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Extended Abstract

1 Introduction

It is well known that workload has significant impact on dependability measures obtained from fault

injection experiments [3][5]. The effects on the outcome of fault injection experiments when the

input data to be processed by the workload is altered, should also be considered [2]. To investigate

the effects of workload input domain on fault injection results (e.g. error coverage), an experimental

set-up using the FIMBUL tool [4] was employed. The problem of accurately estimating error cover-

age, if the effects of input domain are significant, could be solved by performing several fault injec-

tion campaigns using different input sequences. Since this would be very time consuming, a

methodology to speed up the process is presented. The methodology involves predicting error cover-

age for different input sequences based on fault injection experiments conducted using another input

sequence.

2 Experimental set-up

The target system for the fault injection experiments was the Thor microprocessor, a 32 bit stack ori-

ented RISC processor developed and sold by Saab Ericsson Space AB [6]. The Thor processor uses

several advanced error detection mechanisms for fault-tolerance and provides access to the internal

logic of the CPU via internal and boundary scan chains using a Test Access Port (TAP).
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The FIMBUL (Fault Injection and Monitoring using BUilt-in Logic) tool was chosen to conduct the

fault injection experiments on the Thor processor. FIMBUL is able to inject faults into the internal

logic of Thor via the scan chains, i.e., scan-chain implemented fault injection (SCIFI).

Three different workloads written in Ada were utilized. Two of the workloads are implementations of

the Quicksort and Shellsort algorithms, both sorting an array of 7 elements. The third is an imple-

mentation of an algorithm solving the Towers of Hanoi puzzle. The complexity of each workload

was about 1 KB of code executing for a few thousand clock cycles (depending on the input data

used).

Twenty-five permutations of the initial sort order of the same seven elements were used as input

sequences for the sort workloads and seven different tower configurations were used as the input

sequences for the Towers of Hanoi workload.

3 Results using varying input data

Almost 4000 single bit-flip faults were injected for each of the different input sequences using the

Quicksort workload. The injected faults were selected randomly by sampling the fault space using a

uniform sampling distribution. We define the fault space as the Cartesian product , where

L is the set of all fault locations (2250 internal state elements of Thor) andT the set of all time points

when faults can be injected (using a time resolution of one machine instruction).

Figure 1: Error non-coverage for Quicksort using different input sequences.
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The results show that error non-coverage, i.e. the percentage of the injected faults which cause wrong

results to be produced by the workload without being detected, can be estimated with a difference of

almost 6 percentage units (from 7.80% to 13.67%) if the input data for the workload is altered, see

Figure 1. Thus, workload input data can have a major impact on the results from fault injection cam-

paigns and must be considered.

Two possible reasons for the observed differences were investigated:

(i) Varying the input data will cause different parts of the workload, i.e.basic blocks[1], to be exe-

cuted different number of times, i.e. theexecution profile will differ. If most non-covered errors are

produced when fault injecting the system during execution of certain basic blocks, the results from

fault injection campaigns using different input sequences may vary.

(ii) The contents of the fault injected target locations will differ when the system processes different

data as a result of altered data usage, i.e. thedata usage profile will differ. The fault injection results

may vary when altering the input data if most non-covered errors are produced when fault injecting

certaincritical data and some input sequences lead to the usage of a higher amount of critical data

than others.

4 Error coverage prediction methodology

A methodology for estimating error coverage considering workload input domain variations can be

formulated based on the observations above. The results for a particular input sequence are predicted

based on experiments conducted using an arbitrary chosenbase-, or reference-, input sequence, by

comparing the execution and data usage profiles of each input sequence.

In execution profile based prediction, the predicted non-coverage  for a particular input sequence

p is calculated using the following equation:

 (1)
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jected fault is activated and results in a non-covered error, given that basic blocki executes, estimated

using the base input sequence, and  is the weight factor for blocki, i.e. the proportion of the

whole execution time spent executing blocki, for input sequencep. Assume that blocki executes for

 clock cycles and that the workload executes for  clock cycles for input sequencep.  is then

calculated as  where  is the number of executions of blocki for input sequencep.

In data usage based prediction, the data usage, i.e. the percentage of the total fault space that contains

critical data, is measured for the various types of critical data. Let  denote the probability that

a fault injected into critical data itemi will lead to a non-covered error estimated using the base input

sequence, and  the usage of critical data itemi for input sequencep. The predicted non-cover-

age  for input sequence  is then calculated using the following equation:

 (2)

where the critical data items are numbered 1 ton.

Figure 2: Predicted vs. observed non-coverage for Quicksort.
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Results from fault injection campaigns conducted on different parts of the Thor CPU using the

Quicksort workload show that error coverage for the data cache is predicted more favorably using

data usage based prediction, while error coverage for the other parts of the CPU, i.e. the Thor regis-

ters, is predicted more favorably using execution profile based prediction, seeFigure 2 (input sequence

M was used as the base combination for all predictions). These observations are also supported by

results from fault injection campaigns using the Shellsort and Towers of Hanoi workloads.

5 Future work

More research is needed to refine the methodology. Data usage based prediction on the data cache

fails to predict the actual error coverage but is nevertheless useful for pointing out the input

sequences with the lowest coverage which could be fault injected to estimate the worst-case cover-

age. In execution profile based prediction, the block activating a fault is assumed to be the same as

the one executing when the fault is injected. This approximation would not be needed using, e.g.,

simulation based fault injection where the higher observability would enable direct identification of

the blocks activating the non-covered errors. How the input combinations used for fault injection and

prediction should be selected if the input space is large, also remains to be investigated. More exper-

iments are also needed, using different fault injection techniques on more systems and more work-

loads, in order to verify the generality and usability of the methodology.
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