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Abstract 
 
This paper presents an experimental evaluation of a 
brake-by-wire application that tolerates transient faults by 
temporal error masking. A specially designed real-time 
kernel that masks errors by triple time-redundant 
execution and voting executes the application on a fail-
stop computer node. The objective is to reduce the number 
of node failures by masking errors at the computer node 
level. The real-time kernel always executes the application 
twice to detect errors, and ensures that a fail-stop failure 
occurs if there is not enough CPU-time available for a 
third execution and voting. Fault injection experiments 
show that temporal error masking reduced the number of 
fail-stop failures by 42% compared to executing the 
brake-by-wire task without time redundancy. 

1. Introduction  

Distributed real-time systems are increasingly being 
used to control critical functions in automotive and 
aerospace applications, such as fly-by-wire, brake-by-wire 
and steer-by-wire systems. These systems must be fault-
tolerant to be safe and reliable. 

Previous research has shown that transient faults are 
common in digital systems [1]. These faults can be caused 
by power fluctuations, electromagnetic interference or by 
particle radiation. Radiation-induced transient faults are 
mainly a problem in space and at high altitude, however 
they may also occur at ground level [2]. In addition, as the 
computer industry strives to reduce both the geometry and 
the power supply of components, the risk of 
environmentally induced faults increases. 

A cost-effective technique for handling transient faults 
is to use time-redundancy [3, 4, 5, 6]. The declining prices 
of high-performance microprocessors and micro-
controllers make time redundancy increasingly attractive 
for achieving fault-tolerance in real-time systems. 

 We have developed a real-time kernel that mask errors 
by triple time redundant execution and majority voting. 

The kernel executes all critical tasks twice and compares 
the results to detect errors. A third execution is started if 
an error is detected by the comparison or a CPU-
exception. This allows the kernel to mask errors by 
conducting a majority vote on three results. We call this 
technique temporal error masking. 

The real-time kernel uses fixed priority scheduling to 
control temporal error masking. Before starting additional 
executions when an error is detected, the kernel checks 
whether it is feasible to re-execute the task and meet the 
deadline. The output of a task is delivered only when two 
matching results have been produced.  

The objective of temporal error masking is to tolerate 
transient faults at the node-level whenever possible.  For 
permanent faults and transient faults that cannot be 
handled at the node level, the node must fulfill fail-stop or 
omission failure semantics [7]. These properties are 
achieved by combining hardware and software error 
detection mechanisms with temporal error masking.  

In this paper, we present an experimental evaluation of 
a brake-by-wire application executed by the real-time 
kernel. We consider a distributed control system, where a 
brake-by-wire task for each wheel is executed on two fail-
stop computer nodes operating in active redundancy. Such 
a system can tolerate single node failures without 
degrading the ability of the system to brake the vehicle. If 
two nodes that control the braking of one wheel both fail, 
then the system can still brake the vehicle using the other 
wheels. However, the efficiency of the brakes will be 
substantially degraded. Therefore, it is important to 
minimize the probability of double node failures.  

Such double node failures can occur as a result of a 
single external disturbance that cause transient faults in 
more than one node, or near-coincident transient faults. 
Temporal error masking improves the systems ability to 
cope with such transient faults without degradation. 

We conducted fault injection experiments to validate 
the kernel and assess the effectiveness of the temporal 
error masking. Transient bit-flips were injected into the 
internal registers and flip-flops of the CPU that executed 
the kernel. We have previously shown that such bit-flips 



 

 

in an engine controller may cause permanent failures, such 
as locking the engine at full speed [8]. 

 The objective of the experiments was to estimate the 
error coverage with respect to errors that occur during the 
execution of the brake-by-wire application task. No faults 
were injected during execution of the kernel code, since 
no mechanisms for detection and recovery of such faults 
are included in the current version of the kernel. 

The next section presents related work. The principles 
of temporal error masking are presented in Section 3, 
while Section 4 presents the brake-by-wire application. 
Section 5 describes the experimental set-up and Section 6 
reports the results of the fault injection experiments. 
Finally, the conclusions of this study are given in  
Section 7. 

2. Related work 

Time redundancy is a well-known technique for 
achieving fault tolerance [3]. A majority of studies on 
time redundancy focuses on detecting errors, i.e. to 
execute an operation twice and compare the results. This 
is done on different levels such as on the instruction level 
[4], procedure level [5] or at the task level [6]. Execution 
of diverse software versions also allows detection of 
software errors [9]. Recent studies on double execution 
and comparison utilize new technologies in processors to 
reduce the time overhead [10]. 

Although most studies on time redundancy focus on 
detecting errors, some studies have addressed the use of 
triplicated execution and voting to mask errors on a single 
node. Triplicated execution is evaluated in [11], where 
each software module and the voting mechanisms are 
executed three times to mask errors. 

Another approach using time redundancy is roll back 
recovery [12]. In roll back recovery, the error is detected 
by various error detection mechanisms and additional time 
is used to re-execute the failed operation. Retry is the 
simplest scheme, where the failed operation is just 
repeated. Another scheme is to use checkpointing, i.e. the 
state of the processor is saved at regular intervals or when 
certain data is updated. If an error is detected, the system 
is restored to the last checkpoint and the operation is 
repeated. 

The temporal aspect of fault tolerance is addressed in 
fault-tolerant scheduling. In this scheduling theory, time 
for recovery is included in the schedule while still 
guaranteeing that all tasks meet their deadlines. Fixed 
priority scheduling is extended to include time for re-
execution of failed tasks in [13]. However, it is not 
necessary to reserve time for re-executing all tasks in 
advance, if one assumes that there is an upper bound on 
the number of tasks that can be affected by transient faults 
during a specific time interval. Using several time 
redundant copies of a task and taking a vote on their 

output to tolerate transient faults in a static scheduling 
system is proposed in [14]. However, when time 
redundancy is used in a static scheduled system, extra 
time must be pre-scheduled for re-execution of each task. 

Our real-time kernel takes advantage of the flexibility 
in fixed priority scheduling to control triplicated 
executions of tasks to mask errors. The kernel has been 
used for executing a brake-by-wire application allowing 
the temporal error masking technique to be evaluated 
using fault injection. 

3. Temporal error masking  

Our real-time kernel allows each critical task to be 
executed twice during normal operation. The term copy is 
used to denote a particular instance of the task execution. 
The results of the two copies are compared to detect 
errors. If the results match, a third copy does not have to 
be executed and the time can be used by other tasks. If the 
two results do not match, a third copy of the task is 
executed. The results of the three copies are then checked 
by a majority vote. If the majority voter detects two 
matching results, they are accepted as a valid result of the 
task, otherwise no result is delivered, which leads to an 
omission failure. Errors can also be detected by hardware 
and software EDMs. In this case, the affected copy is 
immediately terminated and a new copy is started, see 
Figure 1. 

Figure 1. Error Detection and Recovery 
After an error is detected, the kernel checks the 

deadline of the task to determine whether it is possible to 
execute an additional task copy before the deadline. If not, 
no result is delivered and an omission failure occurs. The 
output from the non-faulty node must then be used. If time 
is available, a new copy is started. The task result is 
delivered only when two matching results have been 
produced before the deadline. 

We assume that enough slack is available in the task 
schedule to allow at least one task to execute three copies 
without causing any other task to miss a deadline. 
However, if several tasks are affected by near-coincident 
transient faults, sufficient slack may not be available to 
allow all of them to execute three copies without causing 
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other tasks to miss their deadlines. 
The dynamic behavior of the technique enlarges the 

output jitter. However, this may be solved by adding a 
separate task responsible for delivering the results of the 
tasks. This extra task executes with an offset in time from 
the periodic task performing the actual computation [15].  

3.1. Policies when recovery is not possible 

Depending on the requirements of the application, 
different policies on how to deal with unrecoverable errors 
may be chosen. For example, a feedback control system is 
able to withstand a certain delay in the delivery of the 
control signals without losing the stability of the system 
[16]. In addition, some systems may even tolerate value 
failures due to the inertia of the controlled object. In [8] 
faults were injected in an engine control algorithm and 
almost 90% of the value failures produced were minor 
failures, i.e. failures with no noticeable impact on the 
engine. Therefore, if an error cannot be recovered: (a) an 
omission failure may occur, (b) instead of an omission, the 
previous result may be delivered or (c) if a HW exception 
occurs in the first or second execution, it may be assumed 
that the fault affects only that execution.  The result from 
the non-affected execution can thus be delivered. To 
inform the receiver of the uncertainty of the result, quality 
information can be included in the message. A first-class 
result is a verified result, i.e. the result has been produced 
twice and the two results match, while a second-class 
result is a result from an execution that is assumed to be 
unaffected by the fault. A third-class message contains a 
previous result. 

4. Brake-by-wire application 

Brake-by-wire systems are expected to replace 
hydraulic brake systems in future road vehicles. In a 
brake-by-wire system, the driver’s brake intention is 
transmitted electronically from the brake pedal to electro-
hydraulic or electro-mechanic brake actuators positioned 
on each wheel. 

Figure 2. Brake-by-wire system 
Some advantages of brake-by-wire are simplified 

assembling and service of the brake system. There are also 
environmental advantages as no hydraulics system is used. 
In addition, the brake-by-wire approach simplifies 
adaptation of assistance systems, such as ESP (electronic 
stability program). A distributed architecture for such a 

system can be implemented according to Figure 2, where 
the driver’s brake intervention is sent to a central node 
(CN). The central node handles the all-embracing control, 
distributing the correct brake force to each wheel node 
(WN). The individual wheel nodes control that the 
requested brake force is applied to the respective wheel. 
Note that hardware replicated wheel nodes may not be 
required, since it is possible to brake a car using only three 
wheel nodes. On the other hand, if the wheel nodes are 
integrated in an ESP system, each wheel node is critical. 

 

A MATLAB/Simulink brake-by-wire model provided 
by Volvo Technological Development is used as the target 
application. We used the Real-Time Workshop Ada 
Coder, which is an extension of Simulink to generate the 
Ada software code used in the experiments. Figure 3 
shows the top-level view of the model. 

Figure 3. Brake-by-wire model 
The model consists of two parts, one part modeling the 

vehicle and the other part modeling a wheel node. The 
input to the vehicle model is an initial speed value and the 
brake pedal angle. In this study, the vehicle model is 
initiated with a speed of 15 km/h and the brake pedal is 
activated after 15 ms. The vehicle model uses the brake 
pedal angle to calculate a brake force, which is delivered 
to the wheel node. The wheel node calculates the force to 
be applied on the brake discs. Here, the calculated force is 
returned to the vehicle model (BrakeSignal). The vehicle 
model calculates the speed reduction caused by the 
friction force obtained when the brake pad is pressed 
against the brake disc and then sends new information 
about the vehicle speed and the speed of the wheel to the 
wheel node (VehicleSpeed, WheelSpeed). The wheel node 
uses the speed of the vehicle and the speed of the wheel to 
calculate the wheel slip, i.e. the speed difference between 
the vehicle and the wheel, reducing the brake force if a 
specified slip level is exceeded. The brake force is 
otherwise increased. This allows the brake force to be 
adjusted for optimized braking performance.  

5. Experimental set-up 

Figure 4 shows the experimental set-up used to 
evaluate the time redundant execution of the brake-by-
wire application.  

A Unix workstation is hosting a Thor microprocessor 
board [17] used as the target system for our experiments 
as well as the GOOFI fault injection tool [8]. Our real-
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time kernel is running on the microprocessor board, 
handling the execution of a task containing the code 
generated for the wheel node.  The code generated for the 
vehicle model is executed on the Unix workstation and is 
not a target for fault injection. The GOOFI tool performs 
the fault injection experiments and forward the 
communication data between the vehicle model and the 
wheel node. 125 loop iterations (corresponding to 125 ms) 
of the brake-by-wire model are executed and data is 
exchanged between the vehicle model and the wheel node 
every fifth loop. 

Figure 4. Experimental set-up 

5.1. The Thor microprocessor board 

The target system for our experiments is a 
microprocessor board featuring a 32-bit Thor RISC 
microprocessor, developed by SAAB Ericsson Space AB, 
and 512 KB RAM. The CPU includes a direct mapped 
write-back data cache of 128 bytes as well as several 
internal EDMs. The EDMs can be divided into run-time 
checks, control flow checking and main memory error 
checking. Only the run-time checks were activated in this 
study. The run-time checks include mechanisms 
commonly found in other microprocessors as well as other 
checks such as constraint checks of array indices or loop 
variables. 

5.2. The real-time kernel 

A small real-time kernel supporting time-redundant 
execution of tasks was developed to perform the 
experimental evaluation of the time redundancy technique. 
Tasks are executed in a periodic receive-compute-send 
loop. The input data are received in the beginning of the 
loop from input devices or other tasks. The input data are 
then processed and the results are sent to actuators or to 
other tasks in the system in the end of the loop. 

Figure 5 shows how the execution of tasks is handled 
by the kernel. Task A in Figure 5 uses code generated for 
the wheel node (see Section 4) to calculate the brake force 
and is considered critical. The brake force calculation 
returns the output of the computation and a checksum 
calculated on all output values and all state variables. The 
checksum produced by each copy is compared to detect 
errors, see Section 3. Task B (not included in the brake-
by-wire model) is non-critical and calculates a slip value 
to be used, e.g. for icy road warning systems. The two 

tasks are not connected and they do not use any common 
variables.  

Figure 5. Execution of a critical task 

5.3. Fault injection environment 

The GOOFI fault injection tool was configured to use 
Scan-Chain Implemented Fault Injection (SCIFI) to inject 
faults in the Thor microprocessor. Faults were injected via 
the internal scan chains into the internal state elements of 
Thor. The scan chains were also used for observing the 
internal state of the microprocessor before and after a fault 
was injected. 

Fault model: Transients are modeled by single bit-
flips. The single-bit-flip model has become a de-facto 
standard for modeling the effects of transient faults in 
fault injection experiments, although it is not a perfect 
representation of all transient faults.  

Fault injection locations: Faults were injected into the 
registers and data cache of the Thor microprocessor via 
scan-chains. The scan-chains cover 2250 fault locations of 
a total of 4400 state elements in Thor. The fault injection 
locations were selected randomly using uniform sampling 
among the 2250 state elements. 

Points in time for fault injection: The time 
redundancy technique is evaluated with respect to errors 
affecting the application tasks. Thus, faults were only 
injected during the execution of the brake force 
calculation, see Figure 5. The points in time at which 
faults are injected were selected randomly in this interval 
using uniform sampling. 

5.4. Definitions 

The results of each fault is classified according to the 
consequences with respect to the required failure 
semantics, see Figure 6. The requirement is fulfilled if the 
computer in spite of the fault delivers a correct result, or if 
a fail-stop or omission failure occurs. The requirement is 
violated if a value failure or a timing failure occurs. 

A value failure occurs when the computer produces an 
erroneous output value, i.e. an error is not detected or an 
error is detected but the recovery action fails. 

A timing failure occurs when the output from the 
computer arrives after the deadline. An omission failure 
occurs when an error is detected but there was not enough 
time to produce two identical results before the deadline. 
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Timing failures and omission failures are not considered 
in this evaluation of the kernel (no deadline is defined and 
tasks are not pre-empted). Instead, the fault tolerance 
latency [18], i.e. the total time for error detection and error 
recovery, is measured. 

A correct result is produced if the fault leads to a latent 
or overwritten error. A correct result is also produced 
when an error is detected and recovery is successful. Fail-
stop failures occur when an error is detected but no 
recovery could be made, e.g. for CPU exceptions triggered 
during execution of the kernel code. 

6. Results 

Table 1 shows a summary of the results of the fault 
injection experiments. Two versions of the kernel were 
evaluated. One without support for time redundancy, 
called Kernel, and one that implements time redundancy, 
called FT-Kernel.  

Table 1. Result of the fault injection  
 Kernel  FT-kernel  
 %    (95% conf) # %    (95 % conf) # 
Correct result 80.9% (± 0.98%) 4962 88.8% (± 0.75%) 6017 
Fail-stop failure 17.4% (± 0.95%) 1068 10.1% (± 0.72%) 681 
Value failures 1.73% (± 0.33%) 106 1.15% (± 0.25%) 78 
Injected faults                6136                  6776   

 

The percentage of correct results produced increases 
from 81% using Kernel to 89% using FT-kernel, while the 
fail-stop failures decrease from 17% to 10%.  

The 10% fail-stop failures observed for the FT-kernel 
are caused by faults injected in the cache. The 
corresponding errors remained latent until activated by 
kernel code, for which no recovery mechanisms are 
available. 

The value failures decrease from 1.7% to 1.1%. The 
1.1% value failures stem either from the case when errors 
are not detected (0.7%) or when errors are detected but the 
recovery fails (0.4%). 

We have made a preliminary investigation of the 

causes for the 0.7% non-detected errors. We conjecture 
that most of these are control flow errors (0.6%), i.e. there 
is an unexpected jump to an incorrect location in the 
program code, although further investigation of the error 
propagation is required to verify this. Another reason for 
the non-detected errors is errors in the output variable 
from the second task copy (which is used as the final 
output) after the checksum has been calculated (0.07%). 
The reason for the remaining non-detected errors (0.03%) 
has not yet been identified. 

The 0.4% recovery failures are due to errors affecting 
the input variables in the second and third task copy, 
causing the majority voter to deliver a faulty output due to 
two equal but faulty results. The cache is flushed, i.e. all 
updated rows in the cache are written to memory, between 
each task copy to avoid faults injected in the cache-lines 
causing two copies to use the same faulty values. This 
works for constants since they are not updated. However, 
input variables are updated in the first task copy (all 
copies use the same input variables) causing potentially 
faulty values to be written to main memory and be used by 
two subsequent task copies.  

Table 2 presents the percentage of errors detected by 
the Thor run-time checks and the double execution 
mechanisms. 

Table 2. Percentage of errors detected by the 
error detection mechanisms for the FT-kernel. 
 % (95 % conf) # 
All errors detected by Thor run-
time checks 14.74 % (± 0.84 %) 999 

Errors detected by double 
execution 3.31 % (± 0.43 %) 224 

 

The percentage of errors detected by all Thor run-time 
checks decreases from 17.4% for the Kernel, to 14.7% in 
the case of the FT-kernel since more errors were 
overwritten during execution of the FT-kernel. Time 
redundant execution of critical tasks detects 3.3% of the 
errors. Figure 7 shows a histogram of the fault tolerance 
latency for faults detected by the run-time checks. The 
fault tolerance latency for faults detected by the double 
execution is the time for executing the task again and a 
small amount of time for performing the majority vote 
(aprox. 105 us). 
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7. Conclusion 

The experimental evaluation of the FT-kernel clearly 
demonstrates the effectiveness of our temporal error 
masking technique. The percentage of correct results 
increased from 81% to 89% using temporal error masking, 
while fail-stop failures decreased from 17% to 10% and 
value failures decreased from 1.7% to 1.1%.  
Nevertheless, the error handling mechanisms in the FT-
kernel need to be improved as the percentage of value 
failures is unacceptably high. 

By analyzing the fault injection data, we investigated 
the causes for the value failures. Most value failures were 
assumed to be caused by control-flow errors (0.6% of all 
errors). It is likely that these errors would have been 
detected by the control flow checking mechanism 
available in the Thor processor. (The current 
implementation of the FT-kernel does not support the use 
of control flow checking.) The other main reason for value 
failures (0.4% of the errors) was errors that affected the 
common input to the second and third execution causing 
those two executions to produce identical but incorrect 
checksums. These value failures can be avoided by 
protecting the input data with error detecting and 
correcting codes. They can also be avoided by using 
triplication and majority voting. 

Future work will focus on extending the FT-kernel with 
additional error detection and recovery mechanisms to 
further reduce the probability of value failures. We will 
investigate the techniques discussed above to improve the 
handling of errors affecting the application tasks. We will 
also consider mechanisms to handle faults that affect the 
execution of the kernel code. These mechanisms will be 
validated by injecting faults during the execution of the 
kernel code. We will also validate the FT-kernel with 
respect to transient faults in the main memory.  
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