
Experimental Dependability Evaluation of a Fail-Bounded Jet Engine Control
System for Unmanned Aerial Vehicles

Jonny Vinter1, Olof Hannius2, Torbjörn Norlander2, Peter Folkesson1, Johan Karlsson1

1Department of Computer Engineering 2Volvo Aero Corporation
 Chalmers University of Technology Performance & Control Systems
 S-412 96 Göteborg, Sweden S-461 81 Trollhättan, Sweden
+46 31 7721667, +46 31 7723663 fax +46 520 93846, +46 520 98573 fax

 {vinter, peterf, johan}@ce.chalmers.se {Olof.Hannius, torbjorn.norlander}@volvo.com

Abstract

This paper presents an experimental evaluation of a
prototype jet engine controller intended for Unmanned
Aerial Vehicles (UAVs). The controller is implemented
with commercial off-the-shelf (COTS) hardware based on
the Motorola MPC565 microcontroller. We investigate the
impact of single event upsets (SEUs) by injecting single
bit-flip faults into main memory and CPU registers via the
Nexus on-chip debug interface of the MPC565. To avoid
the injection of non-effective faults, automated pre-
injection analysis of the assembly code was utilized. Due to
the inherent robustness of the software, most injected
faults were still non-effective (69.4%) or caused bounded
failures having only minor effect on the jet engine (7.0%),
while 20.1% of the errors were detected by hardware
exceptions and 1.9% were detected by executable
assertions in the software. The remaining 1.6% is
classified as critical failures. A majority of the critical
failures were caused by erroneous booleans or type
conversions involving booleans.

1. Introduction

Important development issues for future aircraft are to
combine high safety requirements with low maintenance,
development and production costs. This is especially true
for applications such as Unmanned Aerial Vehicles
(UAVs). The market for military UAVs is growing and
civil and commercial UAV applications are also emerging
[1]. Revolutionary systems and new technologies are
needed to meet the demands of future aircraft, requiring
increasingly advanced electronic equipment and software.
One of the major challenges is to build cost-effective
computer systems for execution of safety-critical functions.
This challenge provides the impetus for two important
development trends. One is the development of generic
distributed safety-critical systems that can be used for a
wide range of air vehicles and engines. The other is the use

of commercial off-the-shelf (COTS) components.
In this paper, we evaluate the fault-tolerance properties

of a prototype FADEC (Full Authority Digital Engine
Control) controller based on a COTS microcontroller, the
Motorola PowerPC MPC565. The controller is developed
for the Volvo Aero RM12 turbofan engine. This engine is
suitable for large UAVs comparable to the Boeing X45
variants B and C [2], which use a similar engine (F404-GE-
102D).

The controller is implemented on a single computer
node intended to be part of a distributed control system.
The controller is designed to exhibit fail-bounded or fail-
stop failures in the presence of internal errors. Executable
assertions in the FADEC software and the hardware error
detection mechanisms included in the microcontroller are
used to enforce the failure mode assumptions.

Our aim is to investigate the validity of the failure mode
assumptions with respect to single event upsets. We do so
by injecting single bit-flip faults into CPU-registers and the
main memory, while carefully monitoring the behavior of a
very accurate simulation model of the jet-engine.

Particle radiation induced single event upsets have
become an increasingly important source of failure in
electronic systems as the feature sizes of VLSI circuits
have decreased. Previously, such upsets mainly occurred in
electronic equipment in space because of heavy-ions. The
physical properties of new circuit technologies make
circuits sensitive also to neutrons caused by cosmic
radiation which are frequent at flight altitudes and also
appear at ground level [3, 4]. Thus, SEUs are no longer
negligible for critical equipment and must be carefully
considered in flight applications.

The next section briefly describes the jet engine and the
failure model of the FADEC controller. The experimental
setup used for the dependability evaluation is described in
Section 3, and the results of the evaluation are presented
and discussed in Section 4. Finally, the conclusions are
given in Section 5.

2. Jet engine control and failure model

2.1. Jet engine description

The RM12 engine is a turbofan engine with afterburner
designed for vehicles traveling at supersonic speed.

Figure 1. Schematic view of a turbofan engine

with afterburner (RM12).

The engine is controlled by five actuators denoted,

FVG, CVG, WFM, WFR and A8, see Figure 1. By
positioning the variable stator guide vanes FVG (Fan
Variable Geometry) and CVG (Compressor Variable
Geometry), the RM12 fan and compressor are controlled to
an optimal working point to achieve good engine
performance. The fuel flow to the core engine is denoted
WFM, and the afterburner fuel flow WFR. The rotational
speed for the fan is denoted NL and for the compressor
NH, where N stands for rotational speed while L and H
identify the Low- and High-pressure parts respectively. The
compressor outlet pressure is denoted PS3. The exhaust
nozzle area, denoted A8, is controlled so that the pressure
ratio over the complete engine is optimized to obtain
maximum thrust.

2.2. Failure model

A fail-bounded failure model [5, 6] is assumed for the
FADEC controller. This means that the system (controller
and jet engine) is allowed to produce wrong outputs as long
as the system stays within defined bounds. When an error
is detected, e.g. when jet engine parameters exceed
predefined or run-time calculated bounds, the FADEC
controller decides if the error is manageable or if a backup
system has to be switched in to prevent an accident. If the
FADEC decides that a backup system must be activated (or
if a hardware exception is triggered) it has to stop
producing outputs. If not (or if the error is undetected) the
system may deliver erroneous outputs as long as the system
stays bounded. Thus, the engine control system is fail-
bounded with a fail-safe mode. The bounds used in this
study are presented in Section 3.3.

3. Experimental setup

3.1. The experimental platform

A dynamic model of the RM12 engine controlled by a
model of a FADEC prototype developed for an UAV
application study are used for the evaluation. Both the
engine model and FADEC prototype have been developed
in MATRIXx which is a graphical simulation and analysis
tool that has the capability to auto generate code from
dynamic simulation models. The generated code can then
be compiled, linked and downloaded to a target system.
The advantages of using a dynamic simulation model is
that we can study how transient errors in the FADEC affect
the RM12 engine operation, we can feed the result from
experiments back to the MATRIXx environment, make
improvements to error detection and error handling and
verify that the improvements are effective.

A FADEC evaluation platform relying on COTS
hardware has been developed (see Figure 2).

Figure 2. The experimental platform.

The hardware consists of two development boards

featuring the Motorola PowerPC MPC565 microcontroller
executing at a clock frequency of 40 MHz, equipped with 2
MB external SRAM, 1 MB external Flash memory and 1
MB on chip Flash memory. MPC565 is one of the first
microcontrollers to implement the Nexus standard [7]
enabling on-chip debugging with advanced features such as
real-time trace of program and data flow. The platform
relies on a commercial Nexus debug environment from
iSYSTEM which takes advantage of the features defined
by the Nexus standard (another Nexus-based fault injection
environment targeting the MPC565 can be found in [8]).
The debug environment consists of an iC3000 active
emulator and the winIDEA debug software.

The GOOFI [9] fault injection tool has been extended to
control the Nexus debug environment in order to simplify
and automate the injection of faults into MPC565 [10]. The
GOOFI and winIDEA software runs on a PC connected to
the emulator via a USB connection. The iC3000 emulator
communicates with the Nexus port on the MPC565 target

 FVG CVG WFM WFR A8

 NL NH PS3

system. The target system executes the FADEC control
software (272 kB) and communicates with the jet engine
software (308 kB) on the second board via a CAN bus
which closes the control loop. The software is compiled
with the Tasking PowerPC C/C++ compiler tool suite,
release 2.1 while the open source GDB software is used to
debug and download the jet engine software via a BDM
(Background Debug Mode) on-chip debug interface of the
MPC565. For each experiment, the FADEC software is
first downloaded to the external SRAM of the target system
which then is restarted.

3.2. Experiment and software setup

The single bit-flip fault model is widely accepted as a
reasonably accurate representation of SEUs [11]. Single
bit-flip faults were injected in two separate campaigns
targeting the MPC565 CPU registers included in the
PowerPC User Instruction Set Architecture (UISA) [12]
and the data segments (stack, data and read-only data) of
the memory respectively. The code segments of the
memory were not targeted as they are assumed to be
located in ROM in the actual FADEC implementation.
Both campaigns were carried out using a pre-injection
analysis of the assembly code which enabled only effective
faults to be injected. The technique optimizes the fault-
space by utilizing assembly-level knowledge of the target
system in order to place single bit-flips in registers and
memory locations only immediately before these are read
by the executed instructions. This way, we avoid injecting
faults that are overwritten before they affect the program
execution. Experimental results obtained by random
sampling of the optimized fault-space and the complete
(non-optimized) fault-space were compared for two
different workloads running on the MPC565
microcontroller in [13]. The study showed that the pre-
injection analysis yields an increase of one order of
magnitude in the effectiveness of faults, a reduction of the
fault-space of two orders of magnitude in the case of CPU-
registers and four to five orders of magnitude in the case of
memory locations, while preserving a similar estimation of
the error detection coverage.

The FADEC software is divided into procedures which
execute at different frequencies, determined by a static
cyclic scheduler. The procedures with the highest
frequency (200Hz) execute at each control loop and the
procedures with the lowest frequency (10Hz) execute once
in an interval of 20 control loops. Thus, 20 control loops
(loop 21 to 40) are targeted as the temporal trigger for the
experiments to ensure that all procedures are executed at
least once. During this time interval (0.1 to 0.2 seconds),
the thrust demand to the jet engine increases from 35% to
51% of the maximal thrust, see Figure 3.

Figure 3. Thrust demand vs fault-free response.

The thrust demand and the observed engine parameters

for a reference run of the nominal (fault-free) system are
shown in Figure 3. The values of the engine parameters are
used as reference and are compared to the engine
parameters logged during fault injection experiments to
identify any violations of the system failure bounds defined
in Section 3.3. The thrust command in Figure 3 makes the
core engine fuel flow WFM increase. When fuel flow
increases, the high pressure and low pressure rotor speeds
NH and NL and the compressor outlet pressure PS3 also
increase. The variable guide vanes CVG and FVG opens
(decrease) to maintain an adequate pressure ratio across the
fan and compressor. The exhaust nozzle area A8 is initially
open for minimum thrust and closes when the engine
accelerates. Afterburner fuel flow is zero (minimum
measured WFR is 6%) until it is engaged at 4 s. After 5 s,
when both WFR and WFM are constant, the engine thrust
is at maximum. Note that the exhaust nozzle area, A8,
opens with the same rate as WFR increases to obtain the
correct engine pressures.

3.3. Undetected bounded failures and mission or
flight critical failures

We define a divergence from the reference run of at
least 20% for one or more of the parameters shown in
Figure 3 as a mission- or flight critical failure. Otherwise,
the failure is considered as an undetected bounded failure.
A mission critical failure may interrupt the mission since
the UAV should return to the base for engine diagnosis. A
flight critical failure may lead to a lost engine and a crash.
The assumptions for our classification are based on
previous experience of the engine.

4. Results

Table 1 summarizes the results of the fault injection
experiments. Despite the use of the pre-injection analysis
technique described in Section 3.2, a significant percentage
of non-effective errors are produced. The main causes for

this are i) booleans which are True if the numerical value is
non-zero will not change state due to most single bit-flips,
ii) many software statements may mask errors (e.g., errors
in the variable a of the statement [if a > 10 then …] will be
masked if a is larger than 10 before the bit-flip and
assumes an even higher value after the bit-flip), and iii)
some variables in the FADEC prototype are periodically
initialized to their default values and that errors may
therefore be overwritten.

Table 1. Error and failure classification.

Target
(# exp)

Non-
effective
errors

Detected by
MPC565
hardware
exceptions

Detected by
FADEC

executable
assertions

Undetected
bounded
failures

Mission
critical
failures

Flight
critical
failures

Registers
(2873)

61.9%
(1778)

31.5%
(904)

1.5%
(44)

4.8%
(137)

0.3%
(9)

<0.1%
(1)

Memory
(2402)

78.6%
(1888)

6.4%
(154)

2.2%
(54)

9.8%
(235)

2.0%
(47)

1.0%
(24)

TOTAL
(5275)

69.4%
(3666)

20.1%
(1058)

1.9%
(98)

7.0%
(372)

1.1%
(56)

0.5%
(25)

4.1. Errors detected by MPC565 exceptions

As shown in Table 1, 31.5% and 6.4% of all faults
injected in registers and memory respectively are detected
by MPC565 hardware exceptions [12]. When an exception
is triggered, the experiment is stopped and a new
experiment is started. In an actual system implementation,
the FADEC node should stop producing results and leave
the control to a backup when an exception is triggered. The
processor was configured to enter the Checkstop State
(CHSTP) instead of taking the Machine Check Exception
(MCE) itself when MCE occurs. CHSTP occurred for
52.4% and 26.6% of the hardware exceptions observed for
faults injected in registers and memory respectively while
the corresponding figures for Floating-Point Assist
Exceptions (FPASE) are 19.0% and 50.6%. Software
Emulation Exceptions (SEE) occurred for 15.2% and 7.8%
of the exceptions observed for faults injected in registers
and memory respectively while External Breakpoint
Exceptions (EBRK) occurred for 3.3% and 13.0%. For
Alignment Exceptions (ALE), the corresponding figures
are 9.5% and 1.9%. The remaining 13 exceptions of the
MPC565 were seldom or never triggered.

4.2. Errors detected by executable assertions

When an error is detected by the FADEC control
software, e.g. when engine parameters exceed fixed or
dynamic bounds, the controller decides if the error is
negligible or if it should resign control to a backup system
to prevent a critical event. The FADEC prototype software
provides several mechanisms for detecting errors and
collecting status information. Detected errors considered as
severe will trigger at least one of the 17 final executable
assertions visualized in Figure 4, denoted EA1 to EA17

(see also Table 2). The FADEC node gives up control if
one or several of them are executed (evaluated true). The
assertion that has been activated most frequently is EA14
which means that an error affecting the Compressor
Variable Geometry (CVG) functionality has been detected
(28.9% for register faults and 26.5% for memory faults).

Figure 4. FADEC executable assertions triggered.

Table 2. Executable assertions.
Acronym Description

EA1, EA2 Engine operating over limits
EA3 - EA5 Erroneous temperature input
EA6, EA7 Erroneous speed input
EA8 Erroneous pressure input
EA9, EA10 Erroneous position measurement
EA11 - EA15 Erroneous servo system
EA16, EA17 Erroneous discrete output

4.3. Critical failures due to faults in memory

Errors in the stack area, the data area and the read-only
data (rodata) area of the SRAM memory were either i)
detected by hardware exceptions or executable assertions
(208 errors), ii) undetected bounded failures (235 errors) or
iii) mission or flight critical failures (71 errors). 65.3% of
the critical failures are due to faults injected into the data
area and the remaining 34.7% of critical failures are due to
faults injected into the read-only data area. No critical
failures were observed for faults injected in the stack area.

A majority of the 71 critical failures observed for faults
injected in memory could be sorted into three groups. A
representative plot of the engine parameters observed for
each group and their causes are presented in the following
paragraphs.

Group 1 - Errors resulting in a lost afterburner. Over
59% (42 experiments) of the observed critical failures
showed a behavior similar to that shown in Figure 5. For at
least 35 of those, a unique boolean used for initialization of
the software changed state and a re-initialization was
performed. The errors in this group resulted in lost
afterburner control, but the control of the core engine was
normal. Afterburner failures are considered mission critical
and not flight critical. As long as the exhaust nozzle area
(A8) is correctly controlled (closed position for operation
at maximum speed) without afterburner, thrust level is
sufficiently high.

Figure 5. Error in a boolean resulting in a disabled

afterburner.

Group 2 - Error in read-only data for type conversion.
The source code for the FADEC model prototype is mainly
generated from MATRIXx but an additional software
module is also required. For each control loop, data are
exchanged between the two software modules. Different
data types are currently used in the FADEC model
compared to the additional software module and during
exchange of data between the modules, type conversions
are performed. Type conversions involve using a read-only
converter mask. When it assumes a faulty value due to a
bit-flip, the mask will be permanently corrupted. Thus, this
fault will affect all subsequent boolean-to-float conversions
in the software. In 12 experiments (16.9% of all critical
failures) the converter mask was the target for fault
injection and since all subsequent conversions were
affected, the state of the system experienced erroneous
behavior almost identical to that shown in Figure 6.

Figure 6. Error in constant used for type

conversion resulting in faulty boolean states.

During the first 4 - 5 s, the exhaust nozzle area (A8) is

too wide, the low pressure turbine speed (NL) too high and
the FVG too closed. In addition to low thrust, the fan is
outside the operating range with risk for stall or resonance.
After 4 s, the afterburner fails to light up and the exhaust
nozzle area (A8) starts to oscillate. All these factors may

have serious impact on flight safety. Especially during
critical flight phases such as take-off and landing. This
failure was not observed for faults in registers since faults
in the converter mask stored in a register will eventually be
overwritten.

Group 3 - FADEC produced NaN (Not a Number)
double precision floats. In eight experiments, the FADEC
node produced erroneous control outputs which were (or
resulted in) NaN floats. Since arithmetic with NaN floats
will produce more NaN floats (e.g., f1 = f2 + NaN � f1 =
NaN) the error may propagate quickly. Five out of eight
NaN errors were detected by EAs while the remaining
three resulted in flight critical failures. Figure 7 shows the
engine behavior for one of those. Only the Compressor
Variable Geometry (CVG) value stays within reasonable
bounds for normal engine operation. The engine would
probably flame out and important engine parameters such
as fuel flow and engine speed quickly decrease to levels
below ground idle, which is critical in all flight phases.

Figure 7. Behavior due to “Not a Number” floats.

Group 4 – Others. The system behavior for the remaining
14 (19.7%) critical failures can not be visualized by a
representative plot. Seven experiments converged to
nominal behavior within the observed time interval while
seven did not. Eight of these failures are considered flight
critical.

4.4. Critical failures due to faults in registers

Only 0.3% of the faults injected in registers resulted in
critical failures (compared to 3.0% of the faults injected in
memory). Nevertheless, nine mission critical and one flight
critical failure were observed for the register faults. Due to
a design flaw in the commercial debug environment used
for fault injection, only the 32 least significant bits of each
64-bit floating-point register could be reached. This
corresponds to the 32 least significant bits of the mantissa
part of the float. Thus, faults in floating-point data only
cause minor errors which very likely affected the number
of critical failures observed. Different system behavior

could be observed for each failure and Figure 8 shows the
most severe behavior, a transient engine failure.

Figure 8. Register fault directly affecting the core

engine fuel flow (WFM).

After the error has occured, the core engine fuel flow

(WFM) is lower than normal, resulting in too low
compressor outlet pressure (PS3), fan (NL) and compressor
speed (NH). Accordingly, the guide vanes for the fan
(FVG) and compressor (CVG) are more closed than in the
reference run. After nine seconds, the engine has recovered
and operates correctly. This engine failure is flight critical
for a few seconds during take-off and landing since the
engine response is abnormal.

5. Conclusions

We have experimentally evaluated a prototype FADEC
jet engine controller executing on the COTS
microcontroller Motorola MPC565 intended for UAV
applications. Transient faults were injected into the
FADEC prototype to investigate the efficiency of the
nominal error detection mechanisms. The fault injection
experiments were carried out using a pre-injection analysis
of the assembly code to avoid the injection of non-effective
faults. However, most of the faults were still non-effective
(69.4%) or caused bounded failures having only minor
effect on the UAV (7.0%) in our experiments which
suggests that the FADEC node is to some extent inherently
robust. The hardware exceptions of MPC565 detected
20.1% of the errors while the executable assertions in the
FADEC software detected 1.9%.

Critical failures, which could potentially lead to the loss
of the UAV, were observed for 1.6% of the experiments. A
majority of the critical failures were caused by errors
affecting boolean states in the software, either directly or
indirectly through erroneous type conversions.
Consequently, special care should be taken how to declare
and use booleans in software.

Acknowledgements

This work was financed by NFFP (Swedish National
Flight Research Program). We want to specially thank
ALTIUM LIMITED for sponsoring us with the Tasking
compiler used in this study.

References

[1] http://www.spacedaily.com/news/uav-04a.html, March
18th, 2005.

[2] http://www.air-attack.com/page.php?pid=10, March
18th, 2005.

[3] E. Normand, Single event upset at ground level. IEEE
Transactions on Nuclear Science, 1996. 43(6, pt.1): p.
2742-50.

[4] P.E. Dodd, M.R. Shaneyfelt, J.R. Schwank, and G.L.
Hash. "Neutron-induced latchup in SRAMs at ground
level", in International Reliability Physics Symposium.
March 30 - April 4, 2003. Dallas, TX, USA.

[5] J.G. Silva, P. Prata, M. Rela, and H. Madeira.
"Practical issues in the use of ABFT and a new failure
model", in Fault-Tolerant Computing, 1998. Digest of
Papers. Twenty-Eighth Annual International
Symposium on. 1998.

[6] J.C. Cunha, R. Maia, M.Z. Rela, and J.G. Silva. "A
study of failure models in feedback control systems", in
Proceedings International Conference on Dependable
Systems and Networks. Göteborg, Sweden. 2001.

[7] IEEE-ISTO, The Nexus 5001 Forum™ Standard for a
Global Embedded Processor Debug Interface. 1999: p.
9-10.

[8] J.-C. Ruiz, P. Yuste, P. Gil, and L. Lemus. "On
benchmarking the dependability of automotive engine
control applications", in Proceedings International
Conference on Dependable Systems and Networks.
June 28 - July 1, 2004. Florence, Italy.

[9] J. Aidemark, J. Vinter, P. Folkesson, and J. Karlsson.
"GOOFI: generic object-oriented fault injection tool",
in Proceedings International Conference on
Dependable Systems and Networks. Göteborg, Sweden,
2001.

[10] D. Skarin, J. Vinter, P. Folkesson, and J. Karlsson,
Implementation and usage of the GOOFI MPC565
Nexus fault injection plug-in. Tech. Report No. 04-08,
Dept. of Comp. Eng., Chalmers University of
Technology, Göteborg, Sweden, 2004.

[11] G.C. Messenger, Collection of charge on junction
nodes from ion tracks. IEEE Transactions on Nuclear
Science, 1982. ns-29(6): p. 2024-31.

[12] Motorola, MPC565/MPC566 User's Manual. 2003.
[13] R. Barbosa, J. Vinter, P. Folkesson, and J. Karlsson.

"Assembly-level pre-injection analysis for improving
fault injection efficiency", in Proc. Fifth European
Dependable Computing Conference (EDCC-5). April
2005. Budapest, Hungary.

