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Abstract but also on the program executing on the system [2].
Previous studies have shown that error detection Further, the result may also be affected by the input
coverage and other dependability measures estimated bysequence to the program [3], [4], [5]. Therefore, when
fault injection experiments are affected by the workload. validating a dependable system, a workload similar to the
The workload is determined by the program executedone used when the system is in operation should be
during the experiments, and the input sequence to thechosen. However this may pose a problem, since the
program. In this paper, we present a promising analytical humber of input sequences that need to be considered can
post-injection prediction technique, called Path-Based be very large.
Error Coverage Prediction, which reduces the effort of ~ One way to reduce the effort of validating dependable
estimating error coverage for different input sequences. It computer systems is through pre-injection analysis and
predicts the error coverage for one input sequence basedpPost-injection analysis. Pre-injection analysis is performed
on fault injection results obtained for another input before any fault injection is performed to focus fault
sequence. Although the accuracy of the prediction is low, injection to specific parts of the fault space [6], [7], [8]. In
Path Based Error Coverage Prediction manages to POst injection analysis, the results from fault injection
correctly rank the input sequences with respect to error €xperiments are used to predict the outcome of other
detection coverage, provided that the difference in the experiments in order to speed up the validation
actually coverage is significant. This technique may Process [2].
drastically decrease the number of fault injection  We have previously investigated two post-injection
experiments, and thereby the time, needed to find thetechniques for predicting error coverage called Execution
input sequence with the worst-case error coverage amongPTOf”e Based Prediction and Data Usage Based Prediction
a set of input sequences. [5]. These techniques can predict variations in error
coverage for different input sequences. They predict the
error coverage for one input sequence using fault injection
1. Introduction results obtained for another input sequence. Execution
Profile Based Prediction relies on the fact that workload
Computer systems are increasingly being used ininput variations cause different parts of a program to be
applications that require high dependability. To be executed different number of times. Data Usage Based
confident that these systems deliver the correct service,Prediction takes into account that the input variations alter
they need to be validated. Both analytical and the usage of data. We used these techniques for predicting
experimental techniques are required to fully validate a the coverage for several hardware implemented error
dependable system. Fault injection [1] is an experimental detection mechanisms included in a microprocessor with
technigue that has shown to be an important means forrespect to single bit-flips injected in the microprocessor.
validating dependable systems. It can be used to study &ur experiments showed that the prediction techniques
system in the presence of faults and to identify could correctly rank input sequences according to error
dependability bottlenecks. One main goal is to determine coverage provided that the difference in the actual
the coverage of the error detection mechanisms. The errorcoverage is significant, although the accuracy of the
detection coverage can then be used in an analytical modepredicted coverage figures were low. In order to achieve
to calculate the reliability, availability and safety of a the ranking it was necessary to combine the two
system. techniques, using Execution Profile Based Prediction for
Studies have shown that the results from a fault bit-flips in registers and flip-flops, and Data Usage Based
injection experiment do not only depend on the hardware, Prediction for bit-flips in the cache. These prediction



techniques were primarily intended for fault injection 2. Predicting error coverage
techniques such as scan-chain implemented fault injection
(SCIFI) or software implemented fault injection (SWIFI), The Path-Based Error Coverage Prediction technique is
where the observability of the fault activation is low. an enhanced version of the Execution Based Prediction
In this paper, we present a new post-injection technique presented in [5]. It predicts the error coverage
prediction technique called Path-Based Error Coveragefor an arbitrary input sequence based on the results from
Prediction. This technique is intended for simulation- fault injection experiments with another input sequence,
based fault injection and utilizes the high observability called thebase-sequencélhe technique is based on the
available in simulations. In contrast to our previous fact that the execution path of the program varies for
prediction techniques, Path-Based Error Coveragedifferent input sequences. Depending on the input
Prediction show promising results for predicting the sequences, different parts of the program are executed
coverage for errors occurring in all parts of a different number of times. This is illustrated in Figure 1,
microprocessor. Thus, error coverage prediction can bewhere a program is divided intbasic blocks[9] (A-E)
made using a single method. and each basic block is executed a different number of
Path-Based Error Coverage Prediction can be used intimes depending on the input sequence.
the following way. Assume that we want to identify those
input sequences that give extremely high or low error Input K nputL [“Block | No. of No.of | Probability of

. . . times times non-covered
detection coverage among a given set of input sequences. o executed | executed errorfor
(The set of input sequences of interest is typically forinputi | for input L input L

determined by studying the usage of the evaluated system.)
Instead of conducting a fault injection campaign for each
input sequence, we conduct a single fault injection
campaign for an arbitrary input sequence and then apply
Path-Based Error Coverage Prediction to rank the input
sequences according to error detection coverage. Once the
ranking is done, we can conduct fault injection campaigns
with the “interesting” input sequences in order to
accurately determine the coverage figures of interest. Let, P,
This procedure significantly reduces the time it takes to e
identify input sequences with extremely high or low
coverage, as prediction is much faster than conducting
fault injection campaigns. The prediction uses information
about the usage of the program’s basic blocks for the inputThis is motivated by the fact that the activity of the system
sequence for which the prediction is made. This during execution of a basic block is the same regardless of
information can be collected during a single fault-free the input sequence used, i.e. the same instructions are
simulation of the program execution. The time needed for always executed in each basic block. However, this
the prediction is then determined by the time it takes to probability is likely to vary for different basic blocks in a
run this simulation. This time is approximately equal to program.
the time it takes to make one fault injection experiment,  The error coverage for an input sequepce, can be
i.e. to observe the effect of a single fault. calculated using the following equation for a workload
We have used this technique for estimating the nrogram containing basic blocks:
coverage of several hardware implemented runtime checks n
included in a microprocessor specially designed for use in c, =1—Z Prei W, (2.1)
highly dependable space applications. We injected single i=1
bit-flips inside the microprocessor to emulate the effects of
Single Event Upsets.
The paper is organized as follows: In the next section,
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Figure 1: Workload execution path differs for
different input data

denote the probability that a fault results in a

non-covered error, given that the fault is activated during
execution of blocki. The prediction is based on the
assumption thatP_.is constant for all input sequences.

nc,i

wherewp,i is a weight factor for block, corresponding
to the proportion of faults activated during execution of
the prediction technique is described. In section 3 the ?lofk' fo_r mpgtfsequencep out of th; tqtgl ”“mber zf
experimental set-up used to evaluate the prediction @UMts actl\(aFe for mput_sequenq:e nc,i's e_stlmate
technique is presented and in section 4 the predictionfrom fault injection experiments conducted with the base

technique is applied and evaluated. Finally, in section 5, input sequence as:
a discussion and conclusion is given.



2.2)

Wherenp j is the observed number of faults activated

when blocki is executing resulting in non-covered errors,
and nj is the total number of faults activated during

execution of blocki. The weight factow j is estimated
using the following equation:

N,
np

W,

(2.3)
Where ny, j is the number of faults activated during

execution of blocki for input sequencg and Ny is the

total number of faults activated for input sequepcélow,
Np,i is unknown, but it can be estimated based on the

number of activated faults for the base sequence as:

A, = = (2.4)

p.i

Where nj is the number of faults activated during
execution of block for the base input sequence, axds

the number of times blockis executed for the base input
sequence. Thusy; divided by x; gives the number of
activations per execution in block for the base input
sequence. This is multiplied with<p,i, which is the
number of times block is executed for input sequenpe
thereby giving an estimation aﬁp, the number of faults
activated during execution of blocki for input
sequence .

Ny can be estimated as the sum of the activated faults
for all then basic blocks of the base input sequence:
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; (2.5)

P,
Where n; is the number of faults activated during
execution of blockj for the base input sequence, | is

the number of times blockis executed for input sequence
o] andxj is the number of times blogkis executed for the

base input sequence.
By combining Equations 2.1-2.5, the predicted error
coverage for input sequenge Gp: can be estimated from

fault injection experiments conducted using a chosen bas
input sequence as:

1  Note that this definition requires that all basic blocks are executed at

least once for the chosen base input sequence (otherwise several inpué

sequences are required so that all basic blocks can be accounted for).
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(2.6)
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3. Experimental set-up

In this section the experimental set-up used to evaluate
the prediction technique is described. First, the target
system and the fault injection environment are presented
and then the error classifications and definitions used in
the experiments are given.

3.1. The Thor microprocessor

The experiments have been conducted on the Thor
processor [12]. The Thor microprocessor is developed by
SAAB Ericsson Space AB and is intended for highly
dependable space and military applications. It is a 32-bit
Reduced Instruction Set Computer (RISC) with a four-
stage pipe based on a stack-oriented instruction set
architecture. The data cache is a direct mapped, write-
back cache of 128 bytes (see Figure 2).
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Figure 2: The Thor Microprocessor

There are several error detection mechanisms

dmplemented in the Thor processor such rs-time

checks, control flow checkingnd main memory error

checking.There are 12 hardware exceptions included in
the run-time checks of Thor, see Table 1. The control flow
checking is used to check that the processor’s order of
xecution is correct. In this paper, the coverage of the run-
time checks and the control flow checking mechanisms



with respect to single event upsets (bit-flips) occurring value from zero to one or from one to zero. This fault
inside the microprocessor is investigated. The main model is reasonably accurate for SEUs (Single Effect
memory checking mechanisms are not evaluated since ndJpsets), caused by e.g. heavy ion radiation in the space

faults were injected into the main memory.

Table 1: Hardware exceptions in Thor

Exception Description

Bus error Bus time out of external memory

Address error Operand effective address larger than 2 Gbyte

Data error Chip input signal DE (Data Exception) is asserted by the

EDAC

Instruction error

lllegal instruction or trying to execute a privileged instructio|
user mode

pin

Jump error

Attempt to jump, call or return to a target address outside
memory address space

Constraint error

A constraint of run-time assertion instructions is not satisfig

mode

Access error Attempt to follow a null pointer

Storage error Attempt to access memory outside the task's stack in user|
Overflow check Overflow of signed integer and float arithmetic operations
Underflow check | Underflow or denormalized result of float arithmetic operat

ons

Division check

Division by zero

lllegal operation

lllegal operation for float and double arithmetic instruction

involving 0 andeo

3.2. Fault injection environment

Fault injection tool: The experiments were performed

environment or by neutrons at high altitude [11].

Fault locations: Faults are injected in 4410 internal
state elements of the Thor microprocessor, i.e. flip-flops
and latches. These state elements are divided in three
parts; Registers, Cachand Other registers(811, 1824
and 1775 locations respectively). The registers belonging
to the Register part are marked with an asterisk in
Figure 2. The Cache is located in the Operand Fetch (OF)
stage. All other state elements are grouped into the Other
registers part. No faults are injected in the Debug or the
TAPI (Test Access Protocol Interface) block.

3.3. Error classification and definitions

Errors are classified in two main categories, Non-
effective and Effective errors. The Non-effective errors
correspond to errors, which were either latent or
overwritten:

e Latent errorsindicate that the injected fault had no

using MEFISTO-C, which is an elaboration of the
MEFISTO tool [10]. MEFISTO-C injects faults in VHDL
models by utilising simulator commands that affect
signals and variables. .
Fault injection with MEFISTO-C is divided into three
phasesset-up, simulatiomnddata processingin theset-

effect on the program execution, but the observable
state of the CPU differed from the fault-free state
when the program finished.

Overwritten errorsindicate that the injected fault was
overwritten without causing any other effect on the
system.

up phasethe VHDL target and workload is chosen. The The Effective errors correspond to errors, which were
experiments are defined by the location of the injected gjther detected by the error detection mechanisms of the
faults in the VHDL mOdel, the activation time of the faults Thor CPU, caused a CPU Crash, or lead to incorrect result:

and the fault model to be used. A set of fault injection .
experiments is called a fault injection campaign. The
simulation phaseis conducted using a VHDL simulator,
which can be run on one or several Unix workstations. In
this case, the Vantage Optitithsimulator was used on
two workstations. Th&imulation phasetarts by making
a fault free run, called the reference simulation, and then
each of the experiments are performed. In ttata

Detected errors:Errors that were detected by the
Thor error detection mechanisms (See Table 1).

Other errors: Errors that caused the CPU to crash.
These errors are assumed to be detected by external
error detection mechanisms such as I'm alive signals.
Escaped errors: Errors that escaped the error
detection mechanisms causing a failure i.e., the sort-
algorithm produced an incorrect result.

processing phasethe trace data from the reference The Error coverages the percentage of errors that were
simulation is compared with the trace data from the fault yotecteq by an error detection mechanism of the total
injection experiment. The result from this comparison is umber of errors. The&Error detection coveragés the
analysed to extract information and evaluate the fault percentage of errors that were detected by an error

injection experiments. . detection mechanism of the total number of effective
Workload: The workload program is based on an Ada grors.

package implementing a recursive quick-sort algorithm, e activation timeof an injected fault is defined as
which sorts seven data elements of the predefined Adaihe time of the first propagation of a fault. If a fault is
type float. Fault injection is performed during the actual jyiected in the data cache, then the activation time is the
sorting of the seven data elements, which takes differentijme when the incorrect data is first used by the CPU. If a
number of cycles depending on the input sequence. After|5ient fault does not propagate, then the activation time is
the sorting is finished, the result is written to memory. equal to the time when the fault was injected. If an
Fault model: The fault model used is the single bit-fip  qyerwritten fault does not propagate, then the activation
fault, which affects state elements by changing a logical {ime is equal to the time when the fault was overwritten.



4. Applying and evaluating the prediction 4.1. Predicting error detection coverage

technique The results of predicting the error detection coverage

are shown in Figure 4-6. The figures show a comparison of

Prediction technique is applied and evaluated. Thethe predicted error detection non-coverage and the
technique is applied by first selecting set of input observed error detection non-coverage using input
sequences. The set of input sequences used in this study€duUeNcen, i andx as base sequences respectively. The
called input sequenca—x, are 24 randomly chosen pr_edlctlon _technlque is able to identify the input sequence
permutations of the same seven elements to be sorted bﬁ’/‘"th the _h|ghest error detection non-coverage using base
the quick-sort program. A fault-free simulation of the SSdUence orx. However, _th_e prediction is incorrect when
program execution was then performed for each of the USiNg _base sequente Th_ls is because_ the observed error
chosen input sequences to determine their execution path<I€tection coverage for input sequenicand x are very

In addition, a fault injection campaign was performed on similar; the difference is only ~2 % for faL_JIt_s |njec'ged into
the arbitrarily chosen input sequenceThe results from  the whole CPU and ~0.6 % for faults injected into the
the fault injection campaign conducted on the base inputcache. Whereas using base sequences;, the differences
sequence, and the information about the execution paths &€ more than 8 %.

of input sequences—wwere then used to predict the error _

. . 40,0% DO Predicted
coverage for each of the input sequenaes according to 35.0% 3365 3424 | ed
equation 2.6. Figure 3 shows that the prediction technique 5y
identifies input sequencésandp to have the highest error 25,0% -
non-coverage and input sequengeto have the lowest 20,0% -
error non-coverage. The final step would be to conduct 150% |
fault injection campaigns on the input sequences that were 199% 1

. 5,0% -
predicted to have the most extreme error coverage, to OOO/“
,U70

In this section, the Path-Based Error Coverage

accurately eStimate the reSUltS' All x Alli Reg.x Reg.i Cachex Cachei Oth.x Oth. i
;gj Figure 4: Observed vs predicted error detection non-
6’80,2 6.8 68 . coverage using input sequence h as the base

& 6790 |67 s:655] |57 o sequence.
S 660 5[l|00006.6 ’ M_65 6655] |se |
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Flgure 3: PredICted error non-Coverage USIng InpUt All x Allh Reg.x Reg.h Cachex Cacheh Oth.x Oth.h

sequence x as the base sequence. ) ) )
Figure 5: Observed vs predicted error detection non-

In order to evaluate the accuracy of the prediction coverage using input sequence j as the base
technique two more fault injection campaigns were sequence.
conducted on the arbitrarily chosen input sequences oo | BPredcted
h andi. The predicted error coverage was then compared 3s0% R Bobserved 1

with the results from the fault injection experiments, 30.0%
called the observed results. To enhance the evaluation, 2°%%
. . 045 4
input sequench andi were also used as base sequences to *>%”

predict the results of the other two campaigns. Thereby, izgj

six different predictions were performed. 5,0% |
In the rest of this section, three analyses are performed. o,0% -
First, the error detection coverage is predicted, then the Allh- Alli Reg.h  Reg.i Cacheh Cachei Oth.h  Oth.i

error coverage is predicted and finally, as a comparison, Figure 6: Observed vs. predicted error detection non-
the error coverage is predicted using Execution Profile coverage using input sequence x as the base
Based Prediction [5]. sequence



4.2. Predicting error coverage

In this section the error coverage is predicted, i.e. the

4.3. Execution Profile Based Prediction

As a comparison, the Execution Profile Based

overwritten and latent errors are also included. The resultsPrediction technique (EB) is also evaluated (see Figure
of using the Path Based Error Coverage Prediction (PB)7-9). The technique is able to identify the input sequence
are shown in Figure 7-9. The technique is able to identify with the highest error non-coverage for the Registers and
the input sequence with the highest error detection non-for the Other registers, but for the Cache, the technique is

coverage using base sequemna® x. However, similar to
what was observed in section 4.1, the prediction is
incorrect when base sequende is used since the
difference in error coverage for sequericand x is too

DO Predicted PB

insignificant.
20,0%
18,0% 17,56
16,0% 15,73
14,0%
12,0%
10,0% 9.6 9.50
o | 687  7.87
2:8% ,4’2 4,27
40% | 4,174,24
2,0% 0,44 034
0.0% | 013,013 0,13 0,13
All x Alli Reg.x Reg.i Cachex Cachei

@ Observed
OPredicted EB

1.36

0,72 0,730 72 0,76

Oth.x  Oth.i

Figure 7: Observed vs. predicted error non-coverage
using input sequence h as the base sequence.
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Figure 8: Observed vs. predicted error non-coverage
using input sequence i as the base sequence.

20,0%

not able to correctly rank the input sequences. In [5], the
reason for this was assumed to be that faults injected in
the cache would not be activated for a considerable
amount of time, i.e. the activation latencies were long.
Since the Execution Profile Based Prediction technique
relies on the approximation that the basic block activating
a non-covered error is the same as the block executing
when the fault is injected, this approximation do not hold
for faults injected into the cache due to the long activation
latencies. (In the Path-Based Error Coverage Prediction
the actual activation is observed). However, for faults
injected in the register part the approximation hold, since
the activation latencies are short. These assumptions are
verified in this study. The results show that the observed
median activation latency for the cache is 54 cycles, while
the observed median activation latency for the Registers
and the Other registers is only 1 cycle (see Figure 10).

100% +
80% 1+ ¥
60% ——0— Other
40% f)z( Register
20%

O%JHHHHHHHHHHHHHHHHHHHH

0 125 250 375 500 625 750 875 1000
cycles

Cache

Figure 10: Activation latencies for input sequence 1.
4.4. Results of fault injection campaigns

The results from the three performed fault injection
campaigns are presented in this section. Table 3 shows the
results of fault injection campaigns with each of the input
sequences. The results show that the input sequence has a
significant impact on the estimated error coverage. The

18.0% 17,56 OPredicted PB
16.0% 1545 15695 4 JJ15.72| mObserved error coverage varies from 92.13% to 95.73%.
14,0% || OPredicted EB
12.0% 9.67 Table 3: Results of fault injection experiments
1‘;'33‘ 6.60 6,61 7,87 Name Input sequench | Input sequencg| Input sequence
)y 0 ~ ..
s.0m L1 128 Number of injected 13928 12831 13682
4,0% - 136 aults
2,0% - 0.40 0.40 0’34340’44 063 070071 Non-effective errors| 71,17+ 0,75 %| 67,6%0,81%| 69,16:0,77%
0% Q 12 , 0, (¢] -
0.0% Effective errors
All' h Alli Reg.h Reg.i Cacheh Cachei Oth.h Oth. i

Figure 9: Observed vs. predicted error non-coverage
using input sequence x as the base sequence.

23,64£0,71 %
0,33 0,10 %
6,87 0,42 %

Detected error
Other error
Escaped error

24,15+ 0,71%
0,41+0,11%
4,27+ 0,34%

24,0%0,74%
0,35t 0,10%
7,8%0,47%




5. Discussion and conclusion e.g., using the results of the fault injection campaigns
conducted to estimate the actual coverage values, to make

In this paper, a post-injection prediction technique, new predictions of the error coverage of the other input

called Path-Based Error Coverage Prediction, suitable forsequences in order to verify the original predictions. Also

simulation-based fault injection is presented. The the error coverage for each basic block can probably be

technique reduces the effort of estimating error coverageestimated more accurately using a mean value calculated

when the input sequence to a workload program varies.from several fault injection experiments. The technique

The need to consider input sequence variations whenshould also be applied on other systems to investigate

estimating the error coverage using fault injection has whether it is hardware dependent. In addition, there is

been shown in previous studies and was also verified inalso a need to investigate how to calculate confidence

this study, where the estimated error coverage varied mordntervals for the predicted values.

than 4 percentage units for different input sequences. The
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