
Path-Based Error Coverage Prediction

Joakim Aidemark, Peter Folkesson, and Johan Karlsson
Chalmers University of Technology

S-412 96 Göteborg, Sweden
+46 31 772 5225, 46 31 772 3663 fax

{aidemark, peterf, johan} @ce.chalmers.se

Abstract
Previous studies have shown that error detection

coverage and other dependability measures estimated by
fault injection experiments are affected by the workload.
The workload is determined by the program executed
during the experiments, and the input sequence to the
program. In this paper, we present a promising analytical
post-injection prediction technique, called Path-Based
Error Coverage Prediction, which reduces the effort of
estimating error coverage for different input sequences. It
predicts the error coverage for one input sequence based
on fault injection results obtained for another input
sequence. Although the accuracy of the prediction is low,
Path Based Error Coverage Prediction manages to
correctly rank the input sequences with respect to error
detection coverage, provided that the difference in the
actually coverage is significant. This technique may
drastically decrease the number of fault injection
experiments, and thereby the time, needed to find the
input sequence with the worst-case error coverage among
a set of input sequences.

1. Introduction

Computer systems are increasingly being used in
applications that require high dependability. To be
confident that these systems deliver the correct service,
they need to be validated. Both analytical and
experimental techniques are required to fully validate a
dependable system. Fault injection [1] is an experimental
technique that has shown to be an important means for
validating dependable systems. It can be used to study a
system in the presence of faults and to identify
dependability bottlenecks. One main goal is to determine
the coverage of the error detection mechanisms. The error
detection coverage can then be used in an analytical model
to calculate the reliability, availability and safety of a
system.

Studies have shown that the results from a fault
injection experiment do not only depend on the hardware,

but also on the program executing on the system [2].
Further, the result may also be affected by the input
sequence to the program [3], [4], [5]. Therefore, when
validating a dependable system, a workload similar to the
one used when the system is in operation should be
chosen. However this may pose a problem, since the
number of input sequences that need to be considered can
be very large.

One way to reduce the effort of validating dependable
computer systems is through pre-injection analysis and
post-injection analysis. Pre-injection analysis is performed
before any fault injection is performed to focus fault
injection to specific parts of the fault space [6], [7], [8]. In
post injection analysis, the results from fault injection
experiments are used to predict the outcome of other
experiments in order to speed up the validation
process [2].

We have previously investigated two post-injection
techniques for predicting error coverage called Execution
Profile Based Prediction and Data Usage Based Prediction
[5]. These techniques can predict variations in error
coverage for different input sequences. They predict the
error coverage for one input sequence using fault injection
results obtained for another input sequence. Execution
Profile Based Prediction relies on the fact that workload
input variations cause different parts of a program to be
executed different number of times. Data Usage Based
Prediction takes into account that the input variations alter
the usage of data. We used these techniques for predicting
the coverage for several hardware implemented error
detection mechanisms included in a microprocessor with
respect to single bit-flips injected in the microprocessor.
Our experiments showed that the prediction techniques
could correctly rank input sequences according to error
coverage provided that the difference in the actual
coverage is significant, although the accuracy of the
predicted coverage figures were low. In order to achieve
the ranking it was necessary to combine the two
techniques, using Execution Profile Based Prediction for
bit-flips in registers and flip-flops, and Data Usage Based
Prediction for bit-flips in the cache. These prediction



techniques were primarily intended for fault injection
techniques such as scan-chain implemented fault injection
(SCIFI) or software implemented fault injection (SWIFI),
where the observability of the fault activation is low.

In this paper, we present a new post-injection
prediction technique called Path-Based Error Coverage
Prediction. This technique is intended for simulation-
based fault injection and utilizes the high observability
available in simulations. In contrast to our previous
prediction techniques, Path-Based Error Coverage
Prediction show promising results for predicting the
coverage for errors occurring in all parts of a
microprocessor. Thus, error coverage prediction can be
made using a single method.

Path-Based Error Coverage Prediction can be used in
the following way. Assume that we want to identify those
input sequences that give extremely high or low error
detection coverage among a given set of input sequences.
(The set of input sequences of interest is typically
determined by studying the usage of the evaluated system.)
Instead of conducting a fault injection campaign for each
input sequence, we conduct a single fault injection
campaign for an arbitrary input sequence and then apply
Path-Based Error Coverage Prediction to rank the input
sequences according to error detection coverage. Once the
ranking is done, we can conduct fault injection campaigns
with the “interesting” input sequences in order to
accurately determine the coverage figures of interest.

This procedure significantly reduces the time it takes to
identify input sequences with extremely high or low
coverage, as prediction is much faster than conducting
fault injection campaigns. The prediction uses information
about the usage of the program’s basic blocks for the input
sequence for which the prediction is made. This
information can be collected during a single fault-free
simulation of the program execution. The time needed for
the prediction is then determined by the time it takes to
run this simulation. This time is approximately equal to
the time it takes to make one fault injection experiment,
i.e. to observe the effect of a single fault.

We have used this technique for estimating the
coverage of several hardware implemented runtime checks
included in a microprocessor specially designed for use in
highly dependable space applications. We injected single
bit-flips inside the microprocessor to emulate the effects of
Single Event Upsets.

The paper is organized as follows: In the next section,
the prediction technique is described. In section 3 the
experimental set-up used to evaluate the prediction
technique is presented and in section 4 the prediction
technique is applied and evaluated. Finally, in section 5,
a discussion and conclusion is given.

2. Predicting error coverage

The Path-Based Error Coverage Prediction technique is
an enhanced version of the Execution Based Prediction
technique presented in [5]. It predicts the error coverage
for an arbitrary input sequence based on the results from
fault injection experiments with another input sequence,
called thebase-sequence. The technique is based on the
fact that the execution path of the program varies for
different input sequences. Depending on the input
sequences, different parts of the program are executed
different number of times. This is illustrated in Figure 1,
where a program is divided intobasic blocks[9] (A-E)
and each basic block is executed a different number of
times depending on the input sequence.

Figure 1: Workload execution path differs for
different input data

Let, incP , , denote the probability that a fault results in a

non-covered error, given that the fault is activated during
execution of block i. The prediction is based on the
assumption that incP , is constant for all input sequences.

This is motivated by the fact that the activity of the system
during execution of a basic block is the same regardless of
the input sequence used, i.e. the same instructions are
always executed in each basic block. However, this
probability is likely to vary for different basic blocks in a
program.

The error coverage for an input sequencep, cp, can be

calculated using the following equation for a workload
program containingn basic blocks:
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wherewp,i is a weight factor for blocki, corresponding

to the proportion of faults activated during execution of
block i for input sequencep out of the total number of
faults activated for input sequencep. Pnc,i is estimated

from fault injection experiments conducted with the base
input sequence as:
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Wherennc,i is the observed number of faults activated

when blocki is executing resulting in non-covered errors,
and ni is the total number of faults activated during

execution of blocki. The weight factorwp,i is estimated

using the following equation:
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Where np,i is the number of faults activated during

execution of blocki for input sequencep and np is the

total number of faults activated for input sequencep. Now,
np,i is unknown, but it can be estimated based on the

number of activated faults for the base sequence as:
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Where ni is the number of faults activated during

execution of blocki for the base input sequence, andxi is

the number of times blocki is executed for the base input
sequence. Thus,ni divided by xi gives the number of

activations per execution in blocki for the base input
sequence. This is multiplied withxp,i, which is the

number of times blocki is executed for input sequencep,
thereby giving an estimation of,np,i, the number of faults

activated during execution of blocki for input
sequencep 1.

np can be estimated as the sum of the activated faults

for all then basic blocks of the base input sequence:
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Where nj is the number of faults activated during

execution of blockj for the base input sequence,xp, j is

the number of times blockj is executed for input sequence
p, andxj is the number of times blockj is executed for the

base input sequence.
By combining Equations 2.1-2.5, the predicted error

coverage for input sequencep, cp, can be estimated from

fault injection experiments conducted using a chosen base
input sequence as:

1 Note that this definition requires that all basic blocks are executed at
least once for the chosen base input sequence (otherwise several input
sequences are required so that all basic blocks can be accounted for).
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3. Experimental set-up

In this section the experimental set-up used to evaluate
the prediction technique is described. First, the target
system and the fault injection environment are presented
and then the error classifications and definitions used in
the experiments are given.

3.1. The Thor microprocessor

The experiments have been conducted on the Thor
processor [12]. The Thor microprocessor is developed by
SAAB Ericsson Space AB and is intended for highly
dependable space and military applications. It is a 32-bit
Reduced Instruction Set Computer (RISC) with a four-
stage pipe based on a stack-oriented instruction set
architecture. The data cache is a direct mapped, write-
back cache of 128 bytes (see Figure 2).
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Figure 2: The Thor Microprocessor

There are several error detection mechanisms
implemented in the Thor processor such asrun-time
checks, control flow checkingand main memory error
checking.There are 12 hardware exceptions included in
the run-time checks of Thor, see Table 1. The control flow
checking is used to check that the processor’s order of
execution is correct. In this paper, the coverage of the run-
time checks and the control flow checking mechanisms



with respect to single event upsets (bit-flips) occurring
inside the microprocessor is investigated. The main
memory checking mechanisms are not evaluated since no
faults were injected into the main memory.

Table 1: Hardware exceptions in Thor
Exception Description
Bus error Bus time out of external memory
Address error Operand effective address larger than 2 Gbyte
Data error Chip input signal DE (Data Exception) is asserted by the

EDAC
Instruction error Illegal instruction or trying to execute a privileged instruction in

user mode
Jump error Attempt to jump, call or return to a target address outside

memory address space
Constraint error A constraint of run-time assertion instructions is not satisfied
Access error Attempt to follow a null pointer
Storage error Attempt to access memory outside the task's stack in user mode
Overflow check Overflow of signed integer and float arithmetic operations
Underflow check Underflow or denormalized result of float arithmetic operations
Division check Division by zero
Illegal operation Illegal operation for float and double arithmetic instruction

involving 0 and∞

3.2. Fault injection environment

Fault injection tool: The experiments were performed
using MEFISTO-C, which is an elaboration of the
MEFISTO tool [10]. MEFISTO-C injects faults in VHDL
models by utilising simulator commands that affect
signals and variables.

Fault injection with MEFISTO-C is divided into three
phases:set-up, simulationanddata processing. In theset-
up phase,the VHDL target and workload is chosen. The
experiments are defined by the location of the injected
faults in the VHDL model, the activation time of the faults
and the fault model to be used. A set of fault injection
experiments is called a fault injection campaign. The
simulation phaseis conducted using a VHDL simulator,
which can be run on one or several Unix workstations. In
this case, the Vantage OptiumTM simulator was used on
two workstations. TheSimulation phasestarts by making
a fault free run, called the reference simulation, and then
each of the experiments are performed. In thedata
processing phasethe trace data from the reference
simulation is compared with the trace data from the fault
injection experiment. The result from this comparison is
analysed to extract information and evaluate the fault
injection experiments.

Workload: The workload program is based on an Ada
package implementing a recursive quick-sort algorithm,
which sorts seven data elements of the predefined Ada
type float. Fault injection is performed during the actual
sorting of the seven data elements, which takes different
number of cycles depending on the input sequence. After
the sorting is finished, the result is written to memory.

Fault model: The fault model used is the single bit-flip
fault, which affects state elements by changing a logical

value from zero to one or from one to zero. This fault
model is reasonably accurate for SEUs (Single Effect
Upsets), caused by e.g. heavy ion radiation in the space
environment or by neutrons at high altitude [11].

Fault locations: Faults are injected in 4410 internal
state elements of the Thor microprocessor, i.e. flip-flops
and latches. These state elements are divided in three
parts; Registers, Cacheand Other registers(811, 1824
and 1775 locations respectively). The registers belonging
to the Register part are marked with an asterisk in
Figure 2. The Cache is located in the Operand Fetch (OF)
stage. All other state elements are grouped into the Other
registers part. No faults are injected in the Debug or the
TAPI (Test Access Protocol Interface) block.

3.3. Error classification and definitions

Errors are classified in two main categories, Non-
effective and Effective errors. The Non-effective errors
correspond to errors, which were either latent or
overwritten:
• Latent errors indicate that the injected fault had no

effect on the program execution, but the observable
state of the CPU differed from the fault-free state
when the program finished.

• Overwritten errorsindicate that the injected fault was
overwritten without causing any other effect on the
system.

The Effective errors correspond to errors, which were
either detected by the error detection mechanisms of the
Thor CPU, caused a CPU crash, or lead to incorrect result:
• Detected errors:Errors that were detected by the

Thor error detection mechanisms (See Table 1).
• Other errors: Errors that caused the CPU to crash.

These errors are assumed to be detected by external
error detection mechanisms such as I’m alive signals.

• Escaped errors: Errors that escaped the error
detection mechanisms causing a failure i.e., the sort-
algorithm produced an incorrect result.

The Error coverageis the percentage of errors that were
detected by an error detection mechanism of the total
number of errors. TheError detection coverageis the
percentage of errors that were detected by an error
detection mechanism of the total number of effective
errors.

The activation timeof an injected fault is defined as
the time of the first propagation of a fault. If a fault is
injected in the data cache, then the activation time is the
time when the incorrect data is first used by the CPU. If a
latent fault does not propagate, then the activation time is
equal to the time when the fault was injected. If an
overwritten fault does not propagate, then the activation
time is equal to the time when the fault was overwritten.



4. Applying and evaluating the prediction
technique

In this section, the Path-Based Error Coverage
Prediction technique is applied and evaluated. The
technique is applied by first selecting set of input
sequences. The set of input sequences used in this study,
called input sequencea–x, are 24 randomly chosen
permutations of the same seven elements to be sorted by
the quick-sort program. A fault-free simulation of the
program execution was then performed for each of the
chosen input sequences to determine their execution paths.
In addition, a fault injection campaign was performed on
the arbitrarily chosen input sequencex. The results from
the fault injection campaign conducted on the base input
sequencex, and the information about the execution paths
of input sequencesa–wwere then used to predict the error
coverage for each of the input sequencesa-w according to
equation 2.6. Figure 3 shows that the prediction technique
identifies input sequencesi andp to have the highest error
non-coverage and input sequenceo to have the lowest
error non-coverage. The final step would be to conduct
fault injection campaigns on the input sequences that were
predicted to have the most extreme error coverage, to
accurately estimate the results.
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Figure 3: Predicted error non-coverage using input
sequence x as the base sequence.

In order to evaluate the accuracy of the prediction
technique two more fault injection campaigns were
conducted on the arbitrarily chosen input sequences
h and i. The predicted error coverage was then compared
with the results from the fault injection experiments,
called the observed results. To enhance the evaluation,
input sequenceh andi were also used as base sequences to
predict the results of the other two campaigns. Thereby,
six different predictions were performed.

In the rest of this section, three analyses are performed.
First, the error detection coverage is predicted, then the
error coverage is predicted and finally, as a comparison,
the error coverage is predicted using Execution Profile
Based Prediction [5].

4.1. Predicting error detection coverage

The results of predicting the error detection coverage
are shown in Figure 4-6. The figures show a comparison of
the predicted error detection non-coverage and the
observed error detection non-coverage using input
sequenceh, i and x as base sequences respectively. The
prediction technique is able to identify the input sequence
with the highest error detection non-coverage using base
sequencei or x. However, the prediction is incorrect when
using base sequenceh. This is because the observed error
detection coverage for input sequencei and x are very
similar; the difference is only ~2 % for faults injected into
the whole CPU and ~0.6 % for faults injected into the
cache. Whereas using base sequencesi or x, the differences
are more than 8 %.

Figure 4: Observed vs predicted error detection non-
coverage using input sequence h as the base

sequence.
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Figure 6: Observed vs. predicted error detection non-
coverage using input sequence x as the base

sequence
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4.2. Predicting error coverage

In this section the error coverage is predicted, i.e. the
overwritten and latent errors are also included. The results
of using the Path Based Error Coverage Prediction (PB)
are shown in Figure 7-9. The technique is able to identify
the input sequence with the highest error detection non-
coverage using base sequencei or x. However, similar to
what was observed in section 4.1, the prediction is
incorrect when base sequenceh is used since the
difference in error coverage for sequencei and x is too
insignificant.

Figure 7: Observed vs. predicted error non-coverage
using input sequence h as the base sequence.

Figure 8: Observed vs. predicted error non-coverage
using input sequence i as the base sequence.

Figure 9: Observed vs. predicted error non-coverage
using input sequence x as the base sequence.

4.3. Execution Profile Based Prediction

As a comparison, the Execution Profile Based
Prediction technique (EB) is also evaluated (see Figure
7-9). The technique is able to identify the input sequence
with the highest error non-coverage for the Registers and
for the Other registers, but for the Cache, the technique is
not able to correctly rank the input sequences. In [5], the
reason for this was assumed to be that faults injected in
the cache would not be activated for a considerable
amount of time, i.e. the activation latencies were long.
Since the Execution Profile Based Prediction technique
relies on the approximation that the basic block activating
a non-covered error is the same as the block executing
when the fault is injected, this approximation do not hold
for faults injected into the cache due to the long activation
latencies. (In the Path-Based Error Coverage Prediction
the actual activation is observed). However, for faults
injected in the register part the approximation hold, since
the activation latencies are short. These assumptions are
verified in this study. The results show that the observed
median activation latency for the cache is 54 cycles, while
the observed median activation latency for the Registers
and the Other registers is only 1 cycle (see Figure 10).

Figure 10: Activation latencies for input sequence i.

4.4. Results of fault injection campaigns

The results from the three performed fault injection
campaigns are presented in this section. Table 3 shows the
results of fault injection campaigns with each of the input
sequences. The results show that the input sequence has a
significant impact on the estimated error coverage. The
error coverage varies from 92.13% to 95.73%.

Table 3: Results of fault injection experiments
Name Input sequenceh Input sequencei Input sequencex

Number of injected
faults

13928 12831 13682

Non-effective errors 71,17± 0,75 % 67,69± 0,81% 69,16± 0,77%

Effective errors
Detected error 24,15± 0,71% 24,09± 0,74% 23,64± 0,71 %

Other error 0,41± 0,11% 0,35± 0,10% 0,33± 0,10 %

Escaped error 4,27± 0,34% 7,87± 0,47% 6,87± 0,42 %
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5. Discussion and conclusion

In this paper, a post-injection prediction technique,
called Path-Based Error Coverage Prediction, suitable for
simulation-based fault injection is presented. The
technique reduces the effort of estimating error coverage
when the input sequence to a workload program varies.
The need to consider input sequence variations when
estimating the error coverage using fault injection has
been shown in previous studies and was also verified in
this study, where the estimated error coverage varied more
than 4 percentage units for different input sequences. The
objective of the technique is to decrease the number of
fault injection experiments needed to be performed to
estimate the error coverage since it can be very time
consuming to conduct fault injection campaigns for each
input sequence.

The technique is applied by first performing a fault
injection campaign for an arbitrary input sequence. The
results of this campaign are then used to predict the
results of other input sequences. The prediction is made by
calculating error coverage factors for each of the basic
blocks executed by the workload program based on the
results obtained from the fault injection campaign. The
error coverage for an input sequence is then predicted by
means of a weighted sum of these coverage factors. The
weight factors are obtained by analysing the execution
path of the input sequence using a fault-free execution of
the workload. Thus, the technique enables the input
sequences to be ranked according to error coverage. Once
the ranking is done, fault injection experiments can be
performed for the input sequences predicted to have the
lowest (or highest) error coverage, to estimate the actual
error coverage values, thus giving an estimation of e.g.,
the worst-case error coverage.

Three fault injection campaigns were performed, each
with a different input sequence to a workload program
executing a quick-sort algorithm. The workload was
executed on the Thor microprocessor. The error coverage
ranged from 92.13% to 95.73% with corresponding 95%
confidence intervals of ±0.47% and ±0.34% respectively.
The results of each of these campaigns were used to
predict the results of the other two campaigns, thereby; six
different predictions were made. The results of the fault
injection experiments were compared with the predicted
results showing that the technique was able to identify the
input sequence with the highest or lowest error coverage
provided that the difference in actual coverage was
significant.

Only three fault injection campaigns were performed in
this study and only one workload was employed.
Therefore, more experiments are needed to verify the
technique. The technique could also be refined further by

e.g., using the results of the fault injection campaigns
conducted to estimate the actual coverage values, to make
new predictions of the error coverage of the other input
sequences in order to verify the original predictions. Also
the error coverage for each basic block can probably be
estimated more accurately using a mean value calculated
from several fault injection experiments. The technique
should also be applied on other systems to investigate
whether it is hardware dependent. In addition, there is
also a need to investigate how to calculate confidence
intervals for the predicted values.
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