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Abstract 
 

In this paper, we present a new fault injection tool 
called GOOFI (Generic Object-Oriented Fault 
Injection). GOOFI is designed to be adaptable to various 
target systems and different fault injection techniques. 
The tool is highly portable between different host 
platforms since it relies on the Java programming 
language and a SQL compatible database. The current 
version of the tool supports pre-runtime Software 
Implemented Fault Injection and Scan-Chain 
Implemented Fault Injection. 

 

1. Introduction 

Fault injection has become an important method for 
experimentally validating the dependability of computer 
systems.  It can be used to identify dependability 
weaknesses in the design of a fault tolerant system. Fault 
injection can also be used to obtain dependability 
measures such as the error coverage of a system. The 
coverage can then be used in an analytical model to 
calculate the system’s availability and reliability. 

Many fault injection tools and techniques have been 
presented. Some examples are: MEFISTO [1], VERIFY 
[2] and DEPEND [3], which are tools that inject faults 
into a simulation model of a system.  RIFLE [4] and 
MESSALINE [5] are tools for pin-level fault injection, 
while Xception [6], FIAT [7] and FERRARI [8] are tools 
that inject faults into physical systems using software 
implemented fault injection (SWIFI). 

Different techniques are used in different phases of the 
design cycle. Simulation based fault injection can be used 
early in the design cycle, while SWIFI and pin-level fault 
injection requires that a system prototype is available. 

Most fault injection tools have been developed with a 
specific fault injection technique in mind targeting a 

specific system, and using a custom designed user 
interface. Extending such tools with new fault injection 
techniques, or porting the tool to new target systems is 
usually a cumbersome and time-consuming process.    

So far, only a few tools have addressed the issues of 
extension and portability to different target systems. 
NFTAPE [9] is a recent fault injection tool that relies on 
available lightweight fault injectors, triggers, monitors 
and other components to facilitate porting the tool to new 
target systems as well as adapting it for different fault 
injection techniques. 

In this paper, we present a new fault injection tool, 
called GOOFI (Generic Object-oriented Fault Injection), 
which can perform fault injection campaigns using 
different fault injection techniques on different target 
systems. A major objective of the tool is to provide a 
user-friendly fault injection environment with a graphical 
user interface and an underlying generic architecture that 
assists the user when adapting the tool for new target 
systems and new fault injection techniques. 

The GOOFI tool is highly portable between different 
host platforms since the tool was implemented using the 
Java programming language and all data is saved in a 
SQL compatible database. Furthermore, an object-
oriented approach was chosen which increases the 
extensibility and maintainability of the tool.  

 The current version of GOOFI supports pre-runtime 
Software Implemented Fault Injection (SWIFI) and Scan-
Chain Implemented Fault Injection (SCIFI). The SCIFI 
technique injects faults via the built-in test-logic, i.e. 
boundary scan-chains and internal scan-chains, present 
in many modern VLSI circuits. This enables faults to be 
injected into the pins and many of the internal state 
elements of an integrated circuit as well as observation of 
the internal state [10].  In pre-runtime SWIFI, faults are 
injected into the program and data areas of the target 
system before it starts to execute. GOOFI is capable of 
injecting single or multiple transient bit-flip faults. In 



 

this paper, we focus on the architecture of GOOFI and 
the implementation of the SCIFI fault injection 
technique. 

The target system considered in this paper uses the 
Thor RD microprocessor [11]. The Thor RD is developed 
by SAAB Ericsson Space AB and is intended for highly 
dependable space applications. It is an improved version 
of the Thor microprocessor evaluated in [10] featuring 
parity protected instruction and data caches. Thor RD is 
manufactured using a radiation-hardened process.  

The remainder of the paper is organised as follows. 
The architecture of the tool is described in section 2. 
Section 3 shows how to use the GOOFI tool with the 
SCIFI technique. Conclusions and future extensions of 
the tool are presented in Section 4.  

2. Architectural design 

Adapting a fault injection tool to a new fault injection 
technique or a new target system requires a trade-off 
between generality and user friendliness. The objective of 
GOOFI is to provide as much support as possible for 
adapting the tool to new target systems and new fault 
injection techniques. When a new fault injection 
technique is added, a new fault injection algorithm must 
be implemented and the graphical user interface must be 
modified to support the new fault injection technique.  

 

 
Figure 1.  The GOOFI architecture. 

 
Since GOOFI is developed using Java and relies on a 

SQL compatible database for storing data, the tool is 

highly portable between host platforms. The current 
version of GOOFI was developed on a PC running 
Windows 2000 and was subsequently ported to a Sun 
workstation running Solaris 8. 

The GOOFI architecture can be divided into a three-
layered architecture (see Figure 1). At the top layer is the 
graphical user interface (GUI). From the menus in the 
GUI, fault injection campaigns can be configured and 
started for a chosen fault injection technique and for a 
chosen target system.  

The main Java classes in the middle layer include 
FaultInjectionAlgorithms and Framework, as well as a 
TargetSystemInterface class for each supported target 
system. The fault injection algorithms defined in the 
FaultInjectionAlgorithms class use abstract methods 
(undefined procedures) that must be implemented in each 
TargetSystemInterface class. The fault injection 
algorithm for the SCIFI-technique is shown in  
Figure 2. 

 
Figure 2.  The FaultInjectionAlgorithms class. 

 
 The Framework class, see Figure 3, is used as a 

template by the programmer when creating a new 
TargetSystemInterface class. The TargetSystemInterface 
class inherits the FaultInjectionAlgorithms class and can 
therefore use the defined fault injection algorithms 
directly. Only the abstract methods used by the algorithm 
need to be implemented in the TargetSystemInterface 
class. 

Finally, the database and the interface to the database 
are in the lowest layer. The database stores information 

abstract class FaultInjectionAlgorithms { 
  public abstract void initTestCard(); 
  public abstract void loadWorkload(); 
  public abstract void runWorkload(); 
  public abstract void waitForBreakPoint(); 
  public abstract void writeMemory(); 
  public abstract void readMemory(); 
  public abstract void readScanChain(); 
  public abstract void injectFault(); 
  public abstract void writeScanChain(); 
  public abstract void waitForTermination(); 
  . . . .  
  
  public void faultInjectorSCIFI(String campaignNr){ 
     readCampaignData(campaignNr); 
     makeReferenceRun(); 
     for(int i = 0; i < nrOfExperiments; i++){ 
        initTestCard(); 
        loadWorkload(); 
        writeMemory();     
        runWorkload();     
        waitForBreakPoint();     
        readScanChain(); 
        injectFault();           
        writeScanChain();     
        waitForTermination();    
        readMemory(); 
        readScanChain(); 
     } 
  } 

  public void faultInjectorSWIFI(..){ 
     . . . . 
  } 

} 
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about the target system, the fault injection campaigns and 
data logged from the fault injection experiments.  

2.1. Adding a new fault injection technique to 
GOOFI 

To adapt the tool to a new fault injection technique a 
new window in the GUI must be implemented and a new 
fault injection algorithm must be added to the 
FaultInjectionAlgorithms class. By combining different 
abstract methods we can define algorithms for fault 
injection techniques such as SCIFI, SWIFI or pin level 
fault injection (see for example the method 
faultInjectorSCIFI in Figure 2). When adding a new fault 
injection technique to GOOFI, the abstract methods are 
used as building blocks. Many of the abstract methods 
used by one fault injection technique are reusable when 
defining the algorithm for another fault injection 
technique, e.g. the abstract method loadWorkload() in 
Figure 2. Other abstract methods need to be implemented 
specifically for each new fault injection technique, such 
as the method injectFault(). The previously undefined 
abstract methods needed for defining the new fault 
injection technique are added to the Framework class. 

2.2. Adapting GOOFI to new target systems 

  When support for a new target system is added to 
GOOFI, a new TargetSystemInterface class must be 
created. To do this the programmer uses the Framework 
class as a template. This means that the programmer only 
needs to implement the abstract methods used by the 
fault injection algorithms. 

 

 

 
 
 
Figure 3.  The framework used for implementing 
fault injection on a new target system. 

2.3. GOOFI database 

The GOOFI database contains the tables shown in 
Figure 4. The TargetSystemData table stores all 
information about the target system required for setting 
up new fault injection campaigns and the CampaignData 
table stores all the information needed to conduct a 
campaign. The target system data and campaign data is 
provided by the user via the GUI. The 

LoggedSystemState table stores the system state during 
and after an experiment. The results of a fault injection 
campaign are primarily obtained by analysing the 
LoggedSystemState table. The relations between the 
tables in the database are designed to use foreign keys 
(shown as arrows in Figure 4). Through the foreign keys, 
we prevent inconsistencies in the database and minimize 
the information stored in the tables while still being able 
to track all information about the campaign and the 
target system.  

 
Figure 4.  References between the tables in the 
database. 

 
The attribute "experimentName" in table 

LoggedSystemState holds a unique name for each 
experiment. To exemplify the use of the second attribute 
"parentExperiment", assume that one fault injection 
experiment E1 shows an interesting result such as a fail-
silence violation, and we want to investigate the reason 
for this violation by re-running the experiment logging 
the system state after each machine instruction. (Such 
logging is normally not done for each fault in a campaign 
because it is too time-consuming.) The same campaign 
data for the new experiment E2 as for E1 must then be 
used. Thus, the name E1 in "parentExperiment” is saved 
so that the information about the campaign data for E1 
can be tracked. The "experimentData" attribute contains 
information about the experiment such as the fault 
injection location, while the "stateVector" attribute 
contains the logged system state information from the 
fault injection experiment.  

3. Using GOOFI with the SCIFI technique 

This section describes how the SCIFI technique is 
implemented in the GOOFI tool for a specific target 
system built around the Thor RD microprocessor. 
Conducting fault injection campaigns using GOOFI 
involves four phases: the configuration, set-up, fault 
injection and analysis phase. 

TargetSystem
Data 
testC 

.... 

Campaign 
Data 
campaignName 

testCardName 

.... 

LoggedSystem 
State 
experimentName 

parentExperiment 

campagnName 

experimentData 

stateVector 

.... 

public class <FrameWork> extends FaultInjectionAlgorithms { 
     
    public void initTestCard(){ 
        // Write your code here! 
    } 
    public void loadWorkload(){ 
        // Write your code here! 
    } 
    . . . . 
} 

} 



 

3.1. Configuration phase 

The configuration phase involves adapting the tool to 
a certain target system.  The Thor RD features advanced 
scan-chain logic, i.e. built-in test logic primarily intended 
for testing integrated circuits or printed circuit boards, 
conforming to the IEEE 1149.1 standard for boundary 
scan. The scan-chain logic can also be used to perform 
fault injection; it allows access to almost 25000 of the 
48100 state elements of Thor RD. 

The scan-chains are configured via a graphical user 
interface (see Figure 5). Here, the user enters the name 
and the position of possible fault injection locations. This 
information is stored in the TargetSystemData database 
table. Some locations in the scan-chain are read-only and 
can therefore only be used to observe the state of the 
microprocessor. 

 

 
 
Figure 5.  Configuring a target system for the 
SCIFI technique. 

3.2. Set-up phase 

In the set-up phase, the user selects a target system. 
Then the corresponding target system data is interpreted 
presenting the user with an overview of the possible fault 
locations and fault models available. The selections made 
by the user in the set-up phase are stored in the database 
table CampaignData. During the set-up phase, the user 
may also modify already stored campaign data created for 
earlier fault injection campaigns or merge campaign data 
from several fault injection campaigns into a new fault 
injection campaign. 

After selecting the target system, the user chooses the 
fault injection locations from a hierarchical list of 
possible locations presented in a window (see Figure 6) 
as well as the fault models to use and the points in time 

the faults should be injected. The tool currently supports 
the bit-flip fault model. The user also selects the target 
system workload and the number of fault injection 
experiments to perform, i.e. the total number of faults to 
be injected on the chosen locations during the fault 
injection campaign.  

 

 
 
Figure 6.  Fault injection campaign definition 
 

The termination conditions for the experiments are 
also selected. A fault injection experiment can be 
terminated by a debug event generated via the scan 
chains i.e., when a time-out value has been reached, an 
error has been detected or the execution of the workload 
ends, whichever comes first.  The workload may consist 
of a program that either terminates by itself or is 
executed as an infinite loop. In the latter case, the user 
must specify the maximum number of iterations that 
should be executed before a fault injection experiment is 
terminated. During each loop iteration, data may be 
exchanged with a user provided environment simulator 
emulating the target system environment (see Figure 1). 
Information about which environment simulator program 
to use, the memory locations holding output and input 
data within the target system as well as the points in time 
the data exchange occurs, e.g. when each loop iteration 
finishes, must also be given. The generated set-up data is 
stored in the database table CampaignData to be used in 
the fault injection phase.    

3.3. Fault injection phase 

In the fault injection phase, the SCIFI Fault Injection 
Algorithm (see FaultInjectorSCIFI in Figure 2) starts by 
reading the campaign information from the database 



 

table CampaignData. The target system is initialised and 
the workload and initial input data is downloaded to the 
system. Then a reference execution of the workload is 
made, logging the fault-free system state to the database 
table LoggedSystemState. After this, each fault injection 
experiment begins by reinitialising the target system and 
downloading the workload and initial input data.  

The SCIFI fault injection algorithm requires break-
points to be set according to the points in time when the 
fault should be injected stated in the database table 
CampaignData. The breakpoint is obtained by analysing 
the workload code and is set via the scan-chains. When a 
break-point condition has been fulfilled, execution of the 
workload stops and the chosen faults are injected by 
reading the contents of the scan-chains, inverting the bits 
stated in the campaign data and writing back the fault 
injected scan-chains to the system. 

 

 
 
Figure 7.  Progress window, showing the 
number of experiments conducted. 
 

After the fault has been injected, the execution starts 
from where the target system was halted and continues 
until the termination condition occurs. The system state 
is logged to the database table LoggedSystemState. The 
target system is then reinitialised and a new fault 
injection experiment begins. 

GOOFI can be operated in either normal or detail 
mode. In normal mode, the system state is logged only 
when the termination condition is fulfilled. In detail 
mode the system state is logged as frequently as the 
target system allows, typically after the execution of each 
machine instruction, which increases the time-overhead. 
The detail mode operation is used to produce an 
execution trace, allowing the error propagation to be 
analysed in detail. The logged system state typically 
includes the contents of all the locations in the target 
system that are observable (the locations to observe can 
be selected by the user in the set-up phase) as well as the 
workload input and output values, together with 
information about when and where any faults were 
injected. 

During the fault injection campaign, a progress 
window (see Figure 7) is shown enabling the user to 
monitor the experiments, e.g. getting information about 
the number of faults injected and also to pause, restart or 
end the campaign. 

3.4. Analysis phase 

The data in the database table LoggedSystemState is 
analysed in the analysis phase in order to obtain various 
dependability measures. The kind of measures obtainable 
depends on the target system. Currently, there is no 
support for automatic generation of software that 
analyses the LoggedSystemState table. The user must 
write tailor made scripts or programs that query the 
database for the required information. However, this is 
typically done once for each new target system. The user 
can then choose which analysis software to use, and 
where to store the results from a menu in the GOOFI 
graphical user interface. Typical results obtained include 
the number of: 

 
Effective errors:  
• Detected errors: Errors that are detected by the error 

detection mechanisms of the target system. These 
errors can be further classified into errors detected by 
each of the various mechanisms. 

•  Escaped errors: Errors that escapes the error 
detection mechanisms causing failures such as 
incorrect results or timeliness violations. 

 
Non-effective errors:  
•  Latent errors: The fault injection experiments where 

differences between the correct system state logged 
after the reference execution and the system state 
logged after the fault injection experiment 
terminated could be observed, but which could not be 
identified as either Detected errors or Escaped errors. 

•  Overwritten errors: The fault injection experiments 
for which there is no difference between the correct 
system states logged after the reference execution 
and the system state logged after the fault injection 
experiment terminated. 

4. Conclusion and future extensions 

This paper described the GOOFI (Generic Object-
Oriented Fault Injection) tool. The tool is implemented in 
the Java language to support maintainability and 
portability between different host platforms. All data used 
by the tool is stored in a portable SQL-database. An 
object-oriented approach was used to minimize the 
programming effort needed for adding a new fault 



 

injection algorithm, or adapting the tool to a new target 
system. Two fault injection techniques have been 
implemented in the current version of the tool. These are 
pre-runtime Software Implemented Fault Injection and 
Scan-Chain Implemented Fault Injection. So far, GOOFI 
has been used with the SCIFI technique for a control 
application executing on the Thor microprocessor [12]. 
In this paper, the target system uses the Thor RD 
microprocessor. 

The current version of GOOFI can be improved and 
extended in several ways. We are currently working on 
the following extensions: 
• Support for runtime SWIFI, where the target system 

workload is instrumented with additional software 
for injecting faults. 

• Runtime and pre-runtime SWIFI support for other 
microprocessors. 

• Support for additional fault models such as 
intermittent and permanent faults.  

• Use of pre-injection analysis to improve fault 
injection efficiency. The purpose of this analysis is to 
determine when registers and other fault injection 
locations hold live data. Injecting a fault into a 
location that does not hold live data serves no 
purpose, since the fault will be overwritten. 

• Additional fault triggers such as access of certain 
data values, execution of branch instructions or 
subprogram calls, when task switches occur, or at 
specific times determined by a real-time clock.  

• Automatic generation of software for analysing the 
database table LoggedSystemState. 
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