Converting Data-Parallelism to Task-Parallelism by Rewrites
Purely Functional Programs Across Multiple GPUs

Bo Joel Svensson Michael Vollmer Eric Holk Trevor L. McDonell Ryan R. Newton
Indiana University
{joelsven,vollmerm,eholk,mcdonelt,rrnewton}@indiana.edu

Abstract
High-level domain-specific languages for array processing on the GPU are increasingly common, but they typically only run on a single GPU. As computational power is distributed across more devices, languages must target multiple devices simultaneously. To this end, we present a compositional translation that fissions data-parallel programs in the Accelerate language, allowing subsequent compiler and runtime stages to map computations onto multiple devices for improved performance—even programs that begin as a single data-parallel kernel.

1. Introduction
Modern computing platforms contain a mix of processors—often more than one with vectorized arithmetic (SIMD) units. A high-end laptop has three: a vectorized CPU, a low-power integrated GPU, and a high-power discrete GPU. From a language perspective, we would like to be able to target multiple devices in the same platform and a high-power discrete GPU. From a language perspective, we would like to write languages that include mutable data structures and side-effects within their single data-parallel code (Section 2.2). Purely functional array languages such as Accelerate [10,29], Nikola [28], Copperhead [9] and Intel ArBB [30], have significant advantages for multi-device purposes. Of course, they have their own challenges as well: in compiling these languages into vectorized code it is critical to employ aggressive fusion [14,21,29] to eliminate intermediate data-structures.

Road not taken One direct approach to achieve multi-device execution is to compile the same complete graph-of-kernels for all devices, but instrument the generated code so each kernel works on—not an entire array—but a slice of an array. Then, at runtime, one can schedule subsets of the iteration space of each kernel on different devices. This approach is efficient in terms of dynamic load balancing, but it has its disadvantages:

- It forces the program to remain isomorphic between devices. Divergent optimizations that transform the program in different ways for different devices are not possible.
- It forces all code to be compiled for all devices.
- And, most of all, it greatly complicates the runtime, because the scheduler and every piece of generated code must work in terms of subsets of larger array heap objects.

Road taken In this paper we explore a different approach: we use a fissioning program transformation during the compilation process. This is a source-to-source transform that yields valid programs in the original language, simply converting implicit intra-kernel parallelism, into explicit, inter-kernel parallelism—data to task parallelism. This approach makes granularity decisions earlier in the compiler, and the upshot is (1) that it views fissioning as a discrete compiler phase whose correctness is easier to reason about, and (2) it simplifies code generation and runtime execution. Further, looking to the future, the compile-time fissioning approach opens the door to optimizations that compile program subgraphs arbitrarily differently for distinct devices—with no need to keep one-to-one correspondence between the kernels running on those devices.

We use the fissioning approach to build an Accelerate multi-device backend, which can dynamically split work across multiple devices. In this paper, we make the following contributions:

- We formalize a non-deterministic term-rewriting system that captures the rich optimization/fissioning space for Accelerate programs, while ensuring any strategy for navigating that space will produce valid programs for the compiler backend. We test the correctness of these transforms through a PLT-Redux model (Section 5).
- We implement these fissioning transforms as a source-to-source optimization pass for Accelerate, which is guaranteed —via the Haskell type system—to be type-preserving in object programs (Section 4).
- We present a multi-device scheduler that makes Accelerate the first purely functional array language implementation to automatically distribute individual operators across multiple devices, without changing the program semantics (Section 4).
- We assess the performance of our optimization pass and multi-device scheduler through a number of benchmarks, showing speedups on two GPUs as high as 2.4× over a single GPU (Section 6).

[Copyright notice will appear here once ‘preprint’ option is removed.]
2. Preliminaries

2.1 General purpose GPU computing

Modern graphics processing units (GPUs) are massively parallel processors optimized for workloads with a large degree of SIMD parallelism. Despite the advertised potential of 100× speedups, attaining good performance requires highly idiomatic programs that are work intensive and require expert knowledge to produce.

The most popular frameworks for programming GPUs are CUDA [32] from NVIDIA, and its open-standard competitor, OpenCL [24]. Both are extensions of the C or C++ programming language that include support for defining GPU kernels, which contain code executed by many data-parallel threads on the GPU. These threads are arranged in a multidimensional structure of thread blocks and grids, and executed in SIMT groups called warps. Threads must be programmed so that they make efficient use of both the global memory region in off-chip DRAM, as well as the on-chip shared memory region, a software managed cache that can be used for efficient intra-block communication. All this and more must be managed by the programmer in order to ensure good use of a GPU’s hardware resources [32].

2.2 Multi-device Partitioning: Language Issues

In CUDA and OpenCL programming, the kernels created by the user are indivisible tasks that run on a single GPU of the user’s choosing. In related research, the “single kernel, multiple device” (SKMD) approach has already been attempted with the OpenCL language [25], where it can yield improved performance. Yet this is a challenging prospect because OpenCL allows arbitrary side effects from any kernel to any array. As a result, OpenCL-based partitioning systems take one of three approaches: (1) avoid partitioning kernels that use writes; (2) attempt a static analysis to identify the memory access patterns [26]; or (3) use a runtime technique to merge writes from multiple threads in different memories [27].

Even with these techniques to handle kernel side effects, matching the semantics of OpenCL operations such as global barriers and atomic instructions has proved infeasible. For example, Lee et al. [29] chose to simply ignore these features. Moreover, it is unclear whether the full OpenCL language can ever be a suitable target for multi-device partitioning.

By contrast, several recent array-based languages targeting GPUs provide only immutable data [9,10,28]. These languages usually still allow reads at arbitrary, data-dependent array indices, which poses challenges for multi-device distribution. Because of immutability, however, array dereferences in these languages are referentially transparent, so replicating the same array in multiple memories is a viable option. Furthermore, these languages employ a combinator-based style of programming using operations such as map and fold, which de-emphasises the need for arbitrary array indexing in favor of implicit data-access patterns. This leaves us in a good position to begin executing these languages on multiple, distributed memory devices.

2.3 Array Languages, Generally

Array-oriented languages have been around for a long time, including APL [22], Matlab [13], and so on. Even data-parallel languages centered around high-level combinators date at least from Biehl-loch’s work in the late 1980s on the scan vector machine [14] and NESL [45]. Nevertheless, today’s hardware environment has inspired a renaissance. It is increasingly practical to generate efficient parallel code from high-level data-parallel descriptions. The last ten years have seen a flurry of activity, with many array DSLs (domain-specific languages) targeting CPUs [30], GPUs [9,10,12,28], or either one [54]. There has also been plenty of focus on code generation for more narrow domains, such as stream-processing [31,59] and for specific algorithms [19,33,56]. This trend is bolstered by general improvements in DSL embedding (meta-programming), such as improvements in sharing observations and AST representation [1,2,8]. There have also been advances in array languages specifically, supporting new program transformations and scheduling approaches [9,30] and techniques for optimized code generation [13,56].

At its core, a typical array DSL provides a way to compile a pipeline or graph of data-parallel operators—e.g., map, filter, fold—into parallel code. Typically, there are no language abstractions separating the operators in the pipeline. That means there are no function calls left at the array level, enabling the compiler to observe all data-flow relationships. This is especially true of deeply embedded DSLs, which also add an extra code generation phase (either at compile or runtime) in which code for the object language is emitted.

Generally speaking, array languages occupy a spectrum of restrictiveness, with full-featured languages like Matlab and APL occupying one end of the spectrum, and more recent embedded DSLs occupying the other. The Accelerate embedded language—which we work with in this paper—is towards the restrictive end of the spectrum, disallowing nested parallelism and general recursion. Nevertheless, Accelerate is not the most restrictive array language that would be reasonable to implement. For example, it does allow: (1) array values to be returned from conditionals, and (2) arbitrary indexing into arrays. See Table 1 for a feature comparison between array languages.

As with other deeply embedded languages, once the Accelerate abstract syntax tree is extracted during meta-program evaluation, an Accelerate program is effectively a graph of data-parallel operators, represented as combinators such as zipWith and permute. Compiling Accelerate programs amounts to transforming this graph and generating target-platform code for each vertex in the final graph. It is this graph that we will expand through vertex splitting and map onto multiple devices. But first we need to introduce the Accelerate language properly.

2.4 The Accelerate Language

Accelerate [10,29] is a small language for computations over regular, multidimensional arrays. Embedded in Haskell, it exposes data-parallel combinators on arrays that closely mirror familiar Haskell list-processing idioms. For example, to compute a dot product we write:

```haskell
dotp :: Num n => Vector n -> Vector n -> Acc (Scalar n)
```

```haskell
dotp xs ys = let xs' = use xs ys' = use ys
            in fold (+) (zipWith (*) xs' ys')
```

The function `dotp` consumes two one dimensional arrays (`Vector`) of values, and produces a single (`Scalar`) result as output. The `Acc` type constructor indicates that the result is an embedded Accelerate computation—it will be evaluated in the target language of dynamically generated parallel code, rather than the meta-language, which is vanilla Haskell.

The arguments to `dotp` are of plain Haskell type `Vector`. To make these arguments available to the Accelerate computation they must be embedded with the `use` function, which is overloaded so that it can accept tuples of `arrays`:

1 The technique has proved useful in many domains [6,17], but has both significant runtime overhead and, in the OpenCL case, relies on relaxed memory consistency.

2 This refers to the recognition of common subexpressions (CSE) in the target language via inspection of meta-language in-heap data structures [20].
The functions `zipWith` and `fold` are defined by the Accelerate library, and have massively parallel semantics, supporting up to as many threads as data elements. The type of `fold` is:

```haskell
fold :: (Shape sh, Elt e) => (Exp e -> Exp e -> Exp e) -> Exp e -> Acc (Array (sh::Int) e) -> Acc (Array sh e)
```

The type classes `Shape` and `Elt` indicate that a type is admissible as an array shape and array element, respectively. Array shapes are denoted by type-level lists formed from `Z` and `(:.)`—see [10, 23] for details. Array elements can be signed and unsigned integers (8, 16, 32, & 64-bits wide), floating point numbers (single & double precision), `Char`, `Bool`, shapes formed from `Z` and `(:.)`, as well as nested tuples of these.

The type signature for `fold` shows the stratification into scalar computations using the `Exp` type constructor, and array computations that are wrapped in `Acc`. Collective operations consist of many scalar computations that are executed in data-parallel, but scalar computations can not contain collective operations. This is enforced because `Array` itself is not in `Elt` and thus there is no way to embed an `Acc` inside an `Exp`. This stratification statically excludes nested, irregular data parallelism, enforcing a flat data-parallel model.

We give a representative grammar of the Accelerate language in Figure 1. Overall, the collective operations in Accelerate are based on the scan-vector model [11, 35], including array-specific functions such as index permutations. For example, `permute` constructs a new array using an index permutation function that specifies, for each index in the output array, which element of the input array to read, while the function generates collective operations for the new array by applying a function at each index. See [10, 29] for more information.

As a second example, the following n-body code simulates Newtonian gravitational forces on a set of massive bodies in 3D space, using a precise (but expensive) \(O(n^2) \) algorithm:

```haskell
use :: Arrays arrays ⇒ arrays → Acc arrays

The functions `zipWith` and `fold` are defined by the Accelerate library, and have massively parallel semantics, supporting up to as many threads as data elements. The type of `fold` is:

```haskell
fold :: (Shape sh, Elt e) => (Exp e → Exp e → Exp e) → Exp e → Acc (Array (sh::Int) e) → Acc (Array sh e)
```

The type classes `Shape` and `Elt` indicate that a type is admissible as an array shape and array element, respectively. Array shapes are denoted by type-level lists formed from `Z` and `(:.)`—see [10, 23] for details. Array elements can be signed and unsigned integers (8, 16, 32, & 64-bits wide), floating point numbers (single & double precision), `Char`, `Bool`, shapes formed from `Z` and `(:.)`, as well as nested tuples of these.

The type signature for `fold` shows the stratification into scalar computations using the `Exp` type constructor, and array computations that are wrapped in `Acc`. Collective operations consist of many scalar computations that are executed in data-parallel, but scalar computations can not contain collective operations. This is enforced because `Array` itself is not in `Elt` and thus there is no way to embed an `Acc` inside an `Exp`. This stratification statically excludes nested, irregular data parallelism, enforcing a flat data-parallel model.

We give a representative grammar of the Accelerate language in Figure 1. Overall, the collective operations in Accelerate are based on the scan-vector model [11, 35], including array-specific functions such as index permutations. For example, `permute` constructs a new array using an index permutation function that specifies, for each index in the output array, which element of the input array to read, while the function generates collective operations for the new array by applying a function at each index. See [10, 29] for more information.

As a second example, the following n-body code simulates Newtonian gravitational forces on a set of massive bodies in 3D space, using a precise (but expensive) \( O(n^2) \) algorithm:

```haskell
use :: Arrays arrays ⇒ arrays → Acc arrays

The functions `zipWith` and `fold` are defined by the Accelerate library, and have massively parallel semantics, supporting up to as many threads as data elements. The type of `fold` is:

```haskell
fold :: (Shape sh, Elt e) => (Exp e → Exp e → Exp e) → Exp e → Acc (Array (sh::Int) e) → Acc (Array sh e)
```

The type classes `Shape` and `Elt` indicate that a type is admissible as an array shape and array element, respectively. Array shapes are denoted by type-level lists formed from `Z` and `(:.)`—see [10, 23] for details. Array elements can be signed and unsigned integers (8, 16, 32, & 64-bits wide), floating point numbers (single & double precision), `Char`, `Bool`, shapes formed from `Z` and `(:.)`, as well as nested tuples of these.

The type signature for `fold` shows the stratification into scalar computations using the `Exp` type constructor, and array computations that are wrapped in `Acc`. Collective operations consist of many scalar computations that are executed in data-parallel, but scalar computations can not contain collective operations. This is enforced because `Array` itself is not in `Elt` and thus there is no way to embed an `Acc` inside an `Exp`. This stratification statically excludes nested, irregular data parallelism, enforcing a flat data-parallel model.

We give a representative grammar of the Accelerate language in Figure 1. Overall, the collective operations in Accelerate are based on the scan-vector model [11, 35], including array-specific functions such as index permutations. For example, `permute` constructs a new array using an index permutation function that specifies, for each index in the output array, which element of the input array to read, while the function generates collective operations for the new array by applying a function at each index. See [10, 29] for more information.

As a second example, the following n-body code simulates Newtonian gravitational forces on a set of massive bodies in 3D space, using a precise (but expensive) \(O(n^2) \) algorithm:

```haskell
type Position = (Double, Double, Double)
type Accel = (Double, Double, Double)

calcAccels :: Acc (Vector Position) → Acc (Vector Accel)
calcAccels bodies = let move body =
  A.sfoldl (λ acc next → acc +. accel body next) (vec 0) (constant 2) bodies
  in A.map move bodies

The core data-parallel structure of the implementation first computes the forces between every pair of bodies, before reducing the component applied to each body using a multidimensional reduction. Replicating the input vector in opposite dimensions and combining them with `zipWith` is a way to compute over all combinations of values drawn from the input. The function replicate is shape polymorphic, and extends an array across new dimensions. Here, `all` represents the original vector elements, which are repeated \( n \) times as rows or columns. For details on the various forms of shape polymorphism, see Keller et al. [23]. The acceleration between a pair of point masses is then calculated as:

```haskell
accel :: Exp Position -- The point being accelerated
 → Exp Position -- Neighbouring point
 → Exp Accel
accel body1 body2 =
 if x1 == x2 && y1 == y2 && z1 == z2 then constant (0, 0, 0)
 else acc
 where
 acc = lift (aabs * dx / r, aabs * dy / r, aabs * dz / r)
 (x1, y1, z1) = unlift body1
 (x2, y2, z2) = unlift body2
 dx = x2 - x1
 dy = y2 - y1
 dz = z2 - z1
 rabs = (dx * dx) + (dy * dy) + (dz * dz)
 abs = 1 / rabs
 r = sqrt rabs
```

The Accelerate code has some small syntactic overhead relative to a pure Haskell version, although this can be minimised through the use of `rebindableSyntax`, and an Accelerate-specific Prelude that redefines operations such as `==` which can not be overloaded to embedded types. As pattern matching is not overloadable, `lift` and `unlift` is used to pack and unpack expressions into and out of constructors such as tuples, respectively.

### 3. Fissioning Rewrite System

Our goal in this paper is to compile an Accelerate program into separately executable components, to fully utilize the compute capability of a machine. Because Accelerate programs are DAGs of (task-parallel) array operators, some programs will already be suited for using multiple devices, simply by partitioning the array operations already present. However, this cannot generally be relied upon, and in fact many useful programs are—after fusion optimizations—a single kernel.

Fissioning programs provides a way to convert latent parallelism, inside data-parallel operators, into explicit task parallelism. This in turn provides enough tasks to fully utilize multiple GPUs. We implement fissioning through a non-deterministic rewriting system as described in Section 3.1. We further validate the correctness of these rules by implementing a semantic model of Accelerate and the fissioning system in PLT Redex (Section 3.2).

<table>
<thead>
<tr>
<th>Feature</th>
<th>Accelerate</th>
<th>Intel ArBB</th>
<th>Copperhead</th>
<th>Data Parallel Haskell</th>
<th>APL</th>
</tr>
</thead>
<tbody>
<tr>
<td>mutable arrays</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>arbitrary reads</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>multidimensional arrays</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>sparse/segmented arrays</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>nested parallelism</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>recursion/iteration</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>array-level conditionals</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
</tbody>
</table>

Table 1. Comparison of the features of different array-oriented languages, which range from narrowly domain specific to more general purpose. More restricted languages generally enable better auto-parallelization at the cost of expressiveness. Some languages differentiate between the scalar and kernel language; in those cases we report the features for the kernel language.
array exps $\alpha \quad ::= \quad \text{use (arrconst)} \mid \text{map} (\lambda x. e) \alpha \mid$

$\quad \text{generate } \sigma (\lambda x_0 \ldots x_n. e) \mid$

$\quad \text{let } p = \alpha \times \alpha \mid a \mid (a, a) \mid$

$\quad \text{zipWith } (\lambda x y. e) \alpha \times \alpha \mid$

$\quad \text{fold } (\lambda x y. e) \alpha \times \alpha \mid$

$\quad \text{backpermute } \sigma (\lambda x. e) \alpha \mid$

$\quad \text{permute } (\lambda x y. e) \alpha \times \alpha \times \alpha \mid$

$\quad \text{reshape } \sigma \mid \text{slice } \sigma \alpha \mid \text{replicate } \sigma \alpha$

scalar exps $e \quad ::= \quad \text{let } p = \alpha \times \alpha \mid x \mid c \mid \text{prim}(e_0, \ldots) \mid$

$\quad \text{map } f \alpha \mid$

$\quad \text{let } s = \alpha \mid$

$\quad \text{patterns } \alpha \quad ::= \quad \text{let } x | y \mid \text{prim}(p, \ldots) \mid$

$\quad \text{dim or hole } s \quad ::= \quad e \mid [s] \mid$

$\quad \text{full shape } \sigma \quad ::= \quad [s_1, \ldots, s_n] \mid [\sigma_1, \ldots, \sigma_n] \mid$

$\quad \text{const } c \quad ::= \quad [c_1, c_2, \ldots] \sigma$

| arrconst $\alpha \quad ::= \quad \text{let } p = \alpha \times \alpha \mid [s_1 \ldots s_n \alpha_{s_1} \ldots \alpha_{s_n}]$

Figure 1. Grammar of the core Accelerate constructs.

Currently Implemented

| fold $f e \alpha \quad ::= \quad \text{let } (x, y) = \text{split}_1 \alpha \times \alpha\text{ in }$

| map $f \alpha \quad ::= \quad \text{let } (x, y) = \alpha \times \alpha\text{ in }$

| zipWith $f (\text{fold } f e x) \times \text{fold } f e y$

| generate $\sigma f \quad ::= \quad \text{concat} (\text{map } f) \times (\lambda x. e) \alpha \times \alpha$

| replicate $\sigma \alpha \quad ::= \quad \text{let } (x, y) = \alpha \times \alpha\text{ in }$

| split $f \times f e \text{ in }$

| backpermute $\sigma f \alpha \quad ::= \quad \text{concat} \times (\lambda x. e) \alpha \times \alpha$

| use $[c_0 \ldots c_n] \sigma \quad ::= \quad \text{concat}_0 \times \text{fold } f e x, \text{fold } f e y$

Figure 2. Fission rewrite rules. One rule application fissions one data-parallel combinator.

3.1 The Rewrite System

Figure 2 defines a term-rewriting system that exposes a large search space of valid program transformations. An Accelerate optimizer can navigate this space in arbitrary ways, and be assured that the resulting program will run on any combination of Accelerate-supported devices. In the special case of a multi-device fission optimizer, the end goal is to end up with sufficient, balanced parallelism for the hardware. Our implementation currently supports fissioning fold, map, and generate, and other operators are supported via transformation to generate-like deferred arrays (Section 4).

The rules in Figure 2 make frequent use of splitting and concatenation operations, as well as manipulating the shapes of arrays. Split divides an array into two halves along a given dimension, indicated by a subscript on the split operator. If $a$ has shape $[\sigma_0, \sigma_1, \sigma_2, \sigma_3]$—from “outermost” (left) to “innermost” (right)—then $\text{split}_1 a$ produces a tuple of arrays $(b, c)$, with $\langle b \rangle = [\sigma_0 \; \sigma_2] \sigma_3$ and $\langle c \rangle = [\sigma_0 \; \sigma_1] \sigma_2$. Since $\langle b \rangle$ and $\langle c \rangle$ denote the shape of $b$ and $c$. We use $\text{split}_{-1}$ as a shorthand for splitting on the innermost dimension of an array.

Similarly, concatenation combines two arrays along a certain dimension. A key observation is that concatenation is the inverse of splitting:

$\text{concat}(a, b) \iff \text{split}_0 a = b$

These definitions allow zero-sized arrays, e.g. $\text{split}_0 [0] = ([], [0])$ and $\text{split}_0 [0, 1] = ([0], [1])$. Neither of these operations is primitive in the original Accelerate, but they are straightforward to add as library functions. On the other hand, our Redex model will treat these as primitives for simplicity.

In our formal notation we shall treat shapes as arrays, so if $\alpha = [1 \; 2 \; 4 \; 5 \; 6]$, then $\langle a \rangle_0 = [3 \; 2]_0 = 3$. The rank of an array is the number of dimensions (i.e. $\langle a \rangle_0$). For a shape $\sigma$ we use the notation $\sigma[\sigma_1 := a]$ to define a new shape with the $i$th dimension in $\sigma$ replaced by $n$. For example, given $\sigma = [1 \; 2 \; 3]$, $\sigma[\sigma_1 := 4]$ would be $[1 \; 4 \; 3]$. Note that in the Accelerate source language, rank is static and encoded in the type system, and that most of Accelerate’s core primitives are rank-polymorphic, which is keeping with traditions established by many dynamically typed array languages such as APL and Matlab.

The general strategy for most rules is to split the input arrays in half, apply the operation to both halves and then combine the results into a single array. As an example, consider the expression $\text{fold } + 0 \text{ where the variable } a \text{ points to the array } [\frac{1}{4} \; \frac{5}{6}]$. The second fold rule splits along the outermost dimension, meaning the rule would split $a$ into $x = [1 \; 2 \; 3]$ and $y = [4 \; 5 \; 6]$. Folding the two halves yields $[6]$ and $[15]$, and then concatenating these yields the correct result of $[6 \; 15]$. On the other hand, the first version of the rule splits along the innermost dimension, splitting $a$ into $\frac{1}{4}$ and $\frac{5}{6}$. The two sub-arrays would produce $[1]$ and $[2]$.

Cases such as replicate require more care because replicate increases the rank of its input. Let us consider the expression replicate $[2 \; c] a$ with $a = [1 \; 2]$, which makes two copies of $a$ along the outermost (in this case vertical) dimension. This expression evaluates to $[\frac{1}{4} \; \frac{5}{6}]$.

Instead, we need to concatenate along dimension 1, since the replicate command inserted a new outermost dimension. The new $\text{index}(\sigma, i)$ clause in the replicate rule in Figure 2 accounts for the shifting of dimension identifiers due to replication. See Figure 7 for a formal definition of $\text{index}$.

3.2 Testing with PLT Redex

As we have just seen, there are some subtleties to the fissioning rules, especially in the presence of changing ranks. To increase our confidence in the fissioning rules, we developed a model in PLT Redex [16]. The model serves both as a semantics for the Accelerate language as well as a way to explore both the fissioning rules that are implemented in the compiler and additional ones that may be added in the future. While the PLT Redex model is not a full proof of correctness, it has validated correct behavior in a test suite of 28 tests, exploring all possible fissioning and evaluation
choices for these programs. In the interest of keeping the search space small, we tested on small arrays of up 8 elements and three dimensions—though they were large enough and of high enough rank to sufficiently exercise all of the rewrite rules.

We start by defining a language and reduction relation for Accelerate programs defined by the grammar in Figure 3. Next, we defined a reduction relation to complete the core semantics. This relation is shown in Figure 3 and makes use of several functions defined in Figure 2. It is critical that programs transformed by our rewrite system evaluate to the same result as without the fissioning rules.

Our semantic model makes a strict separation between the array level language and the scalar language. The overall structure of the program is determined by high-level array operations (e.g. map, fold), while the scalar language describes operations on individual elements of an array which are driven by the array operators. For example, the E-map rule in Figure 3 produces an array by applying a function defined in the scalar language to each element of an array. The array-level and scalar-level languages have different execution spaces small, we tested on small arrays of up 8 elements and three dimensions—through the bindings, potentially assigning the two newly introducing pass would first introduce two new let bindings above the let binding of . Crucially, this translation pass is applied after the program is determined by high-level array operations (e.g. map, fold) while the scalar language describes operations on individual elements of an array which are driven by the array operators.

Finally, we can validate our model by running it on a number of test cases. Our test cases include a number of handwritten programs to ensure the semantic model matches our notion of what Accelerate programs should, as well as programs designed to test each of the fissioning rules in isolation. We inspected a number of executions manually using the feature of PLT Redex to ensure they were fissioning as expected. In each case, we test that if any execution trace of a core Accelerate program results in a value then all traces result in the same value, and that all execution traces of these programs using the fissioning rules result in the same value as without the fissioning rules.

4. Implementing Fission in Accelerate

Fissioning (as described by the rules listed in Figure 2) is done statically in the Accelerate compiler via a type-preserving, source-to-source translation pass. This translation pass takes a valid Accelerate program and produces a new program by splitting up existing kernels. Crucially, this translation pass is applied after the program has undergone kernel fusion optimization, so that fission does not interfere with critical fusion optimizations.

For example, when fissioning a2 = Map f a1, the fissioning pass would first introduce two new let bindings above the binding of a2, each doing a portion of the work of the original Map operation. The original let binding would then, instead of performing the Map operation, combine the results of the two subcomputations. When this code is executed, the scheduler will walk through the bindings, potentially assigning the two newly introduced let bindings to different devices, allowing them to execute in parallel. While the formalism of Section 4 emphasizes defining a space of legal fissioning moves, our prototype implementation simply fissions each operator once, traversing the program in a single pass, and thus guaranteeing that there is no bottleneck in the program with insufficient task parallelism, provided that the array sizes are large enough.
The primary concerns when implementing fissioning were the following:

- The fissioning transformation should be safe: the fissioning transformation should produce valid, type-safe Accelerate programs without changing their original meaning.
- The fissioned code should be performant: whenever possible, the fissioning pass should optimize the code it generates to avoid extra run-time overhead in the form of copying or allocation.

Our implementation achieves these two goals in the following way. For the first goal, type-preservation guarantees of the Accelerate compiler are verified statically by the Haskell compiler, and the fissioning pass retains this same methodology. For the second goal, the fissioning pass manipulates delayed array representations in the abstract syntax, and attempts, when possible, to merge the code to split an array with the code that generates that array.

### 4.1 Safe Fissioning

Arrays encode their shape as part of their type, for example: `Array (Z :. Int) Float`. To safely implement our fissioning rules, we must ensure that the array is greater than zero dimensions, for our fissioning rules to apply. Thus we need to produce a type witness for the shape of the array. We do this by matching on the shape of the array, which—being of non-zero dimension—must be of the form `(sh :. Int)`. Once we know that, we are able to apply the logic of each fissioning rule, as formulated.

All of the necessary program logic for splitting and concatenating arrays in different situations is inlined directly into the typed AST by the fissioning pass. For example, the code for a concat is filled in as `generate` node of its own. In doing this, the fissioning pass must convince the Haskell type-checker that the modified program remains type safe. In particular, because the nameless ASTs in Accelerate carry scalar and array environments in their types, the fissioning pass must prove that the resulting program is well-typed and well-scoped even with the introduction of new bindings and the modification of some existing bindings.

Additionally, the fissioning pass must maintain some general invariants present in the internals of the Accelerate compiler and enforced by its types. As an example, the scalar functions that parameterize array operations are “half closed”: they are closed in the scalar environment, but open in the array environment. This is one invariant that is and must be maintained through the fissioning program-transformations. While the compiler comes short of full

---

Figure 4. Additional functions needed for Accelerate’s evaluation rules.
formal verification, having the ability to statically verify many invariants of a newly-added compiler pass gave us more confidence in the safety and correctness of the fissioning pass than we would have had if it did not preserve types in this way. Further, when combined with the testing approach used in our PLT Redex model, this gives us high confidence that we don’t insert bugs into programs while optimizing for multi-device execution.

### 4.2 Efficient Fissioning

Our fissioning rules described in Section 3 assume functions for splitting and concatenating arrays. This level of abstraction is convenient for explaining the meaning of the rewrite rules, but it hides some complexity that is present in the implementation.

In the Accelerate AST, arrays can either be manifest or delayed. A delayed array is represented by a shape, and a function that maps indices to expressions. Thus it is semantically equivalent to a generate node. As the name indicates, the actual creation of the array is delayed, so that it can be inlined into a later computation.

Rather than implementing a split function that takes an array in memory then allocates two new arrays to fill, the fissioning pass directly manipulates the representation of delayed arrays to implicitly do the job of splitting.

As an illustrative example, take a simple Accelerate program for computing a dot product below:

```plaintext
let xs = use $ fromList (Z :. 10 :. 10) [0..]
yz = use $ fromList (Z :. 10 :. 10) [1..]
in fold (+) 0 $ zipWith (*) xs yz
```

Without fissioning, the compiler optimizations end up producing a program consisting of a single fold kernel, where the original zipWith computation has been inlined into a delayed array. The compiler output, without fissioning, looks like:

```plaintext
fold (λx0 x1 → x0 + x1) 0
 (Delayed (interact (shape xs) (shape yz))
 (λx0 → (xs!x0) * (yz!x0)))
```

With fissioning, this same program splits the single fold into two folds, and combines the results by introducing a zipWith. The non-fissioned code had the optimization of doing the work of the zipWith inside the fold kernel, and fissioning piggy-backs on this optimization by pushing its work inside the delayed array structures as well. The end result of this transformation will have the following form:

```plaintext
let s1 = fold (λx0 x1 → x0 + x1) 0
 (Delayed
 (let ns1 = {- new array... -}
 shape = (intersect (shape a0) (shape a1))
 in (indexTail shape) :: ns1)
 (λx0 → let minindex = {- new index... -}
 in (xs!minindex) * (ys!minindex)))
 s2 = fold (λx0 x1 → x0 + x1) 0
 (Delayed
 (let ns2 = {- new size... -}
 shape = (intersect (shape a0) (shape a1))
 in (indexTail shape) :: ns2)
 (λx0 → let minindex = {- new index... -}
 in (xs!minindex) * (ys!minindex)))
 in zipWith (λx0 x1 → x0 + x1) s1 s2
```

Because of the delayed array representation, array splits introduced by fissioning carry relatively little overhead. At run-time, the splits are themselves delayed arrays. Only in certain circumstances where a single split is shared by multiple downstream operations, will it need to become manifest in memory.

That is not to say that fissioning cannot increase the runtime overhead costs in programs that it is applied to. For example, while fissioning introduces new kernels that can be evaluated independently, when their results must be combined, that implies a single synchronization point. More generally, executing fissioned code
5. Implementing a Multi-device Runtime

The fissioning pass described in the previous sections is designed to expose task parallelism in Accelerate programs. Of course, some programs expose sufficient task parallelism even without fissioning, and the runtime we describe in this sections can handle those programs too—without or without fissioning applied. Indeed, an advantage of the rewrite-based approach is that fissioning becomes an orthogonal concern from scheduling.

Our runtime system thus takes on the traditional role of a scheduler, as found in operations research [41]. Namely, it must:

- Identify tasks, i.e. array operations of the input Accelerate program.
- Select devices for tasks.
- Copy dependencies to device if not already present.
- Compile tasks for devices.
- Execute tasks on devices.

We implement the multi-device runtime system on top of the existing Accelerate CUDA back-end, reusing as much of that (well-tested) back-end as possible. The major difference between the traditional and new runtime system has to do with where and how inter-task dependencies are managed.

The CUDA back-end relies on the CUDA driver to track inter-dependencies between tasks and transfer events, starting kernels on the hardware only after their dependencies are met. In this way it can essentially offload entire graphs of actions onto the CUDA driver. This is possible, because it has no need to hold back any work; all tasks eventually run on the device, therefore, queue up as many as possible!

The multi-device runtime system cannot take this approach. If it overcommits too many tasks to one device via the CUDA driver, then it commits too early and loses the ability to load balance those tasks onto other devices. Thus our new runtime must track task dependencies and completion explicitly on the Haskell side, and be judicious about how much to commit to any one device.

5.1 The Runtime System

The decision of which task to place on which device is performed by the a scheduler component of the runtime system. We use a standard approach, as in previous work [18], where one worker thread serves as a representative of each CUDA device. Each of these proxy threads waits to be assigned work items (i.e., blocks on a synchronization structure, an MVar). This worker thread is in control of both launching kernels on, and copying data to, the associated device. (Recovering results from the device is a different matter, and will be addressed in a moment.) The heart of the scheduling algorithm on each thread is thus the following simple loop:

```haskell
 deviceLoop dev done work = do
 -- Is any work available ?
 workitem <- takeMVar work
 case workitem of
 ShutDown -> putMVar done Done >> return ()
 Work w -> do
 -- Perform work then indicate that the
 -- work is done and device is free
 w registerAsFree dev
 deviceLoop done work
```

5.2 Task Extraction Heuristic

Because every (non-fused) array-level operation becomes a CUDA kernel, these are the atoms of our task graph. While each such kernel could be scheduled independently, our current prototype uses a heuristic that follows the nesting structure of the AST itself. That is, the heuristic is based on the structure of let bindings in the program. In short, the outer spine of let bindings is preferred as the axis along which to subdivide tasks among devices. Our prototype fissioning pass is tuned to work well with this heuristic.

As an example, in the following nesting of let bindings, the kernel, these are the dependencies and completion explicitly on the Haskell side, and be judicious about how much to commit to any one device.

```haskell
 (let (a (split i ar))
 (concat i (zipWith (λ (x y) e) (snd a) (snd b))
 where (s0 ... s1 ...) = shape-off[ar[i]], i = (s0 ...), s1 > 1, a, b fresh
```

Figure 6. Fissioning rules as implemented in PLT Redex.

may impose additional data transfer cost by requiring additional transfers from the host to devices or between the devices themselves. This is explored more in Section 6.

8
let a1 = ... 
| in let a2 = ... 
| | in let a3 = ... 
| | in result 

Given the structure below, on the other hand, the runtime system chooses partition out only three tasks: a0, a3 and result, scheduling a1 and a2 onto the same device.

let a0 = (let a1 = ... 
| | in let a2 = ... 
| | | in result1) 
| in let a3 = ... 
| in result 

This heuristic works well in our programs because these nested lets tend to represent producer/consumer pairs that resist fusion because of sharing of results. If there is enough parallelism on the main spine of the program to saturate devices, then it is good to keep these producer/consumer clusters of communication intra-device.

5.3 Execution of Tasks
When a task—essentially a program subterm, consisting of one or more array operators—is identified to run on a device, the algorithm proceeds as follows:

- Create asynchronous result arrays which are immediately returned.
- Fork a task thread (distinct from per-device worker threads):
  1. Find dependencies of the task.
  2. Wait for dependencies to be computed.
  3. Compute a score per-device based on how many of the dependency arrays are present on each device, i.e. an affinity score.
  4. Ask a scheduler for a device (provide the score weighting).
  5. Create a work item for the chosen device.

The work item created in step 5 above is sent to the worker thread associated with the device selected by the scheduler. The work item sent over performs the following sequence of operations:

- Transfer dependency arrays to associated device.
- Compile task (if not already cached)
- Execute task.
- Write results into the asynchronous arrays created earlier.

All the operations performed at this stage make use of the already existing Accelerate CUDA back-end. We add a information about which memory contains which arrays for the purpose of the scheduler and runtime system, but the copying is performed by existing Accelerate CUDA functionality. When it comes to compiling and executing tasks, we even gained the benefits of the Accelerate CUDA back-end’s caching of already compiled code.

5.4 Scheduling of Tasks
This section outlines the scheduling algorithm used in the benchmarks in Section 6. The scheduler we implemented is multi-threaded, spawning task-threads on demand.

Each task thread starts out by requesting the use of a device from the runtime system. To do this it blocks on a queue of device tokens, which represent an entitlement to use a currently free device. Upon receiving a token, the task thread atomically performs the following to choose a specific device (i.e. while holding a lock):

- If there is only one device available, pick it.
- If more than one device is free, sort the devices based on affinity score and pick the highest scoring device.
- The device is marked as busy and is sent the task work item.

6. Evaluation
In this section we evaluate the performance of our implementation on a selection of benchmarks. Our benchmarks aim to test both weak and strong scaling behavior of our system. The selected benchmarks both illuminate the strengths of the approach, as well as identify several areas for future improvement.

Benchmarks were conducted using two Tesla C2075 GPUs (compute capability 2.0, 14 multiprocessors = 448 cores at 1.15 GHz, 5GB RAM) backed by two 6-core Xeon X5660 CPUs (64-bit, 1.6 GHz, 200GB RAM) running GNU/Linux (Red Hat 4.4.7-9). We used GHC-7.8.3 and NVCC-6.0. Results are generated using criterion via linear regression.

6.1 Weak Scaling Benchmarks
Weak scaling benchmarks consist of a synthetic benchmark, megapar, of completely independent tasks and exposing many opportunities for task parallelism. We also test the N-body simulation where the data is duplicated each device. These tests constitute a sanity test for our runtime system.

The Megapar benchmark consists of a parallel map over a wide (2M element) array, where the scalar function consists of a long running loop. The figure compares overall execution time as we increase the iteration count of the scalar loop. The duplicated N-body benchmark represents scaling when running the N-body calculation on two independent sets of bodies.

Both of these benchmarks expose completely independent tasks, and the results from each device do not need to be combined in a final step. These benchmarks demonstrate speedups of close to 2×, validating that our system makes effective use of both GPUs in these sanity checking benchmarks.

6.2 Strong Scaling Benchmarks
With our runtime system validated, our strong scaling benchmarks exercise our approach to fissioning via our rewrite rule system, where both our multi-GPU back-end and as well as the existing single-GPU back-end execute the same problem size. As further sanity checks of our runtime and fissioning systems, we execute both the fissioned and unfissioned program through our new back-end on both one and two GPUs. Executing the original program through our multi-device runtime on one GPU measures added overhead relative to the existing Accelerate CUDA backend.

It is important to remember that, unlike the benchmarks from the previous subsection, here the devices need to cooperate to compute the same result over the same data set as the single-GPU Accelerate CUDA backend. That is, if we split an array to execute its pieces over multiple devices, we must then concatenate those pieces to reach the final result.

N-Body The N-body example simulates Newtonian gravitational forces on a set of massive bodies in 3D space, using the basic \(O(n^2)\) algorithm shown in Section 2.4.

The N-body benchmark has both high compute to data-transfer ratio, and benefits greatly from fissioning and multi-device execution. Executing the original or fissioned program through our multi-device scheduler on a single GPU yields performance similar to the existing Accelerate CUDA backend. Executing the fissioned...
program over 2 GPUs yields a maximum speed of 2.4×. We conjecture that at these sizes, splitting the working set in half on each GPU allows the bodies to fit entirely into the 2MB cache, resulting in a benefit even on a single GPU. At larger sizes, once the cache is exhausted in both the single and multi-GPU cases, the performance delta stabilizes at 2.0×.

**Matrix Multiplication** The matrix multiplication benchmark achieves a modest speedup at large matrix sizes. This benchmark requires a large partial result to be communicated between devices and combined, which we observe is only worthwhile at larger input sizes. Additionally, this program exercises the fold fissioning rules, so the combination step is more expensive relative to the other benchmarks we consider, such as N-body, which only need to concatenate their partial result vectors.

**Mandelbrot** The Mandelbrot set is generated by sampling values \( c \) in the complex plane, and determining whether under iteration of the complex quadratic polynomial \( z_{n+1} = z_n^2 + c \) that \( |z_n| \) remains bounded however large \( n \) gets. This is an example of an unbalanced workload, as the time to compute each point \( c \) on the complex plane varies. Figure 8 shows a visual representation of the result, and indicates how our fission rules distributed the iteration space between the two devices. Areas that are colored black take the longest time to compute. Thus, we can see that the second piece (right half) is considerably more expensive to compute compared to the first. We discuss possible approaches to resolving this problem in Section 8.

7. **Related Work**

There have been several efforts to build languages or tools for more effectively leveraging multiple GPUs. Many projects either rely on a programmer to specify some or all of the details of how their program is distributed across devices, or only distribute sections of their input vector or array to identical programs on multiple GPUs.

SkelCL [37] is an extension to OpenCL that allows programmers to specify at a high level the general strategy to use when distributing a computation across multiple devices. It abstracts away lower level concerns like the details of copying data.

Delite/LMS [34] is a library-based parallelisation framework for DSLs in Scala that allows specifying complex optimisations in a modular manner. The Delite code generator is able to target multicore CPUs and GPUs, and demonstrates impressive performance on both.

Wu et al. [40] describe kernel fusion and fission operations, to be used in optimisation of data warehousing applications. Their
intent is to schedule smaller data-parallel kernels to hide PCIe transfer time. SkePu is a C++ template library for single and multi-GPU systems based on code skeletons, for operations such as map and reduce. SkePu is capable of launching array computations on multiple devices.

AMGE is a CUDA source to source compiler that augments executables with information about array access patterns. The AGME runtime system uses this access pattern information and run CUDA applications across multiple GPUs. The same kernel is launched on all GPUs and unified addressing is required to ensure that all data is reachable from all devices at once.

PLT Redex has seen adoption in several projects as a way to explore programming language semantics. Kuper et al. also use PLT Redex in the context of a language designed for parallelism.

8. Discussion and Future Work

Much work remains to fully explore the potential of single kernel, multiple device embedded languages, particularly in the area of scheduling algorithms. In this paper we have presented a proof of concept: a prototype that makes Accelerate the first purely functional SKMD embedded language. Our prototype demonstrates the possibility of transparently using two GPUs without changing the user’s high-level source code.

We have demonstrated that our fissioning transformation and multi-device runtime perform well on a set of benchmarks — namely N-body and matrix multiplication — while the Mandelbrot program was used to highlight the problems with our current, fixed domain decomposition. We plan to integrate our approach to fissioning with an autotuning mechanism that would explore different fissioning and decomposition strategies, and thus automatically find the best split point for unbalanced workloads such as Mandelbrot.

We have modelled our system of fission rewrite rules in PLT Redex and tested their correctness. We found this to be extremely useful, allowing us test and debug the rewrite rules, thereby increasing our confidence in the system as a whole. The non-deterministic nature of the fission rules leads to a huge state space, and developing new techniques to handle this large space would enable us to test larger and more complicated programs with PLT Redex.

Despite the number of available array DSLs, their usage is largely limited to niche applications. Virtually no “normal” libraries and programs depend on them. What then would it take for, say, the sort functions from the library vector-algorithms\footnote{http://hackage.haskell.org/package/vector-algorithms} to transparently use vectorized code generation and accelerators on the machines which it is installed? We believe it will require two essential ingredients:

1. A failure-resilient method to probe a host machine, determine its vector and accelerator capabilities (e.g. AVX5 plus a GPU), and then automatically install a software stack enabling programs to utilize those resources.
2. A parallel code-generation and scheduling framework that is capable of efficiently utilizing whatever devices are available, such as GPUs and CPUs, alone or in combination, whether or not there is already load on the machine.

This paper has taken one step in this direction, transparently using more than one GPU if available, and in future work we hope to get closer to this vision as a whole, and see vectorized code become a normal part of the library ecosystem.

Acknowledgments

This work was supported by NSF grant XPS-1337242.

References


\textsuperscript{5}AVX/SSE refer to extensions to x86 supported by regular Intel and AMD processors. This is the form of “vectorized” execution available on CPUs.