logic analyser was connected.

The OS and NMI EDMs dominate the detections made by the other unit of the tested node.
The communication between the two units is carried out entirely via FIFO buffers, and
nearly all of these detections were made by EDMs signalling empty FIFO. (An empty
FIFO can be detected both by the operating system and a special NMI mechanism.)

Experiments were also conducted using a different sample of the target CPU in order to
validate the statistical reproducibility of the heavy-ion radiation technique. The results of
these campaigns are shown in Table 6. These results are very similar to those obtained in
the original campaigns which indeed validates the statistical reproducibility of the heavy-
ion radiation technique. Only one major discrepancy exists, that of the number of fail-
silence violations observed. Fewer than one half the amount of fail-silence violations were
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observed in these later experiments. This is consistent with what was observed in the orig-
inal campaigns, however, since the amount of fail-silence violations was lower for cam-
paigns made later (i.e. the campaigns with the NMIs switched off). See Section 6.3 for a
more thorough discussion on the number of fail-silence violations observed.

 Table 6: Results of heavy-ion radiation using a different sample of the target CPU

5.4 Results of Pin-Level Injection

In the pin-level fault injection campaigns, the MESSALINE tool was applied with the fol-
lowing configuration:

• forcing was used,
• one IC at a time was fault injected with a multiplicity, i.e. maximum number of pins

faulted at the same time, ofmx=3,
• themx faulted pins selected were uniformly chosen from all possible combinations of

mx pins,
• stuck-at 0 and 1 fault models were used (all 0-1 combinations ofmx pins were consid-

ered equally probable),
• both transient and intermittent (series of transients) faults were injected to simplify the

Error application unit CPU irradiated
Detection NOAMNa DEMCNa SEMCa DEMCa

Mechanisms % (95% conf.) % (95% conf.) % (95% conf.) % (95% conf.)
Level 1 CPU 61.6% ±3.0% 58.3% ±6.7% 54.2% ±3.1% 53.1% ±1.3%

Hardware UEE 10.5% ±1.9% 9.2% ±4.0% 15.9% ±2.3% 15.9% ±1.0%
NMI — — — — 6.6& ±1.6% 5.7% ±0.6%

Subtotal 72.1% ±2.8% 67.5% ±6.4% 76.7% ±2.7% 74.7% ±1.2%

Level 2 OS 5.5% ±1.4% 10.2% ±4.1% 5.2% ±1.4% 6.1% ±0.6%
System CGRTA 0.3% ±0.3% 0% — 0% — 0.3% ±0.1%
software Subtotal 5.8% ±1.5% 10.2% ±4.1% 5.2% ±1.4% 6.4% ±0.7%

Level 3 Double exec. — — 0.5% ±0.9% — — 0.8% ±0.2%
Application Checksum — — 1.4% ±1.6% 1.1% ±0.7% 1.9% ±0.4%

level Subtotal — — 1.9% ±1.9% 1.1% ±0.7% 2.7% ±0.4%

Other Other unit 13.8% ±2.1% 13.6% ±4.7% 13.0% ±2.1% 11.8% ±0.9%
No error info. 7.7% ±1.7% 6.8% ±3.4% 3.5% ±1.1% 4.3% ±0.5%

Subtotal 21.5% ±2.6% 20.4% ±5.5% 16.5% ±2.3% 16.1% ±1.0%

Fail-silence violations 0.6% ±0.5% 0% — 0.5% ±0.4% <0.1% ±0.1%
Total number of errors 988 206 977 5470

(a) Detection by the EDMs of the unit to which the faulted ICs belong
Error application unit CPU irradiated

Detection NOAMNa DEMCNa SEMCa DEMCa
Mechanisms % (95% conf.) % (95% conf.) % (95% conf.) % (95% conf.)

Level 1 CPU 0% — 0% — 0% — 0% —
Hardware UEE 0.1% ±0.2% 0.5% ±0.9% 0% — 0.1% ±0.1%

NMI — — — — 2.6% ±1.0% 2.3% ±0.4%
Subtotal 0.1% ±0.2% 0.5% ±0.9% 2.6% ±1.0% 2.4% ±0.4%

Level 2 OS 13.7% ±2.1% 13.1% ±4.6% 10.4% ±1.9% 9.3% ±0.5%
System CGRTA 0% — 0% — 0% — 0% —
software Subtotal 13.7% ±2.1% 13.1% ±4.6% 10.4% ±1.9% 9.3% ±0.5%

Level 3 Double exec. — — 0% — — — 0% —
Application Checksum — — 0% — 0% — 0% —

level Subtotal — — 0% — 0% — 0% —
(b) Detection by the EDMs of the other unit (detail of “Other unit” entry in Ta-

ble (a) above)
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comparison with the heavy-ion radiation and EMI techniques, and
• the duration of each fault was randomly chosen in the [1µs, 10µs] range.

Since the forcing technique was used, the pins of all ICs connected to the same signal line
(equipotential line) as a fault injected pin were affected by the fault as well (see
Section 3.2). To simplify access to the pins of either the application unit CPU or the com-
munication unit CPU of the tested node, buffer ICs connected to the CPUs were selected
as target ICs.

Table 7 shows the results of pin-level fault injection when all NMI EDMs were deacti-
vated, and Table 8 shows the results obtained when all NMIs were activated.

 Table 7: Results of pin-level injection without activated NMI EDMs

The hardware EDMs dominate the detections made when using pin-forcing. The percent-
age of errors detected by NMI mechanisms is exceptionally large (about 75%) when the
NMI EDMs were activated, while most detections were made by the CPU mechanisms or
OS mechanisms (about 40% each) when the NMIs were deactivated (except for the
NOAMNa combination for which the OS mechanisms dominate entirely). More UEEs
were triggered when faults were injected into the communication unit than when the
application unit was fault injected. For the CPU mechanisms, the reverse was observed,
i.e., fewer CPU EDMs were triggered when faults were injected into the communication
unit than when the application unit was fault-injected.

Error ICs belonging to the application unit
Detection NOAMNa SEMCNa DEMCNa

Mechanisms % (95% conf.) % (95% conf.) % (95% conf.)
Level 1 CPU 28.3% ±3.3% 41.2% ±4.0% 43.3% ±6.4%

Hardware UEE 4.2% ±1.5% 4.9% ±1.8% 6.5% ±3.2%
Subtotal 32.5% ±3.4% 46.1% ±4.1% 49.8% ±6.4%

Level 2 OS 51.2% ±3.7% 37.7% ±4.0% 35.9% ±6.2%
System CGRTA 1.8% ±1.0% 0% — 0% —
software Subtotal 53.0% ±3.7% 37.7% ±4.0% 35.9% ±6.2%
Level 3 Double exec. — — — — 0% —

Application Checksum — — 2.5% ±1.3% 3.5% ±2.4%
level Subtotal — — 2.5% ±1.3% 3.5% ±2.4%
Other Other unit 3.3% ±1.3% 2.6% ±1.3% 0% —

No error info. 10.6% ±2.3% 10.7% ±2.5% 10.8% ±4.0%
Subtotal 13.9% ±2.5% 13.4% ±2.8% 10.8% ±4.0%

Fail-silence violations 0.6% ±0.5% 0.4% ±0.5% 0% —
Total no. of errors 717 568 231

(a) Detection by the EDMs of the unit to which the faulted ICs be-
long

Error ICs belonging to the application unit
Detection NOAMNa SEMCNa DEMCNa

Mechanisms % (95% conf.) % (95% conf.) % (95% conf.)
Level 1 CPU 0.7% ±0.6% 0.2% ±0.3% 0% —

Hardware UEE 0.7% ±0.6% 1.1% ±0.8% 0% —
Subtotal 1.4% ±0.9% 1.2% ±0.9% 0% —

Level 2 OS 1.8% ±1.0% 1.4% ±1.0% 0% —
System CGRTA 0.1% ±0.3% 0% — 0% —
software Subtotal 2.0% ±1.0% 1.4% ±1.0% 0% —
Level 3 Double exec. — — — — 0% —

Application Checksum — — 0% — 0% —
level Subtotal — — 0% — 0% —

(b) Detection by the EDMs of the other unit (detail of “Other
unit” entry in Table (a) above)
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For software EDMs, the detections made by the operating system EDMs dominate (from
4% when NMIs were used up to 50% when the NMIs were switched off).

For the application level EDMs, only detections made by message checksum EDMs were
made, as no double execution EDMs were triggered at all.

The percentage of fail-silence violations was observed to be as large as 0.6% when no
NMIs were used and was never greater than 0.2% when the NMIs were activated. No fail-
silence violations were observed when all the EDMs were activated (DEMCa and
DEMCc combinations). In fact, no fail-silence violations were observed in any case when
all the application level EDMs were activated, i.e. even for the DEMCNa combination,
although the statistical material for this combination is quite small (only 231 errors col-
lected).

When NMIs were used, the supplementary detections made by the fault free unit of the
tested node are dominated by NMI error detections, while the OS error detections domi-
nate when the NMIs were deactivated. A greater number of CPU detections and UEEs
occurred in the latter case as well.

 Table 8: Results of pin-level injection with activated NMI EDMs

Error ICs belonging to the application unit ICs belonging to the communication unit
Detection NOAMa SEMCa DEMCa NOAMc SEMCc DEMCc

Mechanisms % (95% conf.) % (95% conf.) % (95% conf.) % (95% conf.) % (95% conf.) % (95% conf.)
Level 1 CPU 6.5% ±1.5% 4.6% ±1.3% 4.1% ±1.2% 3.5% ±1.1% 3.6% ±1.1% 1.7% ±0.7%

Hardware UEE 5.8% ±1.4% 7.8% ±1.7% 6.2% ±1.5% 10.5% ±1.8% 9.0% ±1.8% 10.5% ±1.8%
NMI 77.0% ±2.5% 75.6% ±2.7% 78.1% ±2.6% 74.0% ±2.6% 75.6% ±2.6% 73.8% ±2.5%

Subtotal 89.3% ±1.8% 88.0% ±2.0% 88.4% ±2.0% 87.9% ±1.9% 88.1% ±2.0% 86.1% ±2.0%
Level 2 OS 4.1% ±1.2% 4.7% ±1.3% 4.6% ±1.3% 3.9% ±1.1% 4.0% ±1.2% 4.7% ±1.2%
System CGRTA 0.5% ±0.4% 0.1% ±0.2% 0% — 0% — 0% — 0% —
software Subtotal 4.6% ±1.2% 4.8% ±1.4% 4.6% ±1.3% 3.9% ±1.1% 4.0% ±0.4% 4.7% ±1.2%
Level 3 Double exec. — — — — 0% — — — — — 0% —

Application Checksum — — 0.6% ±0.5% 0.6% ±0.5% — — 0.4% ±0.4% 0.4% ±0.4%
level Subtotal — — 0.6% ±0.5% 0.6% ±0.5% — — 0.4% ±0.4% 0.4% ±0.4%
Other Other unit 0.4% ±0.4% 0.7% ±0.5% 0.4% ±0.4% 2.1% ±0.8% 1.6% ±0.8% 2.2% ±0.9%

No error info. 5.6% ±1.4% 5.6% ±1.4% 6.0% ±1.5% 6.0% ±1.4% 5.7% ±1.4% 6.5% ±1.4%
Subtotal 6.0% ±1.4% 6.3% ±1.5% 6.4% ±1.5% 8.1% ±1.6% 7.3% ±1.6% 8.8% ±1.6%

Fail-silence violations 0.1% ±0.2% 0.2% ±0.3% 0% — 0.1% ±0.2% 0.2% ±0.3% 0% —
Total no. of errors 1102 970 999 1099 1012 1162

(a) Detection by the EDMs of the unit to which the faulted ICs belong
Error ICs belonging to the application unit ICs belonging to the communication unit

Detection NOAMa SEMCa DEMCa NOAMc SEMCc DEMCc
Mechanisms % (95% conf.) % (95% conf.) % (95% conf.) % (95% conf.) % (95% conf.) % (95% conf.)

Level 1 CPU 0% — 0% — 0% — 0% — 0% — 0% —
Hardware UEE 0% — 0% — 0.2% ±0.3% 0% — 0% — 0.2% ±0.2%

NMI 0.4% ±0.4% 0.5% ±0.5% 0.2% ±0.3% 2.1% ±0.8% 1.6% ±0.8% 2.1% ±0.8%
Subtotal 0.4% ±0.4% 0.5% ±0.5% 0.4% ±0.4% 2.1% ±0.8% 1.6% ±0.8% 2.2% ±0.9%

Level 2 OS 0% — 0.2% ±0.3% 0% — 0% — 0% — 0% —
System CGRTA 0% — 0% — 0% — 0% — 0% — 0% —
software Subtotal 0% — 0.2% — 0% — 0% — 0% — 0% —
Level 3 Double exec. — — — — 0% — — — — — 0% —

Application Checksum — — 0% — 0% — — — 0% — 0% —
level Subtotal — — 0% — 0% — — — 0% — 0% —

(b) Detection by the EDMs of the other unit (detail of “Other unit” entry in Table (a) above)
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5.5 Results of EMI

Several fault injection campaigns using the two alternatives for EMI fault injection
described in Section 3.3 were carried out. Table 9 shows the results obtained in the most
informative campaigns, when the alternatives using antenna wires were applied. When the
probe technique was applied without antennas, the spread in the detections among the
error detection mechanisms was very low, suggesting further refinement of the technique
as it is clearly not useful for validating fault-tolerant computer systems. (Almost no other
mechanisms other than spurious interrupts and unexpected exceptions were triggered
using this alternative.) All the campaigns shown in Table 9 were conducted using activated
NMIs.

The first campaign in Table 9 (NOAMa) used the two conducting plates with a burst fre-
quency of 2.5 kHz, negative burst polarity, and a voltage of 230 V. The antenna wires were
mounted on thelow-EPROM (i.e. the EPROM containing the eight least significant bits
of each 16 bit code or data word) of the application unit, thus disturbing the address bus
and the eight least significant bits of the data bus. The second campaign (NOAMc) used
the same EMI conditions as the first, but the antenna wires were instead connected to the
low-EPROM of the communication unit. The SEMCa campaign used the probe with
bursts characterized by a frequency of 10 kHz, negative polarity and a voltage of 300 V.
Wires were connected to the low-EPROM of the application unit. The DEMCa(1) cam-
paign used plates with antennas mounted on the low-EPROM of the application unit. The
frequency of the EMI burst was 2.5 kHz, positive polarity was used and the voltage was
300 V. The DEMCa(2) campaign used the two plates with EMI bursts of 2.5 kHz fre-
quency, negative polarity and a voltage of 230 V. The wires were connected to the low-
EPROM of the application unit.

The first two campaigns in Table 9 were made with an early version of the experimental
set-up, where no supplementary detections by the other fault free unit of the tested node
were collected. This explains the large amount of errors without error information for
these two campaigns.

The hardware EDMs dominate for all combinations except for the DEMCa(2) campaign
which shows a radically different distribution dominated by OS EDMs. This demonstrates
the difficulties in statistically reproducing results when this technique is used. Even when
the same EMI conditions were used as in the NOAMa and NOAMc campaigns, the results
are very dissimilar. Whether this has to do with the distance between the plates and the
computer board, the orientation of the plates compared with the computer board or
antenna wires, synchronization with the system activity, or any other parameters that must
be taken into account remains to be addressed by further study. The DEMCa(2) campaign
shows, however, that no fail-silence violations occurred when all EDMs were activated
and as many as 6093 errors were observed.
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 Table 9: Results of EMI

Among the hardware EDMs, the CPU mechanisms strongly dominate (about 75% in most
cases) followed by a much smaller amount of NMI EDMs (about 5%). Some UEEs were
also observed in all campaigns.

The OS EDMs dominate for the software level mechanisms and the message checksum
EDMs dominate for the application level mechanisms. Most of the errors detected by the
OS EDMs in the DEMCa(2) campaign indicate that a message that was required by the
application was lost.

The percentage of fail-silence violations was 1.3% for the NOAMa combination, 1.2% for
the SEMCa (note however the large uncertainty in this figure as it is based on only 252
errors, i.e. the confidence interval is±1.3%) and 0% for the DEMCa combinations (7606
errors were observed totally for this combination). There were never any significant dif-
ferences regarding the percentage of fail-silence violations between the cases when the
application unit was fault-injected (NOAMa), and when the fault injection was focused on
the communication unit (NOAMc).

The supplementary detections delivered by the other fault free unit of the tested node were
made by NMI and OS error detection mechanisms only.

Error fault-injection with antennas
Detection NOAMa NOAMc SEMCa DEMCa(1) DEMCa(2)

Mechanisms % (95% conf.) % (95% conf.) % (95% conf.) % (95% conf.) % (95% conf.)
Level 1 CPU 76.4% ±2.1% 72.0% ±2.2% 76.6% ±5.2% 76.2% ±2.1% 2.2% ±0.4%

Hardware UEE 0.7% ±0.4% 0.7% ±0.4% 3.2% ±2.2% 1.1% ±0.5% 0.2% ±0.1%
NMI 3.1% ±0.9% 2.9% ±0.8% 7.1% ±3.2% 4.2% ±1.0% 11.4% ±0.8%

Subtotal 80.2% ±2.0% 75.6% ±2.1% 86.9% ±4.2% 81.5% ±2.0% 13.8% ±0.9%
Level 2 OS 7.8% ±1.3% 6.6% ±1.2% 2.0% ±1.7% 5.8% ±1.2% 85.6% ±0.9%
System CGRTA 0.3% ±0.3% 0.3% ±0.3% 0% — 0.1% ±0.1% <0.1% ±0.0%
software Subtotal 8.1% ±1.4% 6.9% ±1.2% 2.0% ±1.7% 5.9% ±1.2% 85.6% ±0.9%
Level 3 Double exec. — — — — — — 1.7% ±0.6% 0.2% ±0.1%

Application Checksum — — — — 0.4% ±0.8% 3.2% ±0.9% 0.1% ±0.1%
level Subtotal — — — — 0.4% ±0.8% 4.8% ±1.1% 0.3% ±0.1%
Other Other unit — — — — 9.5% ±3.6% 6.1% ±1.2% 0.1% ±0.1%

No error info. 10.3% ±1.5% 16.3% ±1.8% 0% — 1.7% ±0.6% 0.2% ±0.1%
Subtotal 10.3% ±1.5% 16.3% ±1.8% 9.5% ±3.6% 7.8% ±1.4% 0.3% ±0.1%

Fail-silence violations 1.3% ±0.6% 1.2% ±0.5% 1.2% ±1.3% 0% — 0% —
Total number of errors 1549 1660 252 1513 6093

(a) Detection by the EDMs of the unit to which the faulted ICs belong
Error fault-injection with antennas

Detection NOAMa NOAMc SEMCa DEMCa(1) DEMCa(2)
Mechanisms % (95% conf.) % (95% conf.) % (95% conf.) % (95% conf.) % (95% conf.)

Level 1 CPU — — — — 0% — 0% — 0% —
Hardware UEE — — — — 0% — 0% — 0% —

NMI — — — — 0% — 4.0% ±1.0% 0.1% ±0.1%
Subtotal — — — — 0% — 4.0% ±1.0% 0.1% ±0.1%

Level 2 OS — — — — 9.5% ±3.6% 2.1% ±0.7% 0% —
System CGRTA — — — — 0% — 0% — 0% —
software Subtotal — — — — 9.5% ±3.6% 2.1% ±0.7% 0% —
Level 3 Double exec. — — — — — — 0% — 0% —

Application Checksum — — — — 0% — 0% — 0% —
level Subtotal — — — — 0% — 0% — 0% —

(b) Detection by the EDMs of the other unit (detail of “Other unit” entry in Table (a) above)
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6 Detailed Analysis of Experimental Results

The results presented in Chapter 5 are analysed in detail in this chapter, in which the three
fault injection techniques are compared by studying the error detections made for each
technique.

6.1 Comparison of Results

Chapter 5 showed that the hardware EDMs detected most of the errors for all fault injec-
tion campaigns, except for the EMI DEMCa(2) campaign in which the OS EDMs domi-
nated. However, this campaign differs so radically from all other campaigns that it will
not be included in the comparison in order to simplify the discussion.

The main difference between the fault injection techniques, when looking at the hardware
EDMs, is that the CPU EDMs dominate for the heavy-ion radiation and EMI techniques,
while the NMI EDMs dominate for the pin-level technique. A closer examination of the
results (e.g. see Section 6.4) shows that heavy-ion radiation exercised seven of the eight
CPU EDMs, while pin-forcing exercised six and EMI five of the CPU EDMs. The corre-
sponding figures for the NMI EDMs are 12, 16 and 9, respectively. This indicates that the
pin-forcing technique may be more effective than the other techniques in exercising hard-
ware EDMs located outside the fault injected IC, while the heavy-ion technique may be
more effective in exercising mechanisms within the fault injected IC. The percentage of
UEEs is fairly large when using heavy-ion radiation (about 10% to 15%) and pin-forcing
(about 5% to 10%), but quite small when using EMI (never larger than 3.2%).

The software EDMs detected the second largest amount of errors for all techniques. Here
the OS EDMs strongly dominate. This domination is larger for the pin-forcing and EMI
techniques than for the heavy-ion radiation technique, but it is difficult to speculate on
why the difference exist due to the lack of observability in the experiments.

While the application level EDMs detected the smallest amount of errors for all tech-
niques, they were nevertheless necessary since the fail-silence coverage was significantly
reduced when these were disabled. Here the message checksum EDMs dominate for all
techniques. The double execution mechanism was never exercised by the pin-forcing
technique.

The results also show that the heavy-ion radiation technique stressed the system the most
as it caused the most fail-silence violations of all techniques. This technique also gener-
ated the largest error set, as indicated by the spread of the error detections among the
EDMs. The spread of the error detections among the categories given in Section 5.2 is
larger for the EMI technique than for the pin-forcing technique, but a more detailed com-
parison (see Sections 6.2 and 6.4) shows that the pin-forcing technique achieved a larger
spread of the error detections among the specific EDMs within the exercised categories.
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 Figure 14: Results obtained using NOAM combinations

 Figure 15: Results obtained using DEMC combinations
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A summary of a representative selection of results is given in Figures 14 and 15, where
the differences between the techniques are clearly seen. Both figures show the observed
distributions of the error detections among the error detection mechanisms for all the cat-
egories given in Section 5.2. Figure 14 shows the results obtained using each technique
when the application level EDMs were deactivated (i.e. the NOAM combinations), and
Figure 15 shows the corresponding results when all the EDMs were activated (i.e. the
DEMC combinations). The acronyms on the left side of the diagrams indicate which fault
injection technique was used: HI in the case of the heavy-ion radiation technique, PF
where pin-level fault injection using forcing was used and EMI for the EMI technique
using antenna wires and conducting plates. An ‘-A’ after the acronym indicates that the
fault injection was focused on the application unit CPU, and a ‘-C’ that the fault injection
was focused on the communication unit CPU. The figures show that the CPU EDMs and
OS EDMs always dominate more on the application unit than on the communication unit.
While the primary reason for these differences may be that the workload is quite different
between the two units, the hardware dissimilarities between the units may also add to the
differences. Note, however, that the differences between thetechniques are much greater
than the differences that exist between the two units when looking at asingle fault injec-
tion technique.

6.2 Detailed Comparison

The distribution of the errors among the various EDMs for the three physical fault injec-
tion techniques are described in detail and compared in this section. The combinations
considered are DEMCa in the case of heavy-ion radiation, pin-forcing and EMI, and
DEMCc in the case of heavy-ion radiation and pin-forcing.

The DEMC combinations were chosen because they represent a fully equipped MARS
set-up. For EMI, the DEMCa(1) combination was chosen rather than the DEMCa(2) com-
bination, since the results obtained using DEMCa(2) were so radically different from the
other EMI combinations. The numbers of errors collected were 9036, 999 and 1531 for
the heavy-ion radiation, pin-forcing and EMI DEMCa campaigns, respectively, and were
2437 and 1162 for the heavy-ion radiation and pin-forcing DEMCc campaigns, respec-
tively.

The results obtained from these campaigns are shown in diagrams where the bars indicate
the observed relative frequency of errors detected by the EDM out of the total number of
observed errors in each campaign. The symbolsX,O and∆ indicate that the percentage of
detections made by the heavy-ion radiation, pin-forcing and EMI techniques, respectively,
for this particular EDM, was very low and therefore hard to visualize in the diagrams.

6.2.1 Distribution of Errors Among CPU EDMs

Figure 15 shows the distribution of the errors among the eight CPU EDMs for the DEMCa
campaigns (left) and DEMCc campaigns (right).
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 Figure 16: Distribution of errors among the CPU EDMs

The ”Bus error”, “Address error” and “Illegal instruction” EDMs dominate for all tech-
niques. This is not surprising since the address and data buses are used frequently and are
connected to the majority of the pins of the CPU. Among the other CPU EDMs, only
“Spurious interrupts” occurred with any major frequency (for the heavy-ion radiation
technique).

No major differences between the DEMCa and DEMCc combinations exist for the heavy-
ion radiation technique, except for a lower number of “Bus errors” for DEMCc. For the
pin-forcing technique, the amounts of “Bus errors”, “Address errors” and “Illegal instruc-
tions” are reversed between the DEMCa and DEMCc combinations so that the distribu-
tion for the DEMCc combination is similar to the heavy-ion distribution.

Heavy-ion radiation exercised the most CPU EDMs (six different kinds), followed by pin-
forcing (five) and EMI (three).

6.2.2 Distribution of Errors Among NMI EDMs

The distribution of the errors among the 16 NMI EDMs is shown in Figure 17. On some
rare occasions, the experimental set-up did not deliver any information about which spe-
cific NMI mechanism detected the error, just that an NMI had been activated. These cases
have been categorized as “Unknown” in the diagrams. These error reports may have been
caused by some internal mechanism activating the NMI line of the processor (or “spikes”
in the NMI line), i.e. no NMI hardware was involved since the input latches described in
Section 2.5.1 must have been unaffected.
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The letters ‘A’ and ‘C’ before the name of each EDM denote whether the EDM is built
into the application unit or communication unit of the tested node.

When two or more NMI EDMs were triggered at the same time (see Section 2.5.1), the
effect from each triggered NMI EDM has been added equally to the proportions shown in
the diagrams, i.e. the amount added was obtained by dividing the effect of one error with
the number of NMI EDMs that were triggered for this error. E.g. if the NMIs that were
triggered for an error were “A Memory Fault” and “A Parity Error” (i.e. two NMIs were
triggered for one error), the “A Memory Fault” and “A Parity Error” NMIs counted as 0.5
errors each.

The most common NMI error detections are “Parity errors” and “Memory faults”. “Parity
errors” dominate for pin-forcing, while “Memory faults” dominate for heavy-ion radia-
tion and EMI. (The reason for this may lie in the choice of circuits used for pin-forcing.)
A fair amount of “Internal FIFO empty” errors occurred for all techniques as well.

For pin-forcing and heavy-ion radiation, the Time Slice Controller, which prevents access
to the MARS bus at an illegal point in time, detected several errors. These are the “Illegal
access to bus 0” and “Illegal access to bus 1” NMIs. For DEMCa, these mechanisms
detected 0.1% of all errors for the heavy-ion radiation technique and 10.27% for pin-forc-
ing. For DEMCc, the corresponding figures are 5.04% and 12.46%. Without this mecha-
nism, the fail-silence property would have been violated in the time domain, which could
have lead to a system failure. No such fail-silence violations were observed in any of these
campaigns.

The differences between the two units are more apparent for the NMI EDMs than for the
CPU EDMs. When comparing the DEMCa and DEMCc campaigns, both heavy-ion radi-
ation and pin-forcing show fairly different distributions. These differences are also appar-
ent even when the fact that more NMI EDMs should belong to the fault injected unit is
considered. Memory faults more than doubled for the DEMCc campaign when heavy-ion
radiation was used. For pin-forcing, the amounts of “A Parity errors” and “C Parity errors”
are similar for the DEMCa campaign, while the number of “A Parity errors” is nearly three
times that of “C Parity errors” for the DEMCc campaign. The different workload running
at each unit may be the primary cause of these differences, but some part may be due to
the dissimilarities in hardware that exist between the units.

Pin-forcing managed to exercise all 16 NMI EDMs, while the corresponding figures for
the heavy-ion radiation and EMI techniques are 11 and four, respectively, for the two cam-
paigns considered here.
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 Figure 17: Distribution of errors among NMI EDMs
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6.2.3 Distribution of Errors Among System Software EDMs

The system software EDMs have been grouped into the following nine categories as
shown in Figure 18 (the total number of system software EDMs is 263):

The CGRTA mechanisms:

• Value range overflow: “Range check failed (CHK)”, “Arithmetic over-
flow”, “Range check failed (TRAPV)”and “Over-
flow of 32-bit multiplication”.

• Loop iteration bound overflow: “Iteration bound exceeded”.

EDMs built into the operating system:

• Processing time overflow: “Processing time overflow”.
• Various checks on OS data: “Internal FIFO empty” (4 EDMs) and “Other OS

checks” (79 EDMs).
• Various assertions in the OS: “Failed assertions” (169 EDMs).

 Figure 18: Distribution of errors among system software EDMs

The “Internal FIFO empty” mechanism is by far the most dominant system software
mechanism for all techniques. This mechanism is activated when one of the units of the
node tries to read a message which has not been delivered by the other unit, e.g. when the
other unit has failed. This error was often reported by the fault free unit of the tested node
when the fault-injected unit failed to report any other error information. Among the
CGRTA EDMs, the “Range check failed (TRAPV)” mechanism dominates. It was exer-
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cised by both heavy-ion radiation and EMI, while no CGRTA mechanisms at all were
exercised by pin-forcing. The proportion of CGRTAs is much lower than the OS EDMs
for both the heavy-ion radiation and EMI techniques.

Some differences between the DEMCa and DEMCc campaigns can be seen. Fewer
“Failed assertions” were observed for heavy-ion radiation for the DEMCc combination,
while the reverse is true for pin-forcing. The amount of “Processing time overflow” EDMs
nearly tripled for heavy-ion radiation for the DEMCc combination. No “Overflow of 32-
bit multiplications” were observed for the DEMCc campaigns.

Heavy-ion radiation managed to exercise mechanisms of all nine categories, while pin-
forcing and EMI exercised mechanisms of only three categories each.

6.2.4 Distribution of Errors Among Other Mechanisms

Figure 19 shows the distribution of the errors not included in Sections 6.2.1-6.2.3. For
heavy-ion radiation and pin-forcing, the “Unexpected exceptions” clearly dominate and
for EMI, the “Message checksum errors” had been exercised the most. No “Double exe-
cution errors” at all were exercised by pin-forcing.

All techniques caused a substantial amount of errors lacking any error information (the
“No error information” category). Fail-silence violations were observed only for the
heavy-ion radiation technique.

 Figure 19: Distribution of errors among other mechanisms
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No major differences exist between the DEMCa and DEMCc campaigns except that the
percentage of “No error information” errors is substantially lower for DEMCc when using
heavy-ion radiation.

The heavy-ion radiation technique was the only technique that caused any fail-silence vio-
lations when the DEMC combination was used (0.5% for DEMCa). No fail-silence vio-
lations occurred in the DEMCc campaigns.

6.3 Fail-Silence Violations Observed

The most important feature of the MARS system studied here, namely the fail-silence
property of a MARS node, is analysed in this section. Figure 20 shows the percentage of
fail-silence violations when fault injection was focused on the application unit CPU (left)
and communication unit CPU (right) for the NOAM, SEMC and DEMC combinations.
The absence of a bar indicate that no fail-silence violations were observed for this combi-
nation.

 Figure 20: Fail-silence violations observed

The results show that the application unit is a great deal more sensitive to faults than the
communication unit, as more fail-silence violations occurred when fault injecting the
application unit (at least when the fault injection is focused to the CPUs). This can be
explained by the fact that the result is being produced by the application unit and is merely
transferred to the MARS bus by the communication unit. The amount of time spent on
manipulation of vulnerable data by the fault injected IC will, of course, affect the proba-
bility of the data being erroneous, i.e. the activity of the system has a high impact on the
coverage factor.

The percentage of fail-silence violations was largest for heavy-ion radiation. Several fail-
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silence violations also occurred for the EMI technique, while the pin-forcing technique
produced substantially fewer fail-silence violations.

When all EDMs were used (DEMC), the percentage of fail-silence violations was small-
est. Only the heavy-ion radiation technique managed to cause fail-silence violations for
this combination (0.5% for the DEMCa combination). The percentage of fail-silence vio-
lations was largest when no application level EDMs were used (NOAM), except for pin-
forcing, which shows a slight overrepresentation of fail-silence violations for the SEMC
combination (it should be noted, however, that the confidence intervals are relatively large
for pin-forcing due to the relatively low number of errors collected).

Figure 21 shows the percentage of fail-silence violations observed for pin-forcing and
heavy-ion radiation for all combinations when the application unit was fault-injected.

 Figure 21: Fail-silence violations on the application unit

The results show that the application level EDMs were more efficient for improving the
fail-silence coverage than the NMI mechanisms, as more fail-silence violations were
observed when switching off the application level EDMs than when the NMIs were deac-
tivated. This can be seen when comparing the DEMCNa and NOAMa combinations with
the DEMCa combinations for each technique.

The anomaly discussed in Section 5.3 can also be clearly seen in Figure 21. Fewer fail-
silence violations were observed when the NMIs were deactivated than when they were
activated for the heavy-ion radiation technique. For pin-forcing, however, the MARS node
behave as expected, i.e. there were more fail-silence violations when more EDMs were
switched off. The reason for the anomaly may lie in the design of the heavy-ion radiation
technique, as the campaigns for all combinations with the NMIs switched off were gener-
ally conducted after the other campaigns, when the target IC had been exposed to heavy-
ion radiation longer (i.e. the IC was more contaminated), the pressure in the miniature
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vacuum chamber was generally higher (i.e. the chamber had not been vacuum-pumped
recently), and the same anomalous Cf-252 source had been used longer (i.e. the activity
of the source was lower and its energy spectrum may have been different since it was
either badly manufactured or had accidentally been touched, see Section 5.3). The amount
of fail-silence violations observed in the campaigns made using a new sample of the irra-
diated CPU, but the same Cf-252 source, was lower than one half of that observed in the
original campaigns (see Section 5.3). Whether this was caused by differences in the
energy spectrum and activity of the Cf-252 source or by the change of target CPU,
remains to be investigated. Clearly, more research is needed to examine the heavy-ion
radiation technique further concerning these parameters.

6.4 Error Detection Mechanisms Exercised

Table 10 summarizes the detections made for each technique when fault injecting the
application unit (left side of the table) and communication unit (right side). AnX in the
table cell indicates that one or more detections were made by the EDM for the technique
considered. This summary is based on all campaigns made for heavy-ion radiation and
pin-forcing, and most of the campaigns made for EMI (on the application unit only).

Heavy-ion radiation managed to exercise seven CPU mechanisms (all CPU mechanisms
except the “Uninitialized vector interrupt”), while pin-forcing managed six mechanisms
and EMI five mechanisms. No major differences exist between the application unit and
communication unit. Fewer types of CPU EDMs were exercised by pin-forcing on the
communication unit than on the application unit, but this can be explained by the fact that
fewer errors were collected on the communication unit.

Pin-forcing managed to exercise all 16 NMI mechanisms, while heavy-ion radiation man-
aged to exercise 12 mechanisms and EMI 9 mechanisms. The differences between the two
units are most prominent for the heavy-ion radiation technique, which clearly shows that
the NMI EDMs belonging to the fault injected unit were exercised more than the NMI
EDMs belonging to the fault free unit. For pin-forcing, the errors propagated to the fault
free unit more easily, as there is no visible correspondence between which NMI EDMs
were exercised and the unit that was fault-injected.

All fault injection techniques managed to exercise the TSC EDMs (the “Illegal access to
bus 0” and “Illegal access to bus 1” EDMs), and no fail-silence violations were observed
in the time domain in any of the campaigns when these NMI EDMs were activated. This
indicates that the TSC actively prevents fail-silence violations in the time domain.

All hardware mechanisms were exercised by at least one of the techniques.

The system software EDMs have been grouped into the categories described in Section
6.2.3. The heavy-ion radiation managed to exercise EDMs in all of the nine categories,
while pin-forcing managed five and EMI three. A look at the results in more detail reveals
that 44 of the 263 system software EDMs were exercised by heavy-ion radiation, while
16 mechanisms were exercised by pin-forcing and seven by EMI. The mechanisms that
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were not exercised by any technique were mainly scheduling errors (except “Processing
time overflow”) and failed assertions in the protocol software.

Pin-forcing is the only technique that was unable to exercise any “Double execution
errors”. All techniques triggered a substantial amount of “Unexpected exceptions” and
“No error information” errors. These are errors that the MARS node designers had not
anticipated. The MARS node also managed to deliver incorrect results for many of the
combinations considered in Section 5.1, according to each physical fault injection tech-
nique, as indicated by the number of fail-silence violations obtained.
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 Table 10: Error detection mechanisms exercised

HI-A PF-A EMI-A HI-C PF-C

CPU Error Detection Mechanisms

Bus error X X X X X

Address error X X X X X

Illegal instruction X X X X X

Zero divide X X X

Privilege violation X X X

Format error X X

Uninitialized vector interrupt X

Spurious interrupt X X X X X

NMI Error Detection Mechanisms

A
pp

lic
at

io
n 

un
it

External FIFO parity error X X

Parity error X X X X X

Internal FIFO overflow X X X X

External FIFO overflow X X X

Memory fault X X X X X

Error of external device X

Internal FIFO empty X X X X X

External FIFO empty X X X

C
om

m
un

ic
at

io
n 

un
it

Power failure X X

Parity error X X X X

Internal FIFO overflow X X X X

Memory fault X X X X

Illegal access to bus 0 X X X X

Illegal access to bus 1 X X X X

Error of external device X X

Internal FIFO empty X X X X X

System Software Error Detection Mechanisms

Range check failed (CHK) X X

Arithmetic overflow X X

Iteration bound exceeded X X

Range check failed (TRAPV) X X X X

Overflow of 32-bit multiplication X

Processing time overflow X X X

Failed assertion X X X X

Internal FIFO empty X X X X X

Other OS checks X X X X X

Other Error Detection Mechanisms

Double execution error X X X

Message checksum error X X X X X

Unexpected exceptions X X X X X

No error information X X X X X

Fail-silence violations X X X X X

Total number of errors 32008 4587 25483 13885 3273
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7 Conclusions

Three physical fault injection techniques—heavy-ion radiation, pin-forcing, and EMI—
were applied on the fault-tolerant, distributed, real-time system MARS in a unique study
aimed at comparing the techniques and validating the MARS system.

The techniques were compared both in a general manner in which they were compared
according to five attributes (controllability, flexibility, repeatability, physical reachability
and timing measurement) and by fault injection experiments using the same MARS sys-
tem set-up at three different sites with a different fault injection technique applied at each
site.

The general comparison of the fault injection techniques shows that pin-level and EMI
fault injection are more flexible than the heavy-ion radiation technique. The pin-level
technique has a much higher controllability than both the heavy-ion radiation and EMI
techniques, although the heavy-ion radiation technique has the unique feature of being
able to inject faults internally in integrated circuits. Only pin-level fault injection has a
high ability to acquire timing information about monitored events (e.g. measuring the
error detection latency) of the three techniques used in the study.

The results of the fault injection experiments show fairly large differences in the distribu-
tion of the error detections among the various EDMs for the three physical fault injection
techniques. This suggests that the techniques are somewhat complementary, i.e. they gen-
erate fairly different error sets. The pin-forcing technique most exercised the hardware
EDMs located outside the CPU, while the heavy-ion radiation and EMI techniques appear
to be more suitable for exercising application level EDMs. The only technique that exer-
cised a fairly diverse set of system software EDMs was heavy-ion radiation. This tech-
nique also stressed the system most, as it caused the most fail-silence violations, and it
was the only technique that caused any fail-silence violations when all EDMs were acti-
vated in the MARS system. The heavy-ion radiation technique also showed the largest
spread in the detections among the EDMs, and was the most effective technique in exer-
cising mechanisms located within the fault-injected CPU. The errors detectable by NMI
EDMs propagated between the two units of the tested node most easily using the pin-forc-
ing technique.

Some difficulties were encountered for each technique. For the heavy-ion radiation tech-
nique anomalous results were obtained when comparing the number of fail-silence viola-
tions observed in campaigns with and without activated NMI EDMs. For pin-forcing,
there was comparatively low stress on the tested node as well as very few system software
and application level EDMs exercised and, for EMI, severe difficulties in statistically
reproducing the results were encountered.

All techniques managed to cause a substantial proportion of errors that the MARS design-
ers had not anticipated (i.e. “No error information” and UEE errors) and were particularly
effective in exercising hardware EDMs (all hardware EDMs built into the MARS node
were exercised). Several system software EDMs were not exercised by any of the tech-
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niques. Future research using software-implemented fault injection (SWIFI) and other
types of fault injection methods will show the validity of using these mechanisms.

The hardware EDMs detected most of the errors generated by the three fault injection
techniques. This may be due to the nature of the techniques, i.e. they all affect the hard-
ware directly.

The results also show that the application level EDMs are necessary for improving fail-
silence coverage. Fail-silence violations were observed for all three techniques when the
application level EDMs were not used, and were observed for heavy-ion radiation only—
and in much lower quantities—when these EDMs were used. They were also among the
most effective EDMs for improving fail-silence coverage. This is particularly noticeable
when comparing the results for the combinations in which only the NMI EDMs were
deactivated with the combinations in which only the application level EDMs were deac-
tivated. More fail-silence violations were observed when the application level EDMs were
deactivated than when the NMI EDMs were deactivated.

The Time Slice Controller was very effective in preventing fail-silence violations in the
time domain. No such fail-silence violations were observed when this mechanism was
used. When it was switched off, three possible fail-silence violations in the time domain
were observed (for the NOAMNc combination using heavy-ion radiation).

The activity of the system was also shown to have a large impact on the fail-silence cov-
erage, as more fail-silence violations always occurred when fault injecting the application
unit than when the communication unit was fault injected. One explanation for this behav-
iour is that the result is produced by the application unit and is merely transferred to the
MARS bus by the communication unit. The amount of time spent on manipulating vul-
nerable data by the fault injected ICs affects the probability of that data being erroneous.
The hardware differences between the units may also have contributed the fail-silence
coverage figures.

Some other effects on how the differences between the units impacted the coverage of the
EDMs were shown. The CPU EDMs and OS EDMs dominate more on the application
unit than on the communication unit for all techniques. Several other differences between
the two units of the tested node exist when looking at each technique separately, particu-
larly among the NMI EDMs and system software EDMs.

The results point to several interesting questions that future research should attempt to
answer. What is the cause of the anomaly observed for heavy-ion radiation regarding the
higher percentage of fail-silence violations when the NMI EDMs were not activated than
when the NMIs were in use? Will another radiation source, showing a different energy
spectrum, yield different results? What is the impact of the pressure, temperature, radia-
tion and irradiation time on the heavy-ion radiation technique?

How do these techniques compare with e.g. SWIFI or fault injection via boundary and
internal scan chains? It is still not clear whether hardware-implemented fault injection
injects faults into a target system more closely representing the actual system than is the
case when SWIFI is used, but hardware-implemented fault injection does at least produce
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real hardware faults, similar to those that can occur in reality. A comparison between hard-
ware-implemented fault injection and SWIFI is currently being made, as experiments
using SWIFI have been conducted on a set-up similar to the one used in this study [Fuchs
1996].

The vital question of why fail-silence violations occurred for the heavy-ion radiation tech-
nique when all EDMs were activated in the MARS system could not be answered in this
study since the development of a set-up for increasing the observability using a logic ana-
lyser connected to a comparator card was unsuccessful. Also, reproducibility for EMI was
very low in these experiments. Is it possible to increase the reproducibility by further
refining the EMI probe technique? The questions of how much of the complete fault/activ-
ity space was exploited by each physical fault injection technique and the workload used,
and the overlap between the fault/activity subspaces created by these techniques and by
reality also remain largely unanswered.
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Appendix A: Acronyms used

ADF Application Definition File

CGRTA Compiler Generated Run-Time Assertion

CMOS Complementary Metal Oxide Semiconductor

CPU Central Processing Unit

CS Cold Start

CSU Clock Synchronization Unit

DEMC Double Execution Message Checksum

DEMCN Double Execution Message Checksum, No NMIs

DMA Direct Memory Access

DRAM Dynamic Random Access Memory

EDM Error Detection Mechanism

EMI ElectroMagnetic Interference

EPROM Erasable Programmable Read Only Memory

FIFO First In First Out

FTU Fault-Tolerant Unit

HI Heavy-Ion radiation

I2C Inter-Integrated Circuits

IC Integrated Circuit

LANCE Local Area Network Controller for Ethernet

LSI Large Scale Integration

MARS MAintainable Real-time System

ML Message Loss

MM Message Mismatch

MMU Memory Management Unit

MSI Medium Scale Integration

NMI Non-Maskable Interrupt

NOAM NO Application level Mechanisms

NOAMN NO Application level Mechanisms, No NMIs
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OS Operating System

PF Pin-Forcing

SEMC Single Execution Message Checksum

SEMCN Single Execution Message Checksum, No NMIs

SEU Single Event Upset

SF System Failure

SRAM Static Random Access Memory

SRU Smallest Replaceable Unit

SSI Small Scale Integration

SWIFI SoftWare Implemented Fault Injection

TDMA Time Division Multiple Access

TEMC Triple Execution Message Checksum

TSC Time Slice Controller

UART Universal Asynchronous Receiver Transmitter

UEE UnExpected Exception

VLSI Very Large Scale Integration

WS Warm Start


