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Abstract 
This paper describes a framework for achieving 

node-level fault tolerance (NLFT) in distributed real-

time systems. The objective of NLFT is to mask errors 

at the node level in order to reduce the probability of 

node failures and thereby improve system 

dependability. We describe an approach called light-

weight NLFT where transient faults are masked locally 

in the nodes by time-redundant execution of 

application tasks. The advantages of light-weight 

NLFT is demonstrated by a reliability analysis of an 

example brake-by-wire architecture. The results show 

that the use of light-weight NLFT may provide 55% 

higher reliability after one year and almost 60% 

higher MTTF, compared to using fail-silent nodes. 

1. Introduction  

An important class of fault-tolerant computer 
systems is those used for real-time control of safety-
critical applications. Classical examples are 
computerized flight control systems, known as fly-by-
wire systems, which have been in use for more than a 
decade in commercial airplanes and even longer in 
military aircraft. The automotive industry has recently 
started development of sophisticated active safety 
systems and brake-by-wire systems. These systems are 
expected to reach the market within a few years. 

The design principles of existing fault tolerant space 
and aviation systems have proven very successful, but 
are often too costly for emerging applications such as 
micro-satellites, unmanned air vehicles, and active 
safety systems for road vehicles. Thus, a current trend 
is to use distributed systems that are implemented 
using generic platforms, which allow development of 
different systems with varying dependability 
requirements. Examples of generic platforms are the 
Time-Triggered-Architecture [1] and GUARDS [2]. 
 

 

A distributed system consists of several computers, 
or nodes, that interact via a communication network. 
Fault-tolerance is achieved by executing critical 
programs redundantly on two or more nodes. The 
number of redundant nodes required depends on the 
failure modes of the nodes. If we use nodes that may 
deliver erroneous outputs without any error indication, 
we need majority voting to mask errors requiring at 
least 2f+1 nodes to tolerate f node failures. Another 
approach is to use fail-silent nodes [1,3]. A fail-silent 
node produces either correct outputs, no outputs, or 
outputs that can be identified as erroneous by the 
receiver. This property makes it possible to use f+1 
nodes to tolerate f node failures, which minimizes the 
number of the nodes in the system [4]. 

The use of fail-silent nodes is therefore an attractive 
solution for reducing the number of nodes in the 
system. However, the fail-silent property requires that 
the nodes are equipped with adequate internal error 
detection mechanisms. This increases the complexity 
and thereby the cost of the nodes. Optimizing the cost 
of fault-tolerant distributed systems therefore involves 
a trade-off between the complexity of the nodes and 
the number of redundant nodes required. 

Systems that rely on fail-silent nodes generally shut 
down their operation for both transient and permanent 
faults. Thus, all faults regardless of their duration lead 
to node failures that must be handled at the system 
level by means of a distributed redundancy 
management protocol. 

In this paper, we propose the use of node-level fault 
tolerance (NLFT) as a complement to system-level 
fault tolerance. The objective of NLFT is to mask 
errors at the node level in order to reduce the 
probability of node failures and thereby improve 
system dependability. To keep the cost of NLFT low, 
we propose an approach to node-level fault tolerance 
called light-weight NLFT in which only transient faults 
are masked at the node level. More precisely, light-
weight NLFT corresponds to using nodes that (i) mask 
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the effects of most transient faults locally in the node 
and (ii) exhibit omission or fail-silent failures for all 
permanent faults and all those transient faults that 
cannot be masked by the node itself. Thus, the term 
light-weight refers to the fact that only a subset of the 
faults is tolerated at the node level. The main purpose 
of light-weight NLFT is to make systems more 
resilient to transient faults. Transient faults are much 
more common than permanent faults in digital systems 
and, because of technology scaling, the frequency of 
transient faults is expected to increase in future 
systems [5]. 

Tolerating transient faults at the node level is clearly 
an advantage in systems that use two fail-silent nodes, 
as it allows the system to survive transient faults also 
when one of the nodes have failed permanently. It also 
improves the robustness of the system when both 
nodes are affected by correlated or near-coincident 
transient faults. Tolerating transient faults at the node 
level may also reduce hardware costs, as fewer 
redundant (active or spare) nodes may be required to 
achieve a given level of system dependability. 

The framework presented in this paper describes the 
principles for light-weight NLFT and proposes a set of 
error handling mechanisms suitable for a low-cost 
implementation. In addition, the advantages of light-
weight NLFT are demonstrated by a reliability analysis 
of an example brake-by-wire architecture.  

Our approach is based on a real-time kernel that 
operates on commercial off-the-shelf (COTS) 
processors. The key element for tolerating transient 
faults is a time redundancy approach called temporal 

error masking, or TEM [7]. In TEM, a critical task is 
executed twice and the two results are compared; if 
they do not match or if errors are detected by other 
mechanisms, an additional execution of the task is 
started to allow a majority vote on three results. To 
cope with the dynamic nature of TEM, the real-time 
kernel uses fixed-priority preemptive scheduling [6]. 
Technology trends in microprocessor technology have 
shown a tremendous increase in processing power in 
recent years. The resulting decline in the price of 
processing power has made time redundancy an 
attractive approach for achieving fault tolerance in 
real-time systems.  

The real-time kernel and parts of the mechanisms 
proposed have previously been implemented and 
evaluated using fault injection. This includes 
implementation and evaluation of temporal error 
masking (TEM) for the Thor microprocessor [7], and 
an implementation and evaluation of a real-time kernel 
with extensive internal error detection and the support 
of TEM for the Motorola 68340 microcontroller [8]. 

The next section describes the design principles for 
light-weight NLFT and Section 3 demonstrates the 

usefulness of the approach by calculating and 
comparing the reliability for two versions of a brake-
by-wire systems, one with and one without light-
weight NLFT. The conclusions of this study and future 
work are given in Section 4. 

2. Light-weight NLFT 

In this section, we first discuss the distributed 
architecture considered and the redundancy concepts 
that may most favor the use of NLFT. The light-weight 
NLFT approach is then described. 

2.1 Hardware architectures considered 

For cost-effective implementation, we consider only 
distributed systems that employ single computer nodes 
(simplex configuration) or double computer nodes 
(duplex configuration), see Figure 1. A computer node 
in such a system conceptually consists of a host 
processor with memory (Host) and a network interface 
(NI). The duplex configuration execute in active 
replication to allow permanent faults to be tolerated. 

 
 
 
 
 
 
 
 

Figure 1. Distributed architecture 

The network and the network interface are treated as 
a separate entity that we assume provides reliable 
transmission of messages. We assume that the 
communication protocol is time-triggered, or even 
more preferable, offers a mix of event- and time-
triggered communication (such as provided by the 
FlexRay protocol [9]). Time-triggered scheduling is 
used for all critical messages, while support for event-
triggered scheduling may be advantageous as it allows 
for fast handling of sporadic activities. 

2.2 Objective and basic approach 

Our light-weight NLFT approach is intended for 
improving the dependability of nodes by tolerating the 
majority of the errors caused by transient faults in the 
host. We consider a host processor based on a single 
COTS microprocessor, where a real-time kernel 
controls the execution of tasks. In our approach, we 
implement support for light-weight NLFT in the real-
time kernel, thus allowing the programmer to focus on 
the application. 
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Implementing mechanisms for masking the effect of 
all transient faults may lead to unacceptable overheads. 
Hence, the objective of the light-weight NLFT 
approach is to mask the majority of the transient faults 
in critical tasks. Permanent faults and transient faults 
that cannot be tolerated must be handled at the system 
level. The following strategies are chosen for faults 
affecting critical tasks, non-critical tasks or the real-
time kernel: 
1. Critical tasks - The objective is to tolerate all 

transient faults occurring in critical tasks. If there 
is not enough time to recover from an error and 
meet the deadline, an omission failure is enforced, 
which must be handled at the system level 

2. Non-critical tasks - If an error is detected during 
execution of a non-critical task, the task is shut 
down to allow continued operation of the 
remaining tasks. Hence, any interaction between 
critical tasks and non-critical tasks must be 
avoided so that a critical task is not affected by the 
failure of a non-critical task. 

3. Real-time kernel - Errors detected during 
execution of the real-time kernel should result in 
the node becoming silent. Thus, recovery must be 
handled at the system level. This may be 
acceptable since the kernel's execution time 
typically represents only about 5% of a processor's 
total execution time [10]. 

Omission failures may be allowed in a duplex 
configuration since the partner node can provide the 
service. Omission failures may also be allowed in a 
simplex configuration if the system is able to use a 
previous value, a default value, or, as is the case for 
some control systems, withstand a certain delay in the 
delivery of the control signal without losing  
stability [11]. 

2.3 Error handling 

The error detection mechanisms provided by 
modern microprocessors will detect many errors. 
However, the effects of certain faults may pass 
undetected. Therefore, additional error handling must 
be provided at the node-level. 

Node-level fault tolerance may be realized using 
software-implemented techniques, which may be 
application specific or systematic (application 
independent). Application specific techniques utilize 
detailed information about the application to allow 
custom designed error handling, while systematic 
techniques rely on the use of duplication in space or 
time. Systematic techniques generally incur higher 
overhead than application specific approaches, but are 
simpler to use for the system designer since they do not 
require application specific knowledge. Moreover, 

separating the error handling mechanisms from the 
application generally reduces the complexity of the 
system [12]. 

In our approach, systematic techniques are used to 
tolerate faults in critical tasks, while specific 
techniques, such as assertions and range checks, are 
used to detect errors affecting the kernel. In this paper, 
we do not discuss the error handling for the kernel 
further - an experimental study of a prototype kernel 
supporting node-level fault tolerance can be found in 
[8]. Examples of error handling mechanisms suitable 
for low-cost implementation of light-weight NLFT are 
given in Table 1. Note that we rely on a combination of 
hardware and software error handling techniques to 
achieve NLFT.  

Table 1. Examples of error handling suitable 
for implementing light-weight NLFT 

Hardware techniques Description 

CPU hardware exceptions CPU run-time error detection 
mechanisms 

Error correcting codes (ECC) Detects and corrects errors in 
memories 

Memory management unit 
(MMU) 

Detects memory accesses outside 
the task's allowed memory area 

Software techniques 

provided by kernel  

Description 

Temporal error masking 
(TEM) 

Detects and tolerates computation 
errors caused by, e.g. transient 
faults in data registers, adders or 
multipliers 

Execution time monitoring Detects timing violations for 
individual tasks 

Data integrity checks and  
end-to-end error detection 

Detects errors in internal data 
structures and errors in input and 
output data 

2.4  Hardware techniques and timing checks 

Current state-of-the-art COTS microprocessors 
provide extensive error detection mechanisms (EDMs) 
such as illegal op-code detection, address range 
checking and error correcting codes (ECC) on 
memories and caches. Often, they also provide a 
memory management unit (MMU), which supports 
fault confinement between tasks or between tasks and 
the kernel. This simplifies fault tolerance, as we only 
need to consider recovery of the affected task. To 
ensure that a task does not execute for too long, which 
may prevent other tasks from executing, an execution 

time monitor may be used. For example, budget timers 
[2] may be used to monitor the execution time of 
individual pre-emptive tasks. Such a mechanism allows 
the action taken when an error is detected, to be 
decided for each tasks, e.g. conduct a recovery of the 
affected task. 



 

2.5 Temporal error masking 

To support transparent error handling in a real-time 
kernel, temporal error masking (TEM) is used. In 
TEM, the kernel executes all critical tasks twice and 
compares the results in order to detect errors. A third 
execution is started if an error is detected by the 
comparison or by any hardware or software EDM. This 
allows the kernel to mask errors by conducting a 
majority vote on three results. To ensure that the 
recovery of an erroneous task does not lead to any 
deadline violations, sufficient slack must be provided 
in the schedule, see Section 2.8. 

Figure 2 shows our basic model for a critical task, 
which is assumed to be executed in a periodic read 

input - compute - write output loop. The input data are 
received first from input devices or from other tasks. 
The input data are then processed and the results sent 
to actuators or to other tasks in the system at the end of 
the loop. 

 
 
 
 
 
 
 
 

Figure 2. Task model 

Figure 3 shows three different scenarios using TEM: 
in fault-free operation (i), a critical task, T, is executed 
two times (denoted T1 and T2) and a comparison is 
made to detect errors. As the results match, a third 
copy does not have to be executed and the time may be 
used by other tasks. In (ii) an error is detected by the 
comparison and a third copy of the task, T3, is then 
executed. The results of the three copies are checked 
by a majority vote. If the majority voter detects two 
matching results, these are accepted as a valid result of 
the task. Otherwise, no result is delivered, which leads 
to an omission failure. 

In (iii), an error is detected by a hardware 
mechanism or another node level mechanism. The 
affected copy, T2, is then terminated and a new copy, 
T3, is started immediately. The new copy will use time 
reclaimed from the terminated copy as well as time 
from any available slack. A comparison is made to 
confirm that the results match before a result is 
delivered. For errors detected by CPU EDMs, the task's 
CPU state context, e.g. the program counter (PC) and 
stack pointer (SP) etc., is restored to the initial 
conditions from information stored in the task control 
block in the kernel. The reason for restoring the 
complete context is that errors detected by hardware 

exceptions often originate from faults in the CPU 
registers. For example, in [8] we showed that an illegal 

instruction exception may occur as a result of faults in 
the PC register and that address and bus exceptions are 
often triggered by faults in the SP register. When errors 
are detected by the comparison of a task, we assume 
that the error only affects the data computations; new 
copies can therefore be started without restoring the 
CPU context. Scenario (iv) is similar to scenario (iii), 
but the fault occurs in copy T1. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Error detection and recovery using 
temporal error masking 

The kernel always checks the deadline of the task 
after an error is detected to determine whether it is 
possible to execute an additional task copy and still 
meet the deadline. Even if additional time is reserved 
in the schedule to handle recovery, enough time may 
not be available, e.g. because more faults than 
anticipated occurs. In this case, no result is delivered 
and an omission failure occurs. If time is available, a 
new copy is started. The task result is delivered and the 
state data are only updated when two matching results 
have been produced. Errors that are repeated for some 
time are considered to be caused by permanent faults. 
In this case, the node is shut down for off-line 
diagnosis to establish whether a transient or a 
permanent fault caused the error. For transient faults, 
the node may be re-integrated. 

2.6 Data integrity checks and end-to-end error 

detection 

Data used for the computations in the task must not 
only be protected during the actual computation, but 
also before and after the computation. This is often 
referred to as end-to-end error detection [4]. We 
assume that the memory is protected from direct faults 
using ECC, see Table 1. Furthermore, static data such 
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as program code and constants may be saved in read 
only memory and may therefore not be erroneously 
overwritten. However, additional protection is needed 
to ensure the integrity of the input data, state data and 
result data. Faults occurring in the CPU affecting the 
input data or state data during the computations of the 
individual copies may be detected by the comparisons, 
while faults occurring when data are stored to memory 
may cause data to be overwritten or to be written to an 
erroneous location in memory. There are a number of 
techniques that can be used to detect such errors. The 
simplest is to duplicate the data and conduct a 
comparison before it is used to reveal discrepancies. To 
protect larger data structures, it may be more effective 
to generate CRC checksums for the data. 

For a duplex configuration, errors that are detected 
may be handled by exhibiting an omission failure, 
since the partner node provides the full service. 
Recovery of input data may be conducted by simply 
obtaining new data in the next cycle, and eventual state 
data may be recovered by obtaining the partner node's 
state data. For a simplex configuration, errors in the 
state data may be handled in different ways depending 
on the application. For example, triplication of data 
may be employed to mask the effect of faults, or the 
node may just be shut down for a fail-safe system. 

2.7 Control flow errors 

Faults may cause control flow errors, i.e. deviation 
from the correct execution order, and thus cause 
failures. The MMU provided by the processor may 
detect control flow errors as the task's address range is 
bounded. If the control flow error causes the task to 
execute too long, the error may also be detected by the 
execution time monitoring mechanism. In addition, 
TEM will also detect control flow errors within a task 
if the error affects the result and the comparison/voting 
is executed correctly. There is, however, a small risk 
that a control flow error may cause the execution to by-
pass the comparison/voting by erroneously jumping 
directly to the code that writes the checked/voted result 
to main memory or to an output device. Specific 
checks should be provided to avoid that such control 
flow errors pass undetected.  

2.8 Real-time requirements 

The TEM approach relies on event-triggered fault 
handling, since recovery (through execution of a third 
copy of the affected task) should only be initiated when 
an error is detected. The kernel therefore uses fixed 

priority (FP) pre-emptive scheduling [6]. 
 In fixed priority scheduling, the priority of each 

task is determined before run-time. FP scheduling 

allows both periodic and sporadic task executions 
where the task with the highest priority is always 
allowed to execute first. In our kernel, priority 
assignments are made on the basis of the criticality of 
the task. The criticality of a task relates to the 
consequences of a failure of the task, e.g. a brake 
request is assigned a higher priority than a diagnostic 
request. Since the scheduling is pre-emptive, a task is 
suspended whenever another task with higher priority 
requires access to the CPU. 

To ensure that critical tasks meet their deadlines 
also in the presence of errors, we assume that a fault-
tolerant scheduling algorithm supporting fixed priority 
scheduling is employed. Fault-tolerant scheduling [6] 
guarantees that all tasks meet their deadlines, even in 
the presence of a specified number of faults. To allow a 
failed task to re-execute without causing other tasks to 
miss their deadlines, extra time (slack) must be 
reserved a priori and be accounted for in a 
schedulability test. The amount of extra time needed 
depends on the number and type of faults anticipated.  

3. Dependability analysis 

The ability to recover quickly may significantly 
increase the dependability of systems. This is 
exemplified in this section through a dependability 
analysis of a distributed brake-by-wire (BBW) 
architecture, which is a typical example of the kind of 
safety-critical distributed systems considered here. In 
particular, we examine the dependability of the BBW 
architecture using conventional fail-silent computer 
nodes, as compared to using nodes with light-weight 
NLFT. 

3.1 Brake-by-wire system  

A distributed architecture for a brake-by-wire 
system can be implemented according to Figure 4. The 
brake pedal is connected to a central unit (CU). The 
central unit handles the all-embracing control, 
distributing the correct brake force to each wheel node 
(WN). The control algorithms in the individual wheel 
nodes then ensure that the requested brake force is 
applied to the respective wheel in the most favorable 
way. 

The architecture considered consists of one duplex 
configuration for the central unit and a simplex 
configuration in conjunction with a brake actuator for 
each wheel. A simplex configuration is used for the 
wheel nodes in order to reduce equipment costs. This 
configuration may be used since the driver can still 
brake the vehicle if one wheel node fails. That is, the 
system can change to a degraded functionality mode 
where the brake force is distributed to the remaining 



 

fault-free wheel nodes after a node failure. However, 
the efficiency of the brakes will be substantially 
degraded. Thus it is desirable to reduce the probability 
of entering the degraded functionality mode. 

 
 
 
 
 
 
 
 
 

Figure 4. Example of a distributed BBW 
architecture 

3.2 Reliability Modeling 

We evaluate the reliability of the brake-by-wire 
system in this study. The reliability, R(t), of a system is 
the probability that the system is operating correctly 
throughout a specific time interval, given that the 
system was operating correctly at the start of that 
interval. 

In the following, the BBW architecture will be 
studied with respect to both full and degraded 
functionality. Full functionality mode refers to a 
requirement that all wheel nodes and one central unit 
node must function correctly; otherwise a system 
failure has occurred. In the degraded functionality 
mode, the requirement is that at least three wheel nodes 
and one central unit node must function correctly; 
otherwise a system failure has occurred. To simplify 
the analysis, only the nodes of the BBW system are 
included. Thus, failures of the actuators, sensors and 
communication busses are not considered. 

The reliability of the BBW architecture is calculated 
using the SHARPE (Symbolic Hierarchical Automated 
Reliability and Performance Evaluator) tool [13]. 
SHARPE allows various models such as fault trees, 
reliability block diagrams (RBD) and Markov models 
to be specified and dependability measures to be 
obtained. 

 
3.2.1. Description of nodes. In our analysis, we 
consider both permanent and transient faults. A 
permanent fault occurs at a specific time and remains 
in the system requiring the faulty component to be 
either repaired or replaced. A transient fault occurs at a 
specific time and exists only for a limited period of 
time in the system.  

The fault rate (λ) of a node refers to the occurrence 
rate of activated faults in the node, i.e. faults that 
generate errors in the node. Faults whose effects are 
overwritten or latent are not included in the fault rate. 

Two types of nodes are considered; fail-silent 
computer nodes (called FS nodes), and nodes with 
light-weight NLFT (called NLFT nodes). Their 
intended behavior in presence of errors is as follows: 

FS nodes: If an error is detected by one of the 
node’s EDMs, then the node exhibits a fail-silent 
failure, i.e. the node immediately stops producing 
results and is excluded from the distributed system. 
The node is automatically restarted, and a diagnostic 
program establishes whether the failure was caused by 
a transient or a permanent fault. If the node is found to 
fault-free by the diagnostic test, the node is re-
integrated into the distributed system. 

NLFT nodes: Transient faults and their 
corresponding errors can be handled in three ways: i) 
the error is masked by TEM, ii) the error is detected 
and an omission failure occurs or iii) the error is 
detected and a fail-silent failure occurs. An omission 
failure occurs if there is not enough time to re-execute 
a task a third time before the task’s deadline, or if three 
different results are produced in TEM. A fail-silent 
failure occurs if an error is detected during execution 
of the kernel. Such failures are handled in the same 
way as in the case of FS nodes. 

Non-covered errors, i.e. errors that escape all EDMs, 
may cause both the FS nodes and NLFT nodes to 
deviate from their intended behaviors. We make the 
pessimistic assumption that all non-covered faults lead 
to a system failure of the entire BBW system.  

 
3.2.2. Basic assumptions and notations. We assume 
that faults occurring in one computer node are 
statistically independent of faults occurring in other 
computer nodes. We also assume that the fault rate and 
the repair rate are constant over time, i.e. the time to 
failure and the time to repair are exponentially 
distributed. All nodes are assumed to have the same 
complexity and exposure to the environment, and 
thereby the same fault rate. The repair (recovery) 
action is assumed to be fault-free. Correlated faults are 
not considered. A correlated fault occurs when a single 
fault affects more than one component at one point in 
time. Neither is repair of permanent faults considered. 
The following notations are used in the models: 

 
λP Permanent fault rate 
λT Transient fault rate 
CD Error detection coverage, i.e. the conditional 

probability that an error is detected given that a 
fault has occurred. 

PT Given that an error caused by a transient fault is 
detected, this denotes the probability that the 
system can mask the effect of the fault using TEM 

POM Given that an error caused by a transient fault is 
detected, this denotes the probability that a node 
exhibit an omission failure 
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PFS Given that an error caused by a transient fault is 
detected, this denotes the probability that a node 
exhibits a fail-silent failure 

µR Repair rate for restart. This refers to the time 
required for a node to restart and reintegrate into 
the distributed system after a fail-silent failure 

µOM Repair rate for omission failures. This refers to the 
time required for a node to reintegrate into the 
distributed system after an omission failure 

 

3.2.3. BBW System. A hierarchical approach similar 
to [14] is used to construct the reliability model of the 
BBW architecture. Figure 5 shows the fault tree model 
that represents the overall system. The basic 
components of the fault tree are the central unit and the 
wheel node subsystem that consists of the four wheel 
nodes. A failure of any subsystem results in a system 
failure. The hierarchical approach used allows the 
various parts of the system to be assessed separately 
and reliability bottlenecks to be identified. 

 
 
 
 
 
 
 

Figure 5. Fault tree model for the BBW system 

 

3.2.4. Central Unit Subsystem. The central unit with 
two FS nodes can be modeled as a continuous-time 
Markov model according to the state transition diagram 
in Figure 6. The model consists of four states: 
 
 

State Description 
0 Both computer nodes are working correctly 
1 One of the computer nodes is affected by a 

permanent fault and is permanently down. The 
other node continues to provide service 

2 One of the computer nodes is affected by a 
transient fault and is temporary down. The other 
node continues to provide service 

F Failure. Two computer nodes are shut down. 
Either due to a failure of two nodes, or an 
undetected error in one node 

 
 
  
 
 
 
 
 

 

Figure 6. State transition diagram for the 
central unit with FS nodes 

When NLFT nodes are used, the effect of a transient 
fault is tolerated with the probability of PT, an omission 
failure occurs with the probability of POM, or a fail-
silent failure occur with the probability of PFS. The 
state transition diagram for the central unit with NLFT 
nodes is shown in Figure 7. The model consists of five 
states: 

 

State Description 
0 Both computer nodes are working correctly 
1 One of the computer nodes is affected by a 

permanent fault and is permanently down. The 
other node continues to provide service 

2 One of the computer nodes is affected by a 
transient fault and is temporary down. The other 
node continues to provide service 

3 One of the computer nodes is affected by a 
transient fault and produces an omission failure. 
The other node continues to provide service 

F Failure. Two computer nodes are down. Either due 
to a failure of two nodes, or an undetected error in 
one node 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7. State transition diagram for the 
central unit with NLFT nodes 

 

3.2.5. Wheel Node Subsystem. When the full 
functionality mode is considered, the failure of any of 
the wheel nodes can cause the wheel node subsystem 
to fail. An RBD model of the system with FS nodes is 
shown in Figure 8. 
  
 
 

Figure 8. RBD for the wheel node subsystem 
with full functionality mode and FS nodes 

Figure 9 shows the state transition diagram for the 
wheel node subsystem for degraded functionality mode 
when FS nodes are used. In contrast to the full 
functionality mode, the degraded functionality mode 
also allows re-integration of failed nodes since the 
system can operate when only three wheel nodes are 
working. The model consists of four states: 
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State Description 
0 All four computer nodes are working correctly 
1 One of the computer nodes is affected by a 

permanent fault and is permanently down. The 
other nodes continue to provide their service 

2 One of the computer nodes is affected by a 
transient fault and is temporary down. The other 
nodes continue to provide their service 

F Failure. Two computer nodes are shut down. 
Either due to a failure of two nodes, or an 
undetected error in one node 

 
 

 
 
 
 
 

Figure 9. State transition diagram for the 
wheel node subsystem with degraded 

functionality mode and FS nodes 

Figure 10 shows the state transition diagram for the 
wheel node subsystem with full functionality mode and 
NLFT nodes. State 0 represents the fault-free state 
where all four wheel nodes are working correctly or 
transient faults occur that are masked by TEM. The 
transition from state 0 to state F occurs in the case that 
a wheel node is affected by a permanent fault or, that a 
wheel node is affected by a transient fault that cannot 
be masked by TEM. 

 
 
 
 

Figure 10. State transition diagram for the 
wheel node subsystem with full functionality 

mode and NLFT nodes 

Figure 11 shows the state transition diagram for the 
wheel node subsystem when NLFT nodes and 
degraded functionality is considered. The model 
consists of five states: 

 

State Description 
0 All four computer nodes are working correctly 
1 One of the computer nodes is affected by a 

permanent fault and is permanently down. The 
other nodes continue to provide their service 

2 One of the computer nodes is affected by a 
transient fault and is temporary down. The other 
nodes continue to provide their service 

3 One of the computer nodes is affected by a 
transient fault and produces an omission failure. 
The other nodes continue to provide their service 

F Failure. Two computer nodes are shut down. 
Either due to a failure of two nodes, or an 
undetected error in one node 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 11. State transition diagram for the 
wheel node subsystem with degraded 
functionality mode and NLFT nodes 

3.3 Parameter assignment 

Before the results can be derived from the models 
presented, the parameter values must be assigned. In 
general, fault rates and repair rates are not easy to 
obtain as they depend on many factors, e.g. the 
underlying hardware, the software implementation and 
the operating environment. Nevertheless, as the 
objective is to compare the different approaches rather 
than deriving actual reliability measures, the following 
values may be acceptable. 

The rate of permanent faults, λP = 1.82·10-5 faults 
per hour, is obtained from [15], where the fault rate of 
a computer node in a distributed brake-by-wire system 
for heavy duty trucks is derived using MIL-HDBK-217 
standard. The computer node consists of a 32-bit 
processor with memory, communication interface, 
power IC, bus driver and bus connections.  

The rate of transient faults, λT, is assumed to be ten 
times higher than the rate of permanent faults, i.e.  
λT = 1.82·10-4 faults per hour. Recent studies indicate 
that the proportion of transient faults will become even 
higher in future microcontrollers and memories [5]. 
Transient faults are handled differently depending on 
whether faults affect the application tasks or the real-
time kernel. It is stated in [10] that about 5% of the 
CPU time is used by a real-time kernel; thus we 
assume that PFS = 0.05. Furthermore, the results from 
fault injection experiments with our light-weight NLFT 
kernel [7] suggest that we may assume 90% of the 
faults to be tolerated (PT = 0.9), and that 5% of the 
transient faults result in omission failures (POM = 0.05). 

An error detection coverage of 99% (CD = 0.99) is 
assumed in Section 3.4 and varied in Section 3.4.1. The 
repair rate, µR, includes time for restarting the node, 
checking whether there was a permanent fault and then 

4λTCD 
 

4λPCD 

 

µR 

 

0 

 

F 

 

1 

 

3(λP+λT) 

 

4(1-CD)(λP+λT) 

 

2 

 

3(λP+λT) 

 

0 

 

4(λP+λT(1-CDPT)) 

 
F 

 
4λtCDPT 

 

4λTCDPT 

 

4λPCD 
 

3λTCDPT 

 

0 

 

F 

 

2 

 
1 

 

µOM 4λTCDPFS 

 µR 

4(1-CD)(λP+λT) 

 

3λTCDPT 
 

3λTCDPT 

3 

 

3(λP+λT(1-CDPT)) 
 

3(λP+λT(1-CDPT)) 
 

3(λP+λT(1-CDPT)) 
 

4λTCDPOM 

 



 

reintegrating the node. In [16], a distributed system 
based on the time-triggered TTP/C protocol executing 
a brake-by-wire algorithm was evaluated employing 
heavy-ion fault injection. The system was composed of 
five nodes, where one cycle consisted of 2048 TDMA 
rounds and one TDMA round took approximately 20 
ms. The estimated time necessary to restart the 
operating system and reintegrate one computer node 
was 1.6 seconds. Assuming that hardware reset of a 
computer node conducting a diagnostic test to ensure 
that no permanent faults exist would be in the order of 
1.4 seconds, a total repair time of 3 seconds is used  
(µR = 1.2·103 repairs per hour). The repair time for 
omission failures is assumed to take at most  
1.6 seconds (µOM = 2.25·103 repairs per hour). 

3.4 Results 

The results of the reliability analysis for the 
complete BBW system over one year are shown in 
Figure 12.  

 

 
 

Figure 12. Reliability of the BBW system 

As expected, the reliability for degraded 
functionality mode is higher than for full functionality 
mode. With regard to degraded functionality with 
NLFT nodes, the reliability increases by 55% (from 
0.45 to 0.70) after one year as compared to FS nodes. 
The reliability may also be expressed as the system's 
mean time to failure (MTTF), i.e. the expected 
operation time before first failure. As concerns 
degraded functionality mode, the MTTF increases by 
almost 60% (1.2 year to 1.9 year) when NLFT nodes 
are used. 

Figure 13 shows the reliability of the various 
subsystems with respect to both full and degraded 
functionality. The main reliability bottleneck is the 
wheel node subsystem.  

 

 

Figure 13. Reliability of the subsystems 

 

3.4.1. Effect of varied error detection coverage and 

transient fault rate. The highest reliability for the 
BBW system is obtained when degraded functionality 
is considered. In this subsection, we show the 
reliability for this mode after five hours, for different 
values of the error detection coverage and the fault 
rate. The results are given in Figure 14, where the 
reliability of the system for increasing transient fault 
rates is shown. 

The results show that the coverage has a significant 
influence on the reliability. The fault rate has a 
negligible impact as long as the fault rate is much 
smaller than the repair rate. However, as seen in the 
figure, the reliability improvements of using NLFT 
increase for higher fault rates. 

 

 
 

Figure 14. Reliability after five hours for 
varying error detection coverage and  

transient fault rate 



 

4. Conclusions and future work 

This paper proposes the use of node-level transient 
fault tolerance (NLFT) for improving the dependability 
of distributed systems. Especially, we present an 
approach called light-weight NLFT that aims at 
masking the majority of transient faults locally in the 
node. For permanent and transient faults that cannot be 
masked, the node must exhibit omission or fail-silent 
failures, which simplifies error handling at the system-
level. 

The paper suggests a number of error handling 
mechanisms based on experiences from previous 
studies, where a real-time kernel and parts of the 
mechanisms proposed have been implemented and 
evaluated using fault injection [7, 8]. In addition, 
reliability calculations are made on an example brake-
by-wire application to demonstrate the advantages of 
the approach. The results shows that the reliability may 
increase by 55% after one year, and the MTTF 
increases almost 60% when light-weight NLFT nodes 
are used, compared to using nodes that are fail-silent. 

Further work includes implementation and 
evaluation for the full set of error handling proposed in 
this paper to verify that the approach is viable, and to 
estimate the total coverage and overhead figures. 
Additional work also includes investigation of how to 
ensure replica determinism in replicated nodes and 
how to maintain consistency in replicated nodes in case 
of omission failures. For example, the study of 
protocols such as FlexRay [9] that may facilitate fast 
recovery of state data with low communication 
overhead through special requests to the partner node 
in the event-triggered part of the protocol, while also 
guaranteeing the delivery of critical data transmitted in 
the pre-allocated time slots in the time-triggered part of 
the protocol. 
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