

A Framework for Node-Level Fault Tolerance

in Distributed Real-time Systems

Joakim Aidemark1
Volvo Car Corporation

Department of Safety Electronics

SE-405 31 Gothenburg, Sweden

jaidemar@volvocars.com

Peter Folkesson and Johan Karlsson
Chalmers University of Technology

Department of Computer Engineering

SE-412 96 Gothenburg, Sweden

{peterf, johan}@ce.chalmers.se

Abstract
This paper describes a framework for achieving

node-level fault tolerance (NLFT) in distributed real-

time systems. The objective of NLFT is to mask errors

at the node level in order to reduce the probability of

node failures and thereby improve system

dependability. We describe an approach called light-

weight NLFT where transient faults are masked locally

in the nodes by time-redundant execution of

application tasks. The advantages of light-weight

NLFT is demonstrated by a reliability analysis of an

example brake-by-wire architecture. The results show

that the use of light-weight NLFT may provide 55%

higher reliability after one year and almost 60%

higher MTTF, compared to using fail-silent nodes.

1. Introduction

An important class of fault-tolerant computer
systems is those used for real-time control of safety-
critical applications. Classical examples are
computerized flight control systems, known as fly-by-
wire systems, which have been in use for more than a
decade in commercial airplanes and even longer in
military aircraft. The automotive industry has recently
started development of sophisticated active safety
systems and brake-by-wire systems. These systems are
expected to reach the market within a few years.

The design principles of existing fault tolerant space
and aviation systems have proven very successful, but
are often too costly for emerging applications such as
micro-satellites, unmanned air vehicles, and active
safety systems for road vehicles. Thus, a current trend
is to use distributed systems that are implemented
using generic platforms, which allow development of
different systems with varying dependability
requirements. Examples of generic platforms are the
Time-Triggered-Architecture [1] and GUARDS [2].

A distributed system consists of several computers,
or nodes, that interact via a communication network.
Fault-tolerance is achieved by executing critical
programs redundantly on two or more nodes. The
number of redundant nodes required depends on the
failure modes of the nodes. If we use nodes that may
deliver erroneous outputs without any error indication,
we need majority voting to mask errors requiring at
least 2f+1 nodes to tolerate f node failures. Another
approach is to use fail-silent nodes [1,3]. A fail-silent
node produces either correct outputs, no outputs, or
outputs that can be identified as erroneous by the
receiver. This property makes it possible to use f+1
nodes to tolerate f node failures, which minimizes the
number of the nodes in the system [4].

The use of fail-silent nodes is therefore an attractive
solution for reducing the number of nodes in the
system. However, the fail-silent property requires that
the nodes are equipped with adequate internal error
detection mechanisms. This increases the complexity
and thereby the cost of the nodes. Optimizing the cost
of fault-tolerant distributed systems therefore involves
a trade-off between the complexity of the nodes and
the number of redundant nodes required.

Systems that rely on fail-silent nodes generally shut
down their operation for both transient and permanent
faults. Thus, all faults regardless of their duration lead
to node failures that must be handled at the system
level by means of a distributed redundancy
management protocol.

In this paper, we propose the use of node-level fault
tolerance (NLFT) as a complement to system-level
fault tolerance. The objective of NLFT is to mask
errors at the node level in order to reduce the
probability of node failures and thereby improve
system dependability. To keep the cost of NLFT low,
we propose an approach to node-level fault tolerance
called light-weight NLFT in which only transient faults
are masked at the node level. More precisely, light-
weight NLFT corresponds to using nodes that (i) mask

1 This work was conducted while J. Aidemark was
 with Chalmers University of Technology

the effects of most transient faults locally in the node
and (ii) exhibit omission or fail-silent failures for all
permanent faults and all those transient faults that
cannot be masked by the node itself. Thus, the term
light-weight refers to the fact that only a subset of the
faults is tolerated at the node level. The main purpose
of light-weight NLFT is to make systems more
resilient to transient faults. Transient faults are much
more common than permanent faults in digital systems
and, because of technology scaling, the frequency of
transient faults is expected to increase in future
systems [5].

Tolerating transient faults at the node level is clearly
an advantage in systems that use two fail-silent nodes,
as it allows the system to survive transient faults also
when one of the nodes have failed permanently. It also
improves the robustness of the system when both
nodes are affected by correlated or near-coincident
transient faults. Tolerating transient faults at the node
level may also reduce hardware costs, as fewer
redundant (active or spare) nodes may be required to
achieve a given level of system dependability.

The framework presented in this paper describes the
principles for light-weight NLFT and proposes a set of
error handling mechanisms suitable for a low-cost
implementation. In addition, the advantages of light-
weight NLFT are demonstrated by a reliability analysis
of an example brake-by-wire architecture.

Our approach is based on a real-time kernel that
operates on commercial off-the-shelf (COTS)
processors. The key element for tolerating transient
faults is a time redundancy approach called temporal

error masking, or TEM [7]. In TEM, a critical task is
executed twice and the two results are compared; if
they do not match or if errors are detected by other
mechanisms, an additional execution of the task is
started to allow a majority vote on three results. To
cope with the dynamic nature of TEM, the real-time
kernel uses fixed-priority preemptive scheduling [6].
Technology trends in microprocessor technology have
shown a tremendous increase in processing power in
recent years. The resulting decline in the price of
processing power has made time redundancy an
attractive approach for achieving fault tolerance in
real-time systems.

The real-time kernel and parts of the mechanisms
proposed have previously been implemented and
evaluated using fault injection. This includes
implementation and evaluation of temporal error
masking (TEM) for the Thor microprocessor [7], and
an implementation and evaluation of a real-time kernel
with extensive internal error detection and the support
of TEM for the Motorola 68340 microcontroller [8].

The next section describes the design principles for
light-weight NLFT and Section 3 demonstrates the

usefulness of the approach by calculating and
comparing the reliability for two versions of a brake-
by-wire systems, one with and one without light-
weight NLFT. The conclusions of this study and future
work are given in Section 4.

2. Light-weight NLFT

In this section, we first discuss the distributed
architecture considered and the redundancy concepts
that may most favor the use of NLFT. The light-weight
NLFT approach is then described.

2.1 Hardware architectures considered

For cost-effective implementation, we consider only
distributed systems that employ single computer nodes
(simplex configuration) or double computer nodes
(duplex configuration), see Figure 1. A computer node
in such a system conceptually consists of a host
processor with memory (Host) and a network interface
(NI). The duplex configuration execute in active
replication to allow permanent faults to be tolerated.

Figure 1. Distributed architecture

The network and the network interface are treated as
a separate entity that we assume provides reliable
transmission of messages. We assume that the
communication protocol is time-triggered, or even
more preferable, offers a mix of event- and time-
triggered communication (such as provided by the
FlexRay protocol [9]). Time-triggered scheduling is
used for all critical messages, while support for event-
triggered scheduling may be advantageous as it allows
for fast handling of sporadic activities.

2.2 Objective and basic approach

Our light-weight NLFT approach is intended for
improving the dependability of nodes by tolerating the
majority of the errors caused by transient faults in the
host. We consider a host processor based on a single
COTS microprocessor, where a real-time kernel
controls the execution of tasks. In our approach, we
implement support for light-weight NLFT in the real-
time kernel, thus allowing the programmer to focus on
the application.

Host

NI

Simplex

NI

Duplex

NI

Communication Network

Host Host

Implementing mechanisms for masking the effect of
all transient faults may lead to unacceptable overheads.
Hence, the objective of the light-weight NLFT
approach is to mask the majority of the transient faults
in critical tasks. Permanent faults and transient faults
that cannot be tolerated must be handled at the system
level. The following strategies are chosen for faults
affecting critical tasks, non-critical tasks or the real-
time kernel:
1. Critical tasks - The objective is to tolerate all

transient faults occurring in critical tasks. If there
is not enough time to recover from an error and
meet the deadline, an omission failure is enforced,
which must be handled at the system level

2. Non-critical tasks - If an error is detected during
execution of a non-critical task, the task is shut
down to allow continued operation of the
remaining tasks. Hence, any interaction between
critical tasks and non-critical tasks must be
avoided so that a critical task is not affected by the
failure of a non-critical task.

3. Real-time kernel - Errors detected during
execution of the real-time kernel should result in
the node becoming silent. Thus, recovery must be
handled at the system level. This may be
acceptable since the kernel's execution time
typically represents only about 5% of a processor's
total execution time [10].

Omission failures may be allowed in a duplex
configuration since the partner node can provide the
service. Omission failures may also be allowed in a
simplex configuration if the system is able to use a
previous value, a default value, or, as is the case for
some control systems, withstand a certain delay in the
delivery of the control signal without losing
stability [11].

2.3 Error handling

The error detection mechanisms provided by
modern microprocessors will detect many errors.
However, the effects of certain faults may pass
undetected. Therefore, additional error handling must
be provided at the node-level.

Node-level fault tolerance may be realized using
software-implemented techniques, which may be
application specific or systematic (application
independent). Application specific techniques utilize
detailed information about the application to allow
custom designed error handling, while systematic
techniques rely on the use of duplication in space or
time. Systematic techniques generally incur higher
overhead than application specific approaches, but are
simpler to use for the system designer since they do not
require application specific knowledge. Moreover,

separating the error handling mechanisms from the
application generally reduces the complexity of the
system [12].

In our approach, systematic techniques are used to
tolerate faults in critical tasks, while specific
techniques, such as assertions and range checks, are
used to detect errors affecting the kernel. In this paper,
we do not discuss the error handling for the kernel
further - an experimental study of a prototype kernel
supporting node-level fault tolerance can be found in
[8]. Examples of error handling mechanisms suitable
for low-cost implementation of light-weight NLFT are
given in Table 1. Note that we rely on a combination of
hardware and software error handling techniques to
achieve NLFT.

Table 1. Examples of error handling suitable
for implementing light-weight NLFT

Hardware techniques Description

CPU hardware exceptions CPU run-time error detection
mechanisms

Error correcting codes (ECC) Detects and corrects errors in
memories

Memory management unit
(MMU)

Detects memory accesses outside
the task's allowed memory area

Software techniques

provided by kernel

Description

Temporal error masking
(TEM)

Detects and tolerates computation
errors caused by, e.g. transient
faults in data registers, adders or
multipliers

Execution time monitoring Detects timing violations for
individual tasks

Data integrity checks and
end-to-end error detection

Detects errors in internal data
structures and errors in input and
output data

2.4 Hardware techniques and timing checks

Current state-of-the-art COTS microprocessors
provide extensive error detection mechanisms (EDMs)
such as illegal op-code detection, address range
checking and error correcting codes (ECC) on
memories and caches. Often, they also provide a
memory management unit (MMU), which supports
fault confinement between tasks or between tasks and
the kernel. This simplifies fault tolerance, as we only
need to consider recovery of the affected task. To
ensure that a task does not execute for too long, which
may prevent other tasks from executing, an execution

time monitor may be used. For example, budget timers
[2] may be used to monitor the execution time of
individual pre-emptive tasks. Such a mechanism allows
the action taken when an error is detected, to be
decided for each tasks, e.g. conduct a recovery of the
affected task.

2.5 Temporal error masking

To support transparent error handling in a real-time
kernel, temporal error masking (TEM) is used. In
TEM, the kernel executes all critical tasks twice and
compares the results in order to detect errors. A third
execution is started if an error is detected by the
comparison or by any hardware or software EDM. This
allows the kernel to mask errors by conducting a
majority vote on three results. To ensure that the
recovery of an erroneous task does not lead to any
deadline violations, sufficient slack must be provided
in the schedule, see Section 2.8.

Figure 2 shows our basic model for a critical task,
which is assumed to be executed in a periodic read

input - compute - write output loop. The input data are
received first from input devices or from other tasks.
The input data are then processed and the results sent
to actuators or to other tasks in the system at the end of
the loop.

Figure 2. Task model

Figure 3 shows three different scenarios using TEM:
in fault-free operation (i), a critical task, T, is executed
two times (denoted T1 and T2) and a comparison is
made to detect errors. As the results match, a third
copy does not have to be executed and the time may be
used by other tasks. In (ii) an error is detected by the
comparison and a third copy of the task, T3, is then
executed. The results of the three copies are checked
by a majority vote. If the majority voter detects two
matching results, these are accepted as a valid result of
the task. Otherwise, no result is delivered, which leads
to an omission failure.

In (iii), an error is detected by a hardware
mechanism or another node level mechanism. The
affected copy, T2, is then terminated and a new copy,
T3, is started immediately. The new copy will use time
reclaimed from the terminated copy as well as time
from any available slack. A comparison is made to
confirm that the results match before a result is
delivered. For errors detected by CPU EDMs, the task's
CPU state context, e.g. the program counter (PC) and
stack pointer (SP) etc., is restored to the initial
conditions from information stored in the task control
block in the kernel. The reason for restoring the
complete context is that errors detected by hardware

exceptions often originate from faults in the CPU
registers. For example, in [8] we showed that an illegal

instruction exception may occur as a result of faults in
the PC register and that address and bus exceptions are
often triggered by faults in the SP register. When errors
are detected by the comparison of a task, we assume
that the error only affects the data computations; new
copies can therefore be started without restoring the
CPU context. Scenario (iv) is similar to scenario (iii),
but the fault occurs in copy T1.

Figure 3. Error detection and recovery using
temporal error masking

The kernel always checks the deadline of the task
after an error is detected to determine whether it is
possible to execute an additional task copy and still
meet the deadline. Even if additional time is reserved
in the schedule to handle recovery, enough time may
not be available, e.g. because more faults than
anticipated occurs. In this case, no result is delivered
and an omission failure occurs. If time is available, a
new copy is started. The task result is delivered and the
state data are only updated when two matching results
have been produced. Errors that are repeated for some
time are considered to be caused by permanent faults.
In this case, the node is shut down for off-line
diagnosis to establish whether a transient or a
permanent fault caused the error. For transient faults,
the node may be re-integrated.

2.6 Data integrity checks and end-to-end error

detection

Data used for the computations in the task must not
only be protected during the actual computation, but
also before and after the computation. This is often
referred to as end-to-end error detection [4]. We
assume that the memory is protected from direct faults
using ECC, see Table 1. Furthermore, static data such

T3

T3

Voting

(ii): An error is detected
 by the comparison

Comparison

T1

T2

(i): Fault free execution

T1

T2

Comparison

T1

(iii): An error is detected
 in T2 by a HW/SW EDM

Error detected

T2

Comparison

Fault

Fault

Time

T3 T1

(iv): An error is detected
 in T1 by a HW/SW EDM

Error detected Comparison

Fault

T2

Input data Result data

 loop

 read input

 compute

 write output

 end loop

State

 data

New state data State data

as program code and constants may be saved in read
only memory and may therefore not be erroneously
overwritten. However, additional protection is needed
to ensure the integrity of the input data, state data and
result data. Faults occurring in the CPU affecting the
input data or state data during the computations of the
individual copies may be detected by the comparisons,
while faults occurring when data are stored to memory
may cause data to be overwritten or to be written to an
erroneous location in memory. There are a number of
techniques that can be used to detect such errors. The
simplest is to duplicate the data and conduct a
comparison before it is used to reveal discrepancies. To
protect larger data structures, it may be more effective
to generate CRC checksums for the data.

For a duplex configuration, errors that are detected
may be handled by exhibiting an omission failure,
since the partner node provides the full service.
Recovery of input data may be conducted by simply
obtaining new data in the next cycle, and eventual state
data may be recovered by obtaining the partner node's
state data. For a simplex configuration, errors in the
state data may be handled in different ways depending
on the application. For example, triplication of data
may be employed to mask the effect of faults, or the
node may just be shut down for a fail-safe system.

2.7 Control flow errors

Faults may cause control flow errors, i.e. deviation
from the correct execution order, and thus cause
failures. The MMU provided by the processor may
detect control flow errors as the task's address range is
bounded. If the control flow error causes the task to
execute too long, the error may also be detected by the
execution time monitoring mechanism. In addition,
TEM will also detect control flow errors within a task
if the error affects the result and the comparison/voting
is executed correctly. There is, however, a small risk
that a control flow error may cause the execution to by-
pass the comparison/voting by erroneously jumping
directly to the code that writes the checked/voted result
to main memory or to an output device. Specific
checks should be provided to avoid that such control
flow errors pass undetected.

2.8 Real-time requirements

The TEM approach relies on event-triggered fault
handling, since recovery (through execution of a third
copy of the affected task) should only be initiated when
an error is detected. The kernel therefore uses fixed

priority (FP) pre-emptive scheduling [6].
 In fixed priority scheduling, the priority of each

task is determined before run-time. FP scheduling

allows both periodic and sporadic task executions
where the task with the highest priority is always
allowed to execute first. In our kernel, priority
assignments are made on the basis of the criticality of
the task. The criticality of a task relates to the
consequences of a failure of the task, e.g. a brake
request is assigned a higher priority than a diagnostic
request. Since the scheduling is pre-emptive, a task is
suspended whenever another task with higher priority
requires access to the CPU.

To ensure that critical tasks meet their deadlines
also in the presence of errors, we assume that a fault-
tolerant scheduling algorithm supporting fixed priority
scheduling is employed. Fault-tolerant scheduling [6]
guarantees that all tasks meet their deadlines, even in
the presence of a specified number of faults. To allow a
failed task to re-execute without causing other tasks to
miss their deadlines, extra time (slack) must be
reserved a priori and be accounted for in a
schedulability test. The amount of extra time needed
depends on the number and type of faults anticipated.

3. Dependability analysis

The ability to recover quickly may significantly
increase the dependability of systems. This is
exemplified in this section through a dependability
analysis of a distributed brake-by-wire (BBW)
architecture, which is a typical example of the kind of
safety-critical distributed systems considered here. In
particular, we examine the dependability of the BBW
architecture using conventional fail-silent computer
nodes, as compared to using nodes with light-weight
NLFT.

3.1 Brake-by-wire system

A distributed architecture for a brake-by-wire
system can be implemented according to Figure 4. The
brake pedal is connected to a central unit (CU). The
central unit handles the all-embracing control,
distributing the correct brake force to each wheel node
(WN). The control algorithms in the individual wheel
nodes then ensure that the requested brake force is
applied to the respective wheel in the most favorable
way.

The architecture considered consists of one duplex
configuration for the central unit and a simplex
configuration in conjunction with a brake actuator for
each wheel. A simplex configuration is used for the
wheel nodes in order to reduce equipment costs. This
configuration may be used since the driver can still
brake the vehicle if one wheel node fails. That is, the
system can change to a degraded functionality mode
where the brake force is distributed to the remaining

fault-free wheel nodes after a node failure. However,
the efficiency of the brakes will be substantially
degraded. Thus it is desirable to reduce the probability
of entering the degraded functionality mode.

Figure 4. Example of a distributed BBW
architecture

3.2 Reliability Modeling

We evaluate the reliability of the brake-by-wire
system in this study. The reliability, R(t), of a system is
the probability that the system is operating correctly
throughout a specific time interval, given that the
system was operating correctly at the start of that
interval.

In the following, the BBW architecture will be
studied with respect to both full and degraded
functionality. Full functionality mode refers to a
requirement that all wheel nodes and one central unit
node must function correctly; otherwise a system
failure has occurred. In the degraded functionality
mode, the requirement is that at least three wheel nodes
and one central unit node must function correctly;
otherwise a system failure has occurred. To simplify
the analysis, only the nodes of the BBW system are
included. Thus, failures of the actuators, sensors and
communication busses are not considered.

The reliability of the BBW architecture is calculated
using the SHARPE (Symbolic Hierarchical Automated
Reliability and Performance Evaluator) tool [13].
SHARPE allows various models such as fault trees,
reliability block diagrams (RBD) and Markov models
to be specified and dependability measures to be
obtained.

3.2.1. Description of nodes. In our analysis, we
consider both permanent and transient faults. A
permanent fault occurs at a specific time and remains
in the system requiring the faulty component to be
either repaired or replaced. A transient fault occurs at a
specific time and exists only for a limited period of
time in the system.

The fault rate (λ) of a node refers to the occurrence
rate of activated faults in the node, i.e. faults that
generate errors in the node. Faults whose effects are
overwritten or latent are not included in the fault rate.

Two types of nodes are considered; fail-silent
computer nodes (called FS nodes), and nodes with
light-weight NLFT (called NLFT nodes). Their
intended behavior in presence of errors is as follows:

FS nodes: If an error is detected by one of the
node’s EDMs, then the node exhibits a fail-silent
failure, i.e. the node immediately stops producing
results and is excluded from the distributed system.
The node is automatically restarted, and a diagnostic
program establishes whether the failure was caused by
a transient or a permanent fault. If the node is found to
fault-free by the diagnostic test, the node is re-
integrated into the distributed system.

NLFT nodes: Transient faults and their
corresponding errors can be handled in three ways: i)
the error is masked by TEM, ii) the error is detected
and an omission failure occurs or iii) the error is
detected and a fail-silent failure occurs. An omission
failure occurs if there is not enough time to re-execute
a task a third time before the task’s deadline, or if three
different results are produced in TEM. A fail-silent
failure occurs if an error is detected during execution
of the kernel. Such failures are handled in the same
way as in the case of FS nodes.

Non-covered errors, i.e. errors that escape all EDMs,
may cause both the FS nodes and NLFT nodes to
deviate from their intended behaviors. We make the
pessimistic assumption that all non-covered faults lead
to a system failure of the entire BBW system.

3.2.2. Basic assumptions and notations. We assume
that faults occurring in one computer node are
statistically independent of faults occurring in other
computer nodes. We also assume that the fault rate and
the repair rate are constant over time, i.e. the time to
failure and the time to repair are exponentially
distributed. All nodes are assumed to have the same
complexity and exposure to the environment, and
thereby the same fault rate. The repair (recovery)
action is assumed to be fault-free. Correlated faults are
not considered. A correlated fault occurs when a single
fault affects more than one component at one point in
time. Neither is repair of permanent faults considered.
The following notations are used in the models:

λP Permanent fault rate
λT Transient fault rate
CD Error detection coverage, i.e. the conditional

probability that an error is detected given that a
fault has occurred.

PT Given that an error caused by a transient fault is
detected, this denotes the probability that the
system can mask the effect of the fault using TEM

POM Given that an error caused by a transient fault is
detected, this denotes the probability that a node
exhibit an omission failure

WN

WNWN

WN

CU

PFS Given that an error caused by a transient fault is
detected, this denotes the probability that a node
exhibits a fail-silent failure

µR Repair rate for restart. This refers to the time
required for a node to restart and reintegrate into
the distributed system after a fail-silent failure

µOM Repair rate for omission failures. This refers to the
time required for a node to reintegrate into the
distributed system after an omission failure

3.2.3. BBW System. A hierarchical approach similar
to [14] is used to construct the reliability model of the
BBW architecture. Figure 5 shows the fault tree model
that represents the overall system. The basic
components of the fault tree are the central unit and the
wheel node subsystem that consists of the four wheel
nodes. A failure of any subsystem results in a system
failure. The hierarchical approach used allows the
various parts of the system to be assessed separately
and reliability bottlenecks to be identified.

Figure 5. Fault tree model for the BBW system

3.2.4. Central Unit Subsystem. The central unit with
two FS nodes can be modeled as a continuous-time
Markov model according to the state transition diagram
in Figure 6. The model consists of four states:

State Description
0 Both computer nodes are working correctly
1 One of the computer nodes is affected by a

permanent fault and is permanently down. The
other node continues to provide service

2 One of the computer nodes is affected by a
transient fault and is temporary down. The other
node continues to provide service

F Failure. Two computer nodes are shut down.
Either due to a failure of two nodes, or an
undetected error in one node

Figure 6. State transition diagram for the
central unit with FS nodes

When NLFT nodes are used, the effect of a transient
fault is tolerated with the probability of PT, an omission
failure occurs with the probability of POM, or a fail-
silent failure occur with the probability of PFS. The
state transition diagram for the central unit with NLFT
nodes is shown in Figure 7. The model consists of five
states:

State Description
0 Both computer nodes are working correctly
1 One of the computer nodes is affected by a

permanent fault and is permanently down. The
other node continues to provide service

2 One of the computer nodes is affected by a
transient fault and is temporary down. The other
node continues to provide service

3 One of the computer nodes is affected by a
transient fault and produces an omission failure.
The other node continues to provide service

F Failure. Two computer nodes are down. Either due
to a failure of two nodes, or an undetected error in
one node

Figure 7. State transition diagram for the
central unit with NLFT nodes

3.2.5. Wheel Node Subsystem. When the full
functionality mode is considered, the failure of any of
the wheel nodes can cause the wheel node subsystem
to fail. An RBD model of the system with FS nodes is
shown in Figure 8.

Figure 8. RBD for the wheel node subsystem
with full functionality mode and FS nodes

Figure 9 shows the state transition diagram for the
wheel node subsystem for degraded functionality mode
when FS nodes are used. In contrast to the full
functionality mode, the degraded functionality mode
also allows re-integration of failed nodes since the
system can operate when only three wheel nodes are
working. The model consists of four states:

2λTCD

2λPCD

µR

0

F

1

λP+λT

λP+λT

2(1-CD)(λP+λT)

2

Wheel
node FL

Wheel
node FR

Wheel
node RL

Wheel
node RR

System failure

≥1

Central unit Wheel nodes 2λPCD

λTCDPT

0

F

2

1

µOM 2λTCDPFS

 µR

2(1-CD)(λP+λT)

λTCDPT

3

λP+λT(1-CDPT)

λP+λT(1-CDPT)

λP+λT(1-CDPT)

2λTCDPOM

2λTCDPT

λTCDPT

State Description
0 All four computer nodes are working correctly
1 One of the computer nodes is affected by a

permanent fault and is permanently down. The
other nodes continue to provide their service

2 One of the computer nodes is affected by a
transient fault and is temporary down. The other
nodes continue to provide their service

F Failure. Two computer nodes are shut down.
Either due to a failure of two nodes, or an
undetected error in one node

Figure 9. State transition diagram for the
wheel node subsystem with degraded

functionality mode and FS nodes

Figure 10 shows the state transition diagram for the
wheel node subsystem with full functionality mode and
NLFT nodes. State 0 represents the fault-free state
where all four wheel nodes are working correctly or
transient faults occur that are masked by TEM. The
transition from state 0 to state F occurs in the case that
a wheel node is affected by a permanent fault or, that a
wheel node is affected by a transient fault that cannot
be masked by TEM.

Figure 10. State transition diagram for the
wheel node subsystem with full functionality

mode and NLFT nodes

Figure 11 shows the state transition diagram for the
wheel node subsystem when NLFT nodes and
degraded functionality is considered. The model
consists of five states:

State Description
0 All four computer nodes are working correctly
1 One of the computer nodes is affected by a

permanent fault and is permanently down. The
other nodes continue to provide their service

2 One of the computer nodes is affected by a
transient fault and is temporary down. The other
nodes continue to provide their service

3 One of the computer nodes is affected by a
transient fault and produces an omission failure.
The other nodes continue to provide their service

F Failure. Two computer nodes are shut down.
Either due to a failure of two nodes, or an
undetected error in one node

Figure 11. State transition diagram for the
wheel node subsystem with degraded
functionality mode and NLFT nodes

3.3 Parameter assignment

Before the results can be derived from the models
presented, the parameter values must be assigned. In
general, fault rates and repair rates are not easy to
obtain as they depend on many factors, e.g. the
underlying hardware, the software implementation and
the operating environment. Nevertheless, as the
objective is to compare the different approaches rather
than deriving actual reliability measures, the following
values may be acceptable.

The rate of permanent faults, λP = 1.82·10-5 faults
per hour, is obtained from [15], where the fault rate of
a computer node in a distributed brake-by-wire system
for heavy duty trucks is derived using MIL-HDBK-217
standard. The computer node consists of a 32-bit
processor with memory, communication interface,
power IC, bus driver and bus connections.

The rate of transient faults, λT, is assumed to be ten
times higher than the rate of permanent faults, i.e.
λT = 1.82·10-4 faults per hour. Recent studies indicate
that the proportion of transient faults will become even
higher in future microcontrollers and memories [5].
Transient faults are handled differently depending on
whether faults affect the application tasks or the real-
time kernel. It is stated in [10] that about 5% of the
CPU time is used by a real-time kernel; thus we
assume that PFS = 0.05. Furthermore, the results from
fault injection experiments with our light-weight NLFT
kernel [7] suggest that we may assume 90% of the
faults to be tolerated (PT = 0.9), and that 5% of the
transient faults result in omission failures (POM = 0.05).

An error detection coverage of 99% (CD = 0.99) is
assumed in Section 3.4 and varied in Section 3.4.1. The
repair rate, µR, includes time for restarting the node,
checking whether there was a permanent fault and then

4λTCD

4λPCD

µR

0

F

1

3(λP+λT)

4(1-CD)(λP+λT)

2

3(λP+λT)

0

4(λP+λT(1-CDPT))

F

4λtCDPT

4λTCDPT

4λPCD

3λTCDPT

0

F

2

1

µOM 4λTCDPFS

 µR

4(1-CD)(λP+λT)

3λTCDPT

3λTCDPT

3

3(λP+λT(1-CDPT))

3(λP+λT(1-CDPT))

3(λP+λT(1-CDPT))

4λTCDPOM

reintegrating the node. In [16], a distributed system
based on the time-triggered TTP/C protocol executing
a brake-by-wire algorithm was evaluated employing
heavy-ion fault injection. The system was composed of
five nodes, where one cycle consisted of 2048 TDMA
rounds and one TDMA round took approximately 20
ms. The estimated time necessary to restart the
operating system and reintegrate one computer node
was 1.6 seconds. Assuming that hardware reset of a
computer node conducting a diagnostic test to ensure
that no permanent faults exist would be in the order of
1.4 seconds, a total repair time of 3 seconds is used
(µR = 1.2·103 repairs per hour). The repair time for
omission failures is assumed to take at most
1.6 seconds (µOM = 2.25·103 repairs per hour).

3.4 Results

The results of the reliability analysis for the
complete BBW system over one year are shown in
Figure 12.

Figure 12. Reliability of the BBW system

As expected, the reliability for degraded
functionality mode is higher than for full functionality
mode. With regard to degraded functionality with
NLFT nodes, the reliability increases by 55% (from
0.45 to 0.70) after one year as compared to FS nodes.
The reliability may also be expressed as the system's
mean time to failure (MTTF), i.e. the expected
operation time before first failure. As concerns
degraded functionality mode, the MTTF increases by
almost 60% (1.2 year to 1.9 year) when NLFT nodes
are used.

Figure 13 shows the reliability of the various
subsystems with respect to both full and degraded
functionality. The main reliability bottleneck is the
wheel node subsystem.

Figure 13. Reliability of the subsystems

3.4.1. Effect of varied error detection coverage and

transient fault rate. The highest reliability for the
BBW system is obtained when degraded functionality
is considered. In this subsection, we show the
reliability for this mode after five hours, for different
values of the error detection coverage and the fault
rate. The results are given in Figure 14, where the
reliability of the system for increasing transient fault
rates is shown.

The results show that the coverage has a significant
influence on the reliability. The fault rate has a
negligible impact as long as the fault rate is much
smaller than the repair rate. However, as seen in the
figure, the reliability improvements of using NLFT
increase for higher fault rates.

Figure 14. Reliability after five hours for
varying error detection coverage and

transient fault rate

4. Conclusions and future work

This paper proposes the use of node-level transient
fault tolerance (NLFT) for improving the dependability
of distributed systems. Especially, we present an
approach called light-weight NLFT that aims at
masking the majority of transient faults locally in the
node. For permanent and transient faults that cannot be
masked, the node must exhibit omission or fail-silent
failures, which simplifies error handling at the system-
level.

The paper suggests a number of error handling
mechanisms based on experiences from previous
studies, where a real-time kernel and parts of the
mechanisms proposed have been implemented and
evaluated using fault injection [7, 8]. In addition,
reliability calculations are made on an example brake-
by-wire application to demonstrate the advantages of
the approach. The results shows that the reliability may
increase by 55% after one year, and the MTTF
increases almost 60% when light-weight NLFT nodes
are used, compared to using nodes that are fail-silent.

Further work includes implementation and
evaluation for the full set of error handling proposed in
this paper to verify that the approach is viable, and to
estimate the total coverage and overhead figures.
Additional work also includes investigation of how to
ensure replica determinism in replicated nodes and
how to maintain consistency in replicated nodes in case
of omission failures. For example, the study of
protocols such as FlexRay [9] that may facilitate fast
recovery of state data with low communication
overhead through special requests to the partner node
in the event-triggered part of the protocol, while also
guaranteeing the delivery of critical data transmitted in
the pre-allocated time slots in the time-triggered part of
the protocol.

5. Acknowledgements

This work was partially supported by ARTES and
the Swedish Foundation for Strategic Research (SSF),
and the Saab Endowed Professorship in Robust Real-
time Systems. We would like to thank Jonny Vinter at
Chalmers University and Dr. Örjan Askerdal at Volvo
Car Corporation for their many valuable suggestions to
this work.

6. References

[1] H. Kopetz and G. Bauer, "The Time-Triggered
Architecture", Proceedings of the IEEE, vol. 91, 2003,
pp. 112-26.

[2] D. Powell, J. Arlat, L. Beus-Dukic, A. Bondavalli, P.
Coppola, A. Fantechi, E. Jenn, C. Rabejac, and A.

Wellings, "GUARDS: A Generic Upgradable
Architecture for Real-time Dependable Systems", IEEE

Transactions on Parallel and Distributed Systems, vol.
10, 1999, pp. 580-599.

[3] D. Powell, "Distributed Fault Tolerance: Lessons from
Delta-4", IEEE Micro, vol. 14, 1994, pp. 36-47.

[4] Kopetz, H., Real-Time Systems: Design Principles for

Distributed Embedded Applications, Boston: Kluwer
Academic, 1997.

[5] R. C. Baumann ”Soft Errors in Commercial Integrated
Circuits”, International Journal of High Speed

Electronics and Systems, Vol. 14, No. 2, 2004, pp. 299-
309

[6] Burns, A., and Wellings, A., Real-Time Systems and

Programming Languages: Ada 95, Real-Time Java and

Real-Time Posix, third ed. Harlow: Addison-Wesley,
2001.

[7] J. Aidemark, J. Vinter, P. Folkesson, and J. Karlsson,
"Experimental Evaluation of Time-redundant Execution
for a Brake-by-wire Application", Proc. of

International Conference on Dependable Systems and

Networks, Washington, DC, USA, 2002, pp. 210-216.

[8] J. Aidemark, P. Folkesson, and J. Karlsson,
"Experimental Dependability Evaluation of the Artk68-
FT Real-time Kernel", International Conference on

Real-Time and Embedded Computing Systems and

Applications, Göteborg, Sweden, 2004.

 [9] FlexRay Communications System Specifications
Version 2.0, www.flexray.com June 2004.

[10] Labrosse, J. J., MicroC/OS-II : The Real-Time Kernel,
second edition, Lawrence: R&D, 1999.

[11] G. Heiner and T. Thurner, "Time-Triggered
Architecture for Safety-related Distributed Real-time
Systems in Transportation Systems", Proceedings of the

28th International Symposium on Fault Tolerant

Computing, Munich, Germany, 1998, pp. 402-407.

[12] Poledna, S., Fault-tolerant Real-time Systems: The

Problem Of Replica Determinism. Boston, Mass,
Kluwer Academic Publishers, 1996.

[13] R. A. Sahner and K. S. Trivedi, "Reliability Modeling
using SHARPE", IEEE Transactions on Reliability, vol.
R-36, 1987, pp. 186-93.

[14] D. Chen, S. Dharmaraja, D. Chen, L. Li, K.S. Trivedi,
R.R. Some, A.P. Nikora, “Reliability and Availability
Analysis of the JPL Remote Exploration
Experimentation System”, Proc. of International

Conference on Dependable Systems and Networks,
Washington, DC, USA, 2002, pp. 337-342.

[15] Claesson, V., Efficient and Reliable Communication in

Distributed Embedded Systems, Ph.d thesis, Chalmers
University of Technology, Göteborg, Sweden, 2002.

[16] Sivencrona, H., On the Design and Validation of Fault

Containment Regions in Distributed Communication

Systems, Ph.d thesis, Chalmers University of
Technology, Göteborg, Sweden, 2004.

