

GOOFI : Generic Object-Oriented Fault Injection Tool

Joakim Aidemark, Jonny Vinter, Peter Folkesson, and Johan Karlsson
Laboratory for Dependable Computing
Department of Computer Engineering

Chalmers University of Technology
S-412 96 Göteborg, Sweden

+46 31 772 5225, 46 31 772 3663 fax
{aidemark, vinter, peterf, johan}@ce.chalmers.se

Abstract

In this paper, we present a new fault injection tool
called GOOFI (Generic Object-Oriented Fault
Injection). GOOFI is designed to be adaptable to various
target systems and different fault injection techniques.
The tool is highly portable between different host
platforms since it relies on the Java programming
language and a SQL compatible database. The current
version of the tool supports pre-runtime Software
Implemented Fault Injection and Scan-Chain
Implemented Fault Injection.

1. Introduction

Fault injection has become an important method for
experimentally validating the dependability of computer
systems. It can be used to identify dependability
weaknesses in the design of a fault tolerant system. Fault
injection can also be used to obtain dependability
measures such as the error coverage of a system. The
coverage can then be used in an analytical model to
calculate the system’s availability and reliability.

Many fault injection tools and techniques have been
presented. Some examples are: MEFISTO [1], VERIFY
[2] and DEPEND [3], which are tools that inject faults
into a simulation model of a system. RIFLE [4] and
MESSALINE [5] are tools for pin-level fault injection,
while Xception [6], FIAT [7] and FERRARI [8] are tools
that inject faults into physical systems using software
implemented fault injection (SWIFI).

Different techniques are used in different phases of the
design cycle. Simulation based fault injection can be used
early in the design cycle, while SWIFI and pin-level fault
injection requires that a system prototype is available.

Most fault injection tools have been developed with a
specific fault injection technique in mind targeting a

specific system, and using a custom designed user
interface. Extending such tools with new fault injection
techniques, or porting the tool to new target systems is
usually a cumbersome and time-consuming process.

So far, only a few tools have addressed the issues of
extension and portability to different target systems.
NFTAPE [9] is a recent fault injection tool that relies on
available lightweight fault injectors, triggers, monitors
and other components to facilitate porting the tool to new
target systems as well as adapting it for different fault
injection techniques.

In this paper, we present a new fault injection tool,
called GOOFI (Generic Object-oriented Fault Injection),
which can perform fault injection campaigns using
different fault injection techniques on different target
systems. A major objective of the tool is to provide a
user-friendly fault injection environment with a graphical
user interface and an underlying generic architecture that
assists the user when adapting the tool for new target
systems and new fault injection techniques.

The GOOFI tool is highly portable between different
host platforms since the tool was implemented using the
Java programming language and all data is saved in a
SQL compatible database. Furthermore, an object-
oriented approach was chosen which increases the
extensibility and maintainability of the tool.

 The current version of GOOFI supports pre-runtime
Software Implemented Fault Injection (SWIFI) and Scan-
Chain Implemented Fault Injection (SCIFI). The SCIFI
technique injects faults via the built-in test-logic, i.e.
boundary scan-chains and internal scan-chains, present
in many modern VLSI circuits. This enables faults to be
injected into the pins and many of the internal state
elements of an integrated circuit as well as observation of
the internal state [10]. In pre-runtime SWIFI, faults are
injected into the program and data areas of the target
system before it starts to execute. GOOFI is capable of
injecting single or multiple transient bit-flip faults. In

this paper, we focus on the architecture of GOOFI and
the implementation of the SCIFI fault injection
technique.

The target system considered in this paper uses the
Thor RD microprocessor [11]. The Thor RD is developed
by SAAB Ericsson Space AB and is intended for highly
dependable space applications. It is an improved version
of the Thor microprocessor evaluated in [10] featuring
parity protected instruction and data caches. Thor RD is
manufactured using a radiation-hardened process.

The remainder of the paper is organised as follows.
The architecture of the tool is described in section 2.
Section 3 shows how to use the GOOFI tool with the
SCIFI technique. Conclusions and future extensions of
the tool are presented in Section 4.

2. Architectural design

Adapting a fault injection tool to a new fault injection
technique or a new target system requires a trade-off
between generality and user friendliness. The objective of
GOOFI is to provide as much support as possible for
adapting the tool to new target systems and new fault
injection techniques. When a new fault injection
technique is added, a new fault injection algorithm must
be implemented and the graphical user interface must be
modified to support the new fault injection technique.

Figure 1. The GOOFI architecture.

Since GOOFI is developed using Java and relies on a

SQL compatible database for storing data, the tool is

highly portable between host platforms. The current
version of GOOFI was developed on a PC running
Windows 2000 and was subsequently ported to a Sun
workstation running Solaris 8.

The GOOFI architecture can be divided into a three-
layered architecture (see Figure 1). At the top layer is the
graphical user interface (GUI). From the menus in the
GUI, fault injection campaigns can be configured and
started for a chosen fault injection technique and for a
chosen target system.

The main Java classes in the middle layer include
FaultInjectionAlgorithms and Framework, as well as a
TargetSystemInterface class for each supported target
system. The fault injection algorithms defined in the
FaultInjectionAlgorithms class use abstract methods
(undefined procedures) that must be implemented in each
TargetSystemInterface class. The fault injection
algorithm for the SCIFI-technique is shown in
Figure 2.

Figure 2. The FaultInjectionAlgorithms class.

 The Framework class, see Figure 3, is used as a

template by the programmer when creating a new
TargetSystemInterface class. The TargetSystemInterface
class inherits the FaultInjectionAlgorithms class and can
therefore use the defined fault injection algorithms
directly. Only the abstract methods used by the algorithm
need to be implemented in the TargetSystemInterface
class.

Finally, the database and the interface to the database
are in the lowest layer. The database stores information

abstract class FaultInjectionAlgorithms {
 public abstract void initTestCard();
 public abstract void loadWorkload();
 public abstract void runWorkload();
 public abstract void waitForBreakPoint();
 public abstract void writeMemory();
 public abstract void readMemory();
 public abstract void readScanChain();
 public abstract void injectFault();
 public abstract void writeScanChain();
 public abstract void waitForTermination();

 public void faultInjectorSCIFI(String campaignNr){
 readCampaignData(campaignNr);
 makeReferenceRun();
 for(int i = 0; i < nrOfExperiments; i++){
 initTestCard();
 loadWorkload();
 writeMemory();
 runWorkload();
 waitForBreakPoint();
 readScanChain();
 injectFault();
 writeScanChain();
 waitForTermination();
 readMemory();
 readScanChain();
 }
 }

 public void faultInjectorSWIFI(..){

 }

}

Framework

TargetSystem
Interface

Database
Communication

FaultInjectionAlgorithms

Database

GUI

Target System

Workload

Environment
Simulator

GOOFI

HOST COMPUTER

about the target system, the fault injection campaigns and
data logged from the fault injection experiments.

2.1. Adding a new fault injection technique to
GOOFI

To adapt the tool to a new fault injection technique a
new window in the GUI must be implemented and a new
fault injection algorithm must be added to the
FaultInjectionAlgorithms class. By combining different
abstract methods we can define algorithms for fault
injection techniques such as SCIFI, SWIFI or pin level
fault injection (see for example the method
faultInjectorSCIFI in Figure 2). When adding a new fault
injection technique to GOOFI, the abstract methods are
used as building blocks. Many of the abstract methods
used by one fault injection technique are reusable when
defining the algorithm for another fault injection
technique, e.g. the abstract method loadWorkload() in
Figure 2. Other abstract methods need to be implemented
specifically for each new fault injection technique, such
as the method injectFault(). The previously undefined
abstract methods needed for defining the new fault
injection technique are added to the Framework class.

2.2. Adapting GOOFI to new target systems

 When support for a new target system is added to
GOOFI, a new TargetSystemInterface class must be
created. To do this the programmer uses the Framework
class as a template. This means that the programmer only
needs to implement the abstract methods used by the
fault injection algorithms.

Figure 3. The framework used for implementing
fault injection on a new target system.

2.3. GOOFI database

The GOOFI database contains the tables shown in
Figure 4. The TargetSystemData table stores all
information about the target system required for setting
up new fault injection campaigns and the CampaignData
table stores all the information needed to conduct a
campaign. The target system data and campaign data is
provided by the user via the GUI. The

LoggedSystemState table stores the system state during
and after an experiment. The results of a fault injection
campaign are primarily obtained by analysing the
LoggedSystemState table. The relations between the
tables in the database are designed to use foreign keys
(shown as arrows in Figure 4). Through the foreign keys,
we prevent inconsistencies in the database and minimize
the information stored in the tables while still being able
to track all information about the campaign and the
target system.

Figure 4. References between the tables in the
database.

The attribute "experimentName" in table

LoggedSystemState holds a unique name for each
experiment. To exemplify the use of the second attribute
"parentExperiment", assume that one fault injection
experiment E1 shows an interesting result such as a fail-
silence violation, and we want to investigate the reason
for this violation by re-running the experiment logging
the system state after each machine instruction. (Such
logging is normally not done for each fault in a campaign
because it is too time-consuming.) The same campaign
data for the new experiment E2 as for E1 must then be
used. Thus, the name E1 in "parentExperiment” is saved
so that the information about the campaign data for E1
can be tracked. The "experimentData" attribute contains
information about the experiment such as the fault
injection location, while the "stateVector" attribute
contains the logged system state information from the
fault injection experiment.

3. Using GOOFI with the SCIFI technique

This section describes how the SCIFI technique is
implemented in the GOOFI tool for a specific target
system built around the Thor RD microprocessor.
Conducting fault injection campaigns using GOOFI
involves four phases: the configuration, set-up, fault
injection and analysis phase.

TargetSystem
Data
testC

....

Campaign
Data
campaignName

testCardName

....

LoggedSystem
State
experimentName

parentExperiment

campagnName

experimentData

stateVector

....

public class <FrameWork> extends FaultInjectionAlgorithms {

 public void initTestCard(){
 // Write your code here!
 }
 public void loadWorkload(){
 // Write your code here!
 }

}

}

3.1. Configuration phase

The configuration phase involves adapting the tool to
a certain target system. The Thor RD features advanced
scan-chain logic, i.e. built-in test logic primarily intended
for testing integrated circuits or printed circuit boards,
conforming to the IEEE 1149.1 standard for boundary
scan. The scan-chain logic can also be used to perform
fault injection; it allows access to almost 25000 of the
48100 state elements of Thor RD.

The scan-chains are configured via a graphical user
interface (see Figure 5). Here, the user enters the name
and the position of possible fault injection locations. This
information is stored in the TargetSystemData database
table. Some locations in the scan-chain are read-only and
can therefore only be used to observe the state of the
microprocessor.

Figure 5. Configuring a target system for the
SCIFI technique.

3.2. Set-up phase

In the set-up phase, the user selects a target system.
Then the corresponding target system data is interpreted
presenting the user with an overview of the possible fault
locations and fault models available. The selections made
by the user in the set-up phase are stored in the database
table CampaignData. During the set-up phase, the user
may also modify already stored campaign data created for
earlier fault injection campaigns or merge campaign data
from several fault injection campaigns into a new fault
injection campaign.

After selecting the target system, the user chooses the
fault injection locations from a hierarchical list of
possible locations presented in a window (see Figure 6)
as well as the fault models to use and the points in time

the faults should be injected. The tool currently supports
the bit-flip fault model. The user also selects the target
system workload and the number of fault injection
experiments to perform, i.e. the total number of faults to
be injected on the chosen locations during the fault
injection campaign.

Figure 6. Fault injection campaign definition

The termination conditions for the experiments are
also selected. A fault injection experiment can be
terminated by a debug event generated via the scan
chains i.e., when a time-out value has been reached, an
error has been detected or the execution of the workload
ends, whichever comes first. The workload may consist
of a program that either terminates by itself or is
executed as an infinite loop. In the latter case, the user
must specify the maximum number of iterations that
should be executed before a fault injection experiment is
terminated. During each loop iteration, data may be
exchanged with a user provided environment simulator
emulating the target system environment (see Figure 1).
Information about which environment simulator program
to use, the memory locations holding output and input
data within the target system as well as the points in time
the data exchange occurs, e.g. when each loop iteration
finishes, must also be given. The generated set-up data is
stored in the database table CampaignData to be used in
the fault injection phase.

3.3. Fault injection phase

In the fault injection phase, the SCIFI Fault Injection
Algorithm (see FaultInjectorSCIFI in Figure 2) starts by
reading the campaign information from the database

table CampaignData. The target system is initialised and
the workload and initial input data is downloaded to the
system. Then a reference execution of the workload is
made, logging the fault-free system state to the database
table LoggedSystemState. After this, each fault injection
experiment begins by reinitialising the target system and
downloading the workload and initial input data.

The SCIFI fault injection algorithm requires break-
points to be set according to the points in time when the
fault should be injected stated in the database table
CampaignData. The breakpoint is obtained by analysing
the workload code and is set via the scan-chains. When a
break-point condition has been fulfilled, execution of the
workload stops and the chosen faults are injected by
reading the contents of the scan-chains, inverting the bits
stated in the campaign data and writing back the fault
injected scan-chains to the system.

Figure 7. Progress window, showing the
number of experiments conducted.

After the fault has been injected, the execution starts
from where the target system was halted and continues
until the termination condition occurs. The system state
is logged to the database table LoggedSystemState. The
target system is then reinitialised and a new fault
injection experiment begins.

GOOFI can be operated in either normal or detail
mode. In normal mode, the system state is logged only
when the termination condition is fulfilled. In detail
mode the system state is logged as frequently as the
target system allows, typically after the execution of each
machine instruction, which increases the time-overhead.
The detail mode operation is used to produce an
execution trace, allowing the error propagation to be
analysed in detail. The logged system state typically
includes the contents of all the locations in the target
system that are observable (the locations to observe can
be selected by the user in the set-up phase) as well as the
workload input and output values, together with
information about when and where any faults were
injected.

During the fault injection campaign, a progress
window (see Figure 7) is shown enabling the user to
monitor the experiments, e.g. getting information about
the number of faults injected and also to pause, restart or
end the campaign.

3.4. Analysis phase

The data in the database table LoggedSystemState is
analysed in the analysis phase in order to obtain various
dependability measures. The kind of measures obtainable
depends on the target system. Currently, there is no
support for automatic generation of software that
analyses the LoggedSystemState table. The user must
write tailor made scripts or programs that query the
database for the required information. However, this is
typically done once for each new target system. The user
can then choose which analysis software to use, and
where to store the results from a menu in the GOOFI
graphical user interface. Typical results obtained include
the number of:

Effective errors:
• Detected errors: Errors that are detected by the error

detection mechanisms of the target system. These
errors can be further classified into errors detected by
each of the various mechanisms.

• Escaped errors: Errors that escapes the error
detection mechanisms causing failures such as
incorrect results or timeliness violations.

Non-effective errors:
• Latent errors: The fault injection experiments where

differences between the correct system state logged
after the reference execution and the system state
logged after the fault injection experiment
terminated could be observed, but which could not be
identified as either Detected errors or Escaped errors.

• Overwritten errors: The fault injection experiments
for which there is no difference between the correct
system states logged after the reference execution
and the system state logged after the fault injection
experiment terminated.

4. Conclusion and future extensions

This paper described the GOOFI (Generic Object-
Oriented Fault Injection) tool. The tool is implemented in
the Java language to support maintainability and
portability between different host platforms. All data used
by the tool is stored in a portable SQL-database. An
object-oriented approach was used to minimize the
programming effort needed for adding a new fault

injection algorithm, or adapting the tool to a new target
system. Two fault injection techniques have been
implemented in the current version of the tool. These are
pre-runtime Software Implemented Fault Injection and
Scan-Chain Implemented Fault Injection. So far, GOOFI
has been used with the SCIFI technique for a control
application executing on the Thor microprocessor [12].
In this paper, the target system uses the Thor RD
microprocessor.

The current version of GOOFI can be improved and
extended in several ways. We are currently working on
the following extensions:
• Support for runtime SWIFI, where the target system

workload is instrumented with additional software
for injecting faults.

• Runtime and pre-runtime SWIFI support for other
microprocessors.

• Support for additional fault models such as
intermittent and permanent faults.

• Use of pre-injection analysis to improve fault
injection efficiency. The purpose of this analysis is to
determine when registers and other fault injection
locations hold live data. Injecting a fault into a
location that does not hold live data serves no
purpose, since the fault will be overwritten.

• Additional fault triggers such as access of certain
data values, execution of branch instructions or
subprogram calls, when task switches occur, or at
specific times determined by a real-time clock.

• Automatic generation of software for analysing the
database table LoggedSystemState.

Acknowledgements

We would like to thank Stefan Asserhäll and Torbjörn
Hult at Saab Ericsson Space AB for providing the target
system with the Thor RD processor, technical assistance
and many valuable suggestions. We would also like to
thank the anonymous reviewers for their many helpful
suggestions. This work was supported by VINNOVA,
ARTES and the Swedish Foundation for Strategic
Research (SSF).

References

[1] E. Jenn, J. Arlat, M. Rimén, J. Ohlsson, and J. Karlsson,
“Fault Injection into VHDL Models: The MEFISTO Tool”, in
Proc. 24th Int. Symp. on Fault-Tolerant Computing (FTCS-24),
(Austin, TX, USA) June 1994, pp. 66-75.

[2] V. Sieh, O. Tschache, F. Balbach, “VERIFY: evaluation of
reliability using VHDL-models with embedded fault
descriptions”, Proc. 27th Int. Symp. on Fault-Tolerant
Computing, (FTCS-27), Digest of Papers, June 1997,

pp. 32 –36

[3] Goswami, K. K. and Iyer, R. K., "A simulation-based study
of a triple modular redundant system using DEPEND," in
Proceedings of the 5th International Conference on Fault-
Tolerant Computing Systems, Sept. 1991, pp. 300-311.

 [4] H. Madeira, M. Rela and J. G. Silva, RIFLE: A General
Purpose Pin-Level Fault Injector, in Proc. EDCC-1, Springer
LNCS, Vol. 852 (1994), pp.199-216.

[5] J. Arlat, M. Aguera, L. Amat, Y. Crouzet, J.-C. Fabre, J.-C.
Laprie, E. Martins and D. Powell, “Fault Injection for
Dependability Validation — A Methodology and Some
Applications”, IEEE Transactions on Software Engineering, 16
(2), February 1990, pp.166-182.

[6] J. Carreira, H. Madeira and J. G. Silva, "Xception: A
Technique for the Experimental Evaluation of Dependability in
Modern Computers", IEEE Trans. on Software Engineering,
vol. 24, February 1998, pp. 125-136.

[7] Z. Segall, D. Vrsalovic, D. Siewiorek, D. Yaskin, J.
Kownacki, J. Barton, D. Rancey, A. Robinson and T. Lin,
“FIAT --- Fault Injection Based Automated Testing
Environment”, in Proc. 18th Int. Symp. On Fault-Tolerant
Computing (FTCS-18), 1988, pp102-107.

[8] G. Kanawati, N. Kanawati, and J. Abraham, “FERRARI: A
Flexible Software-Based Fault and Error Injection System”,
IEEE Transactions on Computers, 44 (2), Feb. 1995, pp. 248-
260.

[9] D.T. Stott, B. Floering, D. Burke, Z. Kalbarczyk, R.K. Iyer,
"NFTAPE: a framework for assessing dependability in
distributed systems with lightweight fault injectors", in Proc.
IEEE international Computer Performance and Dependability
Symposium, 2000 (IPDS 2000), 2000, pp: 91 -100

[10] P. Folkesson, S. Svensson, and J. Karlsson, “A
Comparison of Simulation Based and Scan Chain Implemented
Fault Injection”, in Proc. 28th Int. Symp. on Fault-Tolerant
Computing (FTCS-28), (Munich, Germany), June 1998, pp.
284-293.

[11] Saab Ericsson Space AB, “Rad Hard Thor Microprocessor
Description”, Document No P-TOR-NOT-0004-SE, 20 Jan
1999.

[12] J. Vinter, J. Aidemark, P. Folkesson, and J. Karlsson,
“Reducing Critical Failures for Control Algorithms Using
Executable Assertions and Best Effort Recovery ”, Proceedings
International Conference on Dependable Systems and
Networks, DSN 2001, Gothenburg, Sweden, July 2001.

