

Experimental Evaluation of Time-redundant Execution
 for a Brake-by-wire Application

Joakim Aidemark, Jonny Vinter, Peter Folkesson, and Johan Karlsson

Department of Computer Engineering
Chalmers University of Technology

S-412 96 Göteborg, Sweden
{aidemark, vinter, peterf, johan}@ce.chalmers.se

Abstract

This paper presents an experimental evaluation of a
brake-by-wire application that tolerates transient faults by
temporal error masking. A specially designed real-time
kernel that masks errors by triple time-redundant
execution and voting executes the application on a fail-
stop computer node. The objective is to reduce the number
of node failures by masking errors at the computer node
level. The real-time kernel always executes the application
twice to detect errors, and ensures that a fail-stop failure
occurs if there is not enough CPU-time available for a
third execution and voting. Fault injection experiments
show that temporal error masking reduced the number of
fail-stop failures by 42% compared to executing the
brake-by-wire task without time redundancy.

1. Introduction

Distributed real-time systems are increasingly being
used to control critical functions in automotive and
aerospace applications, such as fly-by-wire, brake-by-wire
and steer-by-wire systems. These systems must be fault-
tolerant to be safe and reliable.

Previous research has shown that transient faults are
common in digital systems [1]. These faults can be caused
by power fluctuations, electromagnetic interference or by
particle radiation. Radiation-induced transient faults are
mainly a problem in space and at high altitude, however
they may also occur at ground level [2]. In addition, as the
computer industry strives to reduce both the geometry and
the power supply of components, the risk of
environmentally induced faults increases.

A cost-effective technique for handling transient faults
is to use time-redundancy [3, 4, 5, 6]. The declining prices
of high-performance microprocessors and micro-
controllers make time redundancy increasingly attractive
for achieving fault-tolerance in real-time systems.

 We have developed a real-time kernel that mask errors
by triple time redundant execution and majority voting.

The kernel executes all critical tasks twice and compares
the results to detect errors. A third execution is started if
an error is detected by the comparison or a CPU-
exception. This allows the kernel to mask errors by
conducting a majority vote on three results. We call this
technique temporal error masking.

The real-time kernel uses fixed priority scheduling to
control temporal error masking. Before starting additional
executions when an error is detected, the kernel checks
whether it is feasible to re-execute the task and meet the
deadline. The output of a task is delivered only when two
matching results have been produced.

The objective of temporal error masking is to tolerate
transient faults at the node-level whenever possible. For
permanent faults and transient faults that cannot be
handled at the node level, the node must fulfill fail-stop or
omission failure semantics [7]. These properties are
achieved by combining hardware and software error
detection mechanisms with temporal error masking.

In this paper, we present an experimental evaluation of
a brake-by-wire application executed by the real-time
kernel. We consider a distributed control system, where a
brake-by-wire task for each wheel is executed on two fail-
stop computer nodes operating in active redundancy. Such
a system can tolerate single node failures without
degrading the ability of the system to brake the vehicle. If
two nodes that control the braking of one wheel both fail,
then the system can still brake the vehicle using the other
wheels. However, the efficiency of the brakes will be
substantially degraded. Therefore, it is important to
minimize the probability of double node failures.

Such double node failures can occur as a result of a
single external disturbance that cause transient faults in
more than one node, or near-coincident transient faults.
Temporal error masking improves the systems ability to
cope with such transient faults without degradation.

We conducted fault injection experiments to validate
the kernel and assess the effectiveness of the temporal
error masking. Transient bit-flips were injected into the
internal registers and flip-flops of the CPU that executed
the kernel. We have previously shown that such bit-flips

in an engine controller may cause permanent failures, such
as locking the engine at full speed [8].

 The objective of the experiments was to estimate the
error coverage with respect to errors that occur during the
execution of the brake-by-wire application task. No faults
were injected during execution of the kernel code, since
no mechanisms for detection and recovery of such faults
are included in the current version of the kernel.

The next section presents related work. The principles
of temporal error masking are presented in Section 3,
while Section 4 presents the brake-by-wire application.
Section 5 describes the experimental set-up and Section 6
reports the results of the fault injection experiments.
Finally, the conclusions of this study are given in
Section 7.

2. Related work

Time redundancy is a well-known technique for
achieving fault tolerance [3]. A majority of studies on
time redundancy focuses on detecting errors, i.e. to
execute an operation twice and compare the results. This
is done on different levels such as on the instruction level
[4], procedure level [5] or at the task level [6]. Execution
of diverse software versions also allows detection of
software errors [9]. Recent studies on double execution
and comparison utilize new technologies in processors to
reduce the time overhead [10].

Although most studies on time redundancy focus on
detecting errors, some studies have addressed the use of
triplicated execution and voting to mask errors on a single
node. Triplicated execution is evaluated in [11], where
each software module and the voting mechanisms are
executed three times to mask errors.

Another approach using time redundancy is roll back
recovery [12]. In roll back recovery, the error is detected
by various error detection mechanisms and additional time
is used to re-execute the failed operation. Retry is the
simplest scheme, where the failed operation is just
repeated. Another scheme is to use checkpointing, i.e. the
state of the processor is saved at regular intervals or when
certain data is updated. If an error is detected, the system
is restored to the last checkpoint and the operation is
repeated.

The temporal aspect of fault tolerance is addressed in
fault-tolerant scheduling. In this scheduling theory, time
for recovery is included in the schedule while still
guaranteeing that all tasks meet their deadlines. Fixed
priority scheduling is extended to include time for re-
execution of failed tasks in [13]. However, it is not
necessary to reserve time for re-executing all tasks in
advance, if one assumes that there is an upper bound on
the number of tasks that can be affected by transient faults
during a specific time interval. Using several time
redundant copies of a task and taking a vote on their

output to tolerate transient faults in a static scheduling
system is proposed in [14]. However, when time
redundancy is used in a static scheduled system, extra
time must be pre-scheduled for re-execution of each task.

Our real-time kernel takes advantage of the flexibility
in fixed priority scheduling to control triplicated
executions of tasks to mask errors. The kernel has been
used for executing a brake-by-wire application allowing
the temporal error masking technique to be evaluated
using fault injection.

3. Temporal error masking

Our real-time kernel allows each critical task to be
executed twice during normal operation. The term copy is
used to denote a particular instance of the task execution.
The results of the two copies are compared to detect
errors. If the results match, a third copy does not have to
be executed and the time can be used by other tasks. If the
two results do not match, a third copy of the task is
executed. The results of the three copies are then checked
by a majority vote. If the majority voter detects two
matching results, they are accepted as a valid result of the
task, otherwise no result is delivered, which leads to an
omission failure. Errors can also be detected by hardware
and software EDMs. In this case, the affected copy is
immediately terminated and a new copy is started, see
Figure 1.

Figure 1. Error Detection and Recovery
After an error is detected, the kernel checks the

deadline of the task to determine whether it is possible to
execute an additional task copy before the deadline. If not,
no result is delivered and an omission failure occurs. The
output from the non-faulty node must then be used. If time
is available, a new copy is started. The task result is
delivered only when two matching results have been
produced before the deadline.

We assume that enough slack is available in the task
schedule to allow at least one task to execute three copies
without causing any other task to miss a deadline.
However, if several tasks are affected by near-coincident
transient faults, sufficient slack may not be available to
allow all of them to execute three copies without causing

T3

T3

Voting

Error detected by the
comparison between
T1 and T2:

Comparison

T1 T2

Fault free execution: T1 T2

Comparison

T1 Error detected by
HW/SW EDM:

Error detected

T2

Comparison

Fault

Fault

other tasks to miss their deadlines.
The dynamic behavior of the technique enlarges the

output jitter. However, this may be solved by adding a
separate task responsible for delivering the results of the
tasks. This extra task executes with an offset in time from
the periodic task performing the actual computation [15].

3.1. Policies when recovery is not possible

Depending on the requirements of the application,
different policies on how to deal with unrecoverable errors
may be chosen. For example, a feedback control system is
able to withstand a certain delay in the delivery of the
control signals without losing the stability of the system
[16]. In addition, some systems may even tolerate value
failures due to the inertia of the controlled object. In [8]
faults were injected in an engine control algorithm and
almost 90% of the value failures produced were minor
failures, i.e. failures with no noticeable impact on the
engine. Therefore, if an error cannot be recovered: (a) an
omission failure may occur, (b) instead of an omission, the
previous result may be delivered or (c) if a HW exception
occurs in the first or second execution, it may be assumed
that the fault affects only that execution. The result from
the non-affected execution can thus be delivered. To
inform the receiver of the uncertainty of the result, quality
information can be included in the message. A first-class
result is a verified result, i.e. the result has been produced
twice and the two results match, while a second-class
result is a result from an execution that is assumed to be
unaffected by the fault. A third-class message contains a
previous result.

4. Brake-by-wire application

Brake-by-wire systems are expected to replace
hydraulic brake systems in future road vehicles. In a
brake-by-wire system, the driver’s brake intention is
transmitted electronically from the brake pedal to electro-
hydraulic or electro-mechanic brake actuators positioned
on each wheel.

Figure 2. Brake-by-wire system
Some advantages of brake-by-wire are simplified

assembling and service of the brake system. There are also
environmental advantages as no hydraulics system is used.
In addition, the brake-by-wire approach simplifies
adaptation of assistance systems, such as ESP (electronic
stability program). A distributed architecture for such a

system can be implemented according to Figure 2, where
the driver’s brake intervention is sent to a central node
(CN). The central node handles the all-embracing control,
distributing the correct brake force to each wheel node
(WN). The individual wheel nodes control that the
requested brake force is applied to the respective wheel.
Note that hardware replicated wheel nodes may not be
required, since it is possible to brake a car using only three
wheel nodes. On the other hand, if the wheel nodes are
integrated in an ESP system, each wheel node is critical.

A MATLAB/Simulink brake-by-wire model provided
by Volvo Technological Development is used as the target
application. We used the Real-Time Workshop Ada
Coder, which is an extension of Simulink to generate the
Ada software code used in the experiments. Figure 3
shows the top-level view of the model.

Figure 3. Brake-by-wire model
The model consists of two parts, one part modeling the

vehicle and the other part modeling a wheel node. The
input to the vehicle model is an initial speed value and the
brake pedal angle. In this study, the vehicle model is
initiated with a speed of 15 km/h and the brake pedal is
activated after 15 ms. The vehicle model uses the brake
pedal angle to calculate a brake force, which is delivered
to the wheel node. The wheel node calculates the force to
be applied on the brake discs. Here, the calculated force is
returned to the vehicle model (BrakeSignal). The vehicle
model calculates the speed reduction caused by the
friction force obtained when the brake pad is pressed
against the brake disc and then sends new information
about the vehicle speed and the speed of the wheel to the
wheel node (VehicleSpeed, WheelSpeed). The wheel node
uses the speed of the vehicle and the speed of the wheel to
calculate the wheel slip, i.e. the speed difference between
the vehicle and the wheel, reducing the brake force if a
specified slip level is exceeded. The brake force is
otherwise increased. This allows the brake force to be
adjusted for optimized braking performance.

5. Experimental set-up

Figure 4 shows the experimental set-up used to
evaluate the time redundant execution of the brake-by-
wire application.

A Unix workstation is hosting a Thor microprocessor
board [17] used as the target system for our experiments
as well as the GOOFI fault injection tool [8]. Our real-

InitialVehicleSpeed

BrakePedalAngle

VehicleSpeed

WheelSpeed

BrakeForce

BrakeSignal

Vehicle
model

Wheel
node

WN
 CN

WN WN

WN

time kernel is running on the microprocessor board,
handling the execution of a task containing the code
generated for the wheel node. The code generated for the
vehicle model is executed on the Unix workstation and is
not a target for fault injection. The GOOFI tool performs
the fault injection experiments and forward the
communication data between the vehicle model and the
wheel node. 125 loop iterations (corresponding to 125 ms)
of the brake-by-wire model are executed and data is
exchanged between the vehicle model and the wheel node
every fifth loop.

Figure 4. Experimental set-up

5.1. The Thor microprocessor board

The target system for our experiments is a
microprocessor board featuring a 32-bit Thor RISC
microprocessor, developed by SAAB Ericsson Space AB,
and 512 KB RAM. The CPU includes a direct mapped
write-back data cache of 128 bytes as well as several
internal EDMs. The EDMs can be divided into run-time
checks, control flow checking and main memory error
checking. Only the run-time checks were activated in this
study. The run-time checks include mechanisms
commonly found in other microprocessors as well as other
checks such as constraint checks of array indices or loop
variables.

5.2. The real-time kernel

A small real-time kernel supporting time-redundant
execution of tasks was developed to perform the
experimental evaluation of the time redundancy technique.
Tasks are executed in a periodic receive-compute-send
loop. The input data are received in the beginning of the
loop from input devices or other tasks. The input data are
then processed and the results are sent to actuators or to
other tasks in the system in the end of the loop.

Figure 5 shows how the execution of tasks is handled
by the kernel. Task A in Figure 5 uses code generated for
the wheel node (see Section 4) to calculate the brake force
and is considered critical. The brake force calculation
returns the output of the computation and a checksum
calculated on all output values and all state variables. The
checksum produced by each copy is compared to detect
errors, see Section 3. Task B (not included in the brake-
by-wire model) is non-critical and calculates a slip value
to be used, e.g. for icy road warning systems. The two

tasks are not connected and they do not use any common
variables.

Figure 5. Execution of a critical task

5.3. Fault injection environment

The GOOFI fault injection tool was configured to use
Scan-Chain Implemented Fault Injection (SCIFI) to inject
faults in the Thor microprocessor. Faults were injected via
the internal scan chains into the internal state elements of
Thor. The scan chains were also used for observing the
internal state of the microprocessor before and after a fault
was injected.

Fault model: Transients are modeled by single bit-
flips. The single-bit-flip model has become a de-facto
standard for modeling the effects of transient faults in
fault injection experiments, although it is not a perfect
representation of all transient faults.

Fault injection locations: Faults were injected into the
registers and data cache of the Thor microprocessor via
scan-chains. The scan-chains cover 2250 fault locations of
a total of 4400 state elements in Thor. The fault injection
locations were selected randomly using uniform sampling
among the 2250 state elements.

Points in time for fault injection: The time
redundancy technique is evaluated with respect to errors
affecting the application tasks. Thus, faults were only
injected during the execution of the brake force
calculation, see Figure 5. The points in time at which
faults are injected were selected randomly in this interval
using uniform sampling.

5.4. Definitions

The results of each fault is classified according to the
consequences with respect to the required failure
semantics, see Figure 6. The requirement is fulfilled if the
computer in spite of the fault delivers a correct result, or if
a fail-stop or omission failure occurs. The requirement is
violated if a value failure or a timing failure occurs.

A value failure occurs when the computer produces an
erroneous output value, i.e. an error is not detected or an
error is detected but the recovery action fails.

A timing failure occurs when the output from the
computer arrives after the deadline. An omission failure
occurs when an error is detected but there was not enough
time to produce two identical results before the deadline.

GOOFI
fault injection

tool

Vehicle
model

 Thor
microprocessor

board
Kernel

and tasks

Unix workstation

Dispatch Task B

Read data Calc. brake force Compare checksums Write output

Re-execute

Task A Save registers Dispatch

Re-execute
if mismatch

Timing failures and omission failures are not considered
in this evaluation of the kernel (no deadline is defined and
tasks are not pre-empted). Instead, the fault tolerance
latency [18], i.e. the total time for error detection and error
recovery, is measured.

A correct result is produced if the fault leads to a latent
or overwritten error. A correct result is also produced
when an error is detected and recovery is successful. Fail-
stop failures occur when an error is detected but no
recovery could be made, e.g. for CPU exceptions triggered
during execution of the kernel code.

6. Results

Table 1 shows a summary of the results of the fault
injection experiments. Two versions of the kernel were
evaluated. One without support for time redundancy,
called Kernel, and one that implements time redundancy,
called FT-Kernel.

Table 1. Result of the fault injection
 Kernel FT-kernel
 % (95% conf) # % (95 % conf) #
Correct result 80.9% (± 0.98%) 4962 88.8% (± 0.75%) 6017
Fail-stop failure 17.4% (± 0.95%) 1068 10.1% (± 0.72%) 681
Value failures 1.73% (± 0.33%) 106 1.15% (± 0.25%) 78
Injected faults 6136 6776

The percentage of correct results produced increases
from 81% using Kernel to 89% using FT-kernel, while the
fail-stop failures decrease from 17% to 10%.

The 10% fail-stop failures observed for the FT-kernel
are caused by faults injected in the cache. The
corresponding errors remained latent until activated by
kernel code, for which no recovery mechanisms are
available.

The value failures decrease from 1.7% to 1.1%. The
1.1% value failures stem either from the case when errors
are not detected (0.7%) or when errors are detected but the
recovery fails (0.4%).

We have made a preliminary investigation of the

causes for the 0.7% non-detected errors. We conjecture
that most of these are control flow errors (0.6%), i.e. there
is an unexpected jump to an incorrect location in the
program code, although further investigation of the error
propagation is required to verify this. Another reason for
the non-detected errors is errors in the output variable
from the second task copy (which is used as the final
output) after the checksum has been calculated (0.07%).
The reason for the remaining non-detected errors (0.03%)
has not yet been identified.

The 0.4% recovery failures are due to errors affecting
the input variables in the second and third task copy,
causing the majority voter to deliver a faulty output due to
two equal but faulty results. The cache is flushed, i.e. all
updated rows in the cache are written to memory, between
each task copy to avoid faults injected in the cache-lines
causing two copies to use the same faulty values. This
works for constants since they are not updated. However,
input variables are updated in the first task copy (all
copies use the same input variables) causing potentially
faulty values to be written to main memory and be used by
two subsequent task copies.

Table 2 presents the percentage of errors detected by
the Thor run-time checks and the double execution
mechanisms.

Table 2. Percentage of errors detected by the
error detection mechanisms for the FT-kernel.
 % (95 % conf) #
All errors detected by Thor run-
time checks 14.74 % (± 0.84 %) 999

Errors detected by double
execution 3.31 % (± 0.43 %) 224

The percentage of errors detected by all Thor run-time
checks decreases from 17.4% for the Kernel, to 14.7% in
the case of the FT-kernel since more errors were
overwritten during execution of the FT-kernel. Time
redundant execution of critical tasks detects 3.3% of the
errors. Figure 7 shows a histogram of the fault tolerance
latency for faults detected by the run-time checks. The
fault tolerance latency for faults detected by the double
execution is the time for executing the task again and a
small amount of time for performing the majority vote
(aprox. 105 us).

Fault tolerance latency
Error detected by Thor run-time checks

0
50

100
150

26 33 39 46 52 59 65 72 79 85 92 98
M

or
e

N
o.

 o
f e

rro
rs

0%

50%

100%

C
um

ul
at

iv
e

Figure 7. Fault tolerance latency

µs

Fault Error

Error
detected

Error not
detected

Timing
failure

Value
failure

Correct
result

Fail stop
failure

Omission
failure

 Recovery
 successful

 Recovery
 failed

 Recovery
 available but
 not possible

 No recovery
 available

Overwritten or
latent errors

Figure 6. Error propagation and effects

Fu
lfi

lli
ng

 th
e

fa
ilu

re

se
m

an
tic

s
V

io
la

tin
g

th
e

fa
ilu

re

se
m

an
tic

s

7. Conclusion

The experimental evaluation of the FT-kernel clearly
demonstrates the effectiveness of our temporal error
masking technique. The percentage of correct results
increased from 81% to 89% using temporal error masking,
while fail-stop failures decreased from 17% to 10% and
value failures decreased from 1.7% to 1.1%.
Nevertheless, the error handling mechanisms in the FT-
kernel need to be improved as the percentage of value
failures is unacceptably high.

By analyzing the fault injection data, we investigated
the causes for the value failures. Most value failures were
assumed to be caused by control-flow errors (0.6% of all
errors). It is likely that these errors would have been
detected by the control flow checking mechanism
available in the Thor processor. (The current
implementation of the FT-kernel does not support the use
of control flow checking.) The other main reason for value
failures (0.4% of the errors) was errors that affected the
common input to the second and third execution causing
those two executions to produce identical but incorrect
checksums. These value failures can be avoided by
protecting the input data with error detecting and
correcting codes. They can also be avoided by using
triplication and majority voting.

Future work will focus on extending the FT-kernel with
additional error detection and recovery mechanisms to
further reduce the probability of value failures. We will
investigate the techniques discussed above to improve the
handling of errors affecting the application tasks. We will
also consider mechanisms to handle faults that affect the
execution of the kernel code. These mechanisms will be
validated by injecting faults during the execution of the
kernel code. We will also validate the FT-kernel with
respect to transient faults in the main memory.

8. Acknowledgements

This work was supported by ARTES and the Swedish
Foundation for Strategic Research (SSF). We would like
to thank Stefan Asserhäll and Torbjörn Hult at Saab
Ericsson Space for their technical assistance with the Thor
processor. We thank Jerker Lennevi and Henrik Lönn at
Volvo Technological Development for providing and
supporting the brake-by-wire model. Special thanks go to
Philip Koopman for many valuable suggestions and for
proposing the term temporal error masking. We also thank
the anonymous reviewers for their constructive criticism.

9. References

[1] R.K. Iyer, D.J. Rossetti, and M.C. Hsueh, “Measurement
and Modeling of Computer Reliability as Affected by
System Activity”, ACM Trans. on Computer Systems, 4(3),
1986, pp. 214-37.

[2] E. Normand, “Single Event Upset at Ground Level”, IEEE
Trans. on Nuclear Science, 43(6, pt.1), 1996, pp. 2742-50.

[3] Johnson B.W., Design and Analysis of Fault-Tolerant
Digital Systems, Addison-Wessley, 1989.

[4] N. Oh, P.P. Shirvani and E.J. McCluskey, "Error Detection
by Duplicated Instructions In Super-scalar Processors,"
IEEE Trans. on Reliability, Sep. 2001.

[5] Oh, N., and E.J. McCluskey, “Procedure Call Duplication:
Minimization of Energy Consumption with Constrained
Error Detection Latency” in Proc. IEEE Int’l Symp. on
Defect and Fault Tolerance in VLSI Systems, 2001,
pp. 182 –187.

[6] A. Damm, “The Effectiveness of Software Error-Detection
Mechanisms in Real-Time Operating Systems”, in FTCS
Digest of Papers. 16th Annual Int’l Symp. on Fault-Tolerant
Computing Systems, Washington, DC, USA, 1986, pp. 171-
176.

[7] F. Cristian, “Understanding Fault-Tolerant Distributed
Systems”, Comm. of the ACM, 34(2), 1991, pp. 56-78.

[8] J. Vinter, J. Aidemark, P. Folkesson, and J. Karlsson,
“Reducing Critical Failures for Control Algorithms Using
Executable Assertions and Best Effort Recovery”, in Proc.
Int’l. Conf. on Dependable Systems and Networks.
Göteborg, Sweden, 2001, pp 347 -356.

[9] T. Lovric, "Dynamic Double Virtual Duplex System: A
Cost-Efficient Approach to Fault-Tolerance", in
Dependable Computing for Critical Applications 5, IEEE
Computer Society, 1998, pp 57-74.

[10] E. Rotenberg, "AR-SMT: A Microarchitectural Approach to
Fault Tolerance in Microprocessors", in Proc Int’l Conf. on
Dependable Systems and Networks, Madison, WI, USA,
1999, pp 84-91.

[11] Schuette, M.A., Shen J.P., Siewiorek D.P., and Zhu Y.X.,
“Experimental Evaluation of Two Concurrent Error
Detection Schemes”, in FTCS Digest of Papers. 16th
Annual Int’l Symp. on Fault-Tolerant Computing Systems,
Washington, DC, USA, 1986, pp. 138-143.

[12] Pradhan D.K., Fault-Tolerant Computer System Design,
Upper Saddle River, New Jersey, Prentice Hall PTR, 1996.

[13] A. Burns, S. Punnekkat, L. Strigini, and D.R. Wright,
“Probabilistic Scheduling Guarantees for Fault-Tolerant
Real-Time Systems”, in Dependable Computing for Critical
Applications 7, Piscataway, NJ, USA, 1999, pp. 361-378.

[14] G. Fohler, “Adaptive Fault-Tolerance with Statically
Scheduled Real-Time Systems”, in Proc. Ninth Euromicro
Workshop on Real Time Systems, Los Alamitos, CA, USA,
1997, pp 161-167.

[15] I. Bate, and A. Burns, “Schedulability Analysis of Fixed
Priority Real-Time Systems with Offsets”, in Proc. Ninth
Euromicro Workshop on Real Time Systems, Toledo, Spain,
1997, pp 153-160.

[16] K.G. Shin, and H. Kim, “Derivation and Application of
Hard Deadlines for Real-Time Control Systems”, IEEE
Trans. on Systems, Man and Cybernetics, 22(6), 1992 pp.
1403-13.

[17] Saab Ericsson Space AB, Microprocessor Thor, Product
Information, 1993.

[18] H. Kim, and K.G. Shin, “Evaluation of Fault Tolerance
Latency from Real-Time Application's Perspectives”, IEEE
Trans. on Computers, 49(1), 2000, pp. 55-64.

