Abstract

We present a Functional Compute Language (FCL) for low-level GPU programming. FCL is functional in style, which allows for easy composition of program fragments and thus easy prototyping and a high degree of code reuse. In contrast with projects such as Futhark, Accelerate, Harlan, Nessie and Delite, the intention is not to develop a language providing fully automatic optimizations, but instead to provide a platform that supports absolute control of the GPU computation and memory hierarchies. The developer is thus required to have an intimate knowledge of the target platform, as is also required when using CUDA/OpenCL directly.

FCL is heavily inspired by Obsidian. However, instead of relying on a multi-staged meta-programming approach for kernel generation using Haskell as meta-language, FCL is completely self-contained, and we intend it to be suitable as an intermediate language for data-parallel languages, including data-parallel parts of high-level array languages, such as R, Matlab, and APL.

We present a dynamic semantics suitable for understanding the performance characteristics of both FCL and Obsidian-style programs. Our aim is that FCL will be useful as a platform for developing new parallel algorithms, as well as a code-generation target-language.

1. Introduction

In recent years, several languages for general purpose, data-parallel computation on GPUs have been suggested [2, 4, 5, 10, 11, 14]. Most of these language developments have focused on providing users with high-level specifications of programs and performing a range of automatic optimisations. Often no cost-model is specified, and the language is thus a black box for users who want to reason about the performance of their programs. Parallel algorithms researchers are sidelined, as it is hard to reason about the actual efficiency and performance characteristics of algorithms. The user is decoupled from the hardware model, and cannot be sure whether an operation will result in a memory transaction or not. This makes unexpected performance hits hard to debug. Also, some algorithms require memory patterns not supported by the prevalent set of primitives, or depend critically on hardware parameters that these languages do not expose [3]. This is a shame. We want more algorithms researchers to work on parallel algorithms, and they need better languages to do their work.

In the GPU niche of data-parallel languages, Obsidian is an exception [14], allowing for playfulness and invention on the low-level where you have (almost) complete control over the GPU, and still allowing computations to be composed efficiently using so called pull- and push-arrays. These arrays are not directly stored in a region of memory, but are rather representations of array-computations. This means that most array operations are cheap; they do not incur the overhead of writing a modified array to memory, but modifies the underlying symbolic array-computation directly. Obsidian uses a multi-staged compilation approach, which allows users to use Haskell as a meta-language generating Obsidian expressions. This can for instance be used to generate all the statements of an unrolled loop, or to precompute certain values already at code-generation time.

We present FCL, a reimplementation of Obsidian with an external syntax implemented in Haskell2010 as a self-contained compiler. With FCL, we aim to allow the user to experiment and develop GPU algorithms in a composable fashion, with almost full control over the GPU hardware, for instance by allowing control of shared memory, distribution of work over blocks, warps and threads, memory coalescing, and kernel-fusion, which are main ingredients in many GPU algorithms.

In both Obsidian and FCL, computations are polymorphic in their mapping to executions on the GPU hardware, by the use of level-annotations in array types. We have developed a dynamic operational semantics for FCL that details the computational model and makes it clear how the different levels map to various iteration schemes on the GPU.

The rest of the paper is structured as follows. Section 2 explains pull- and push-arrays. In Section 3, we introduce FCL through three example programs: array reversal, matrix transpose, and parallel reduction. Section 4 we demonstrate that FCL is able to generate efficient OpenCL-code. Section 5 we do a rigourous introduction to FCL, defining its type system and dynamic semantics. Finally, we conclude in Section 7.

We did not find space for an introduction to GPU programming, we refer the reader to the OpenCL and CUDA programming guides by AMD [1] and NVIDIA [12].

FCL is available at http://github.com/dybber/fcl
2. Pull- and push-arrays
FCL inherits pull- and push-arrays from Obsidian [7]. As mentioned in the introduction, these are not actual arrays manifested in memory, but rather descriptions of how to produce an array. When the result of a pull- or push-array computation is written to memory, we say that the array has been materialized.

The two types of arrays complement each other: pull-arrays allow array indexing, but array concatenation and append are very inefficient. Push-arrays on the other hand allow for very efficient concatenation, but disallows array indexing.

The array representation in Obsidian is functional. Below we will introduce a simplified view of array representation in Obsidian, using Haskell notation.

2.1 Pull arrays
Let Idx be the type of array indices and array lengths. A pull-array with elements of type a is then represented as a length paired with an index:

$$\text{type Pull a} = (\text{Idx, Idx} \to a)$$

Materializing such an array in memory is performed by evaluating the function at each index and generating the code associated with writing the result to memory.

Operating on the individual elements of the array can be done without materializing the array. Let arr be a function of the above type, multiplying each array element by two can then be done by building a new pull-array around it: \(\lambda i \to 2 \cdot (\text{arr} \ i) \).

2.2 Push arrays
Push-arrays, on the other hand, already carry with them an iteration pattern, or iteration scheme, decided by the creator of that push-array. A push-array is represented by a function that can construct an array, when given a so-called writer-function. A writer-function is a function that accepts an element and an index and produces an assignment statement writing the element to its corresponding index in memory:

$$\text{type Writer a} = a \to \text{Idx} \to \text{Program Thread} ()$$

Here \text{Program Thread} () is a computation in the used code-generation monad. Push-arrays are represented by a length and a function accepting such a writer:

$$\text{type Push a} = \text{T} = (\text{Idx, Writer a} \to \text{Program T} ())$$

Materializing a push array is done by applying the function to a writer function, and the writer will then be invoked for each array element. This means that we can not access any single element of a push array, before it has been fully materialized.

In Obsidian iteration schemes on push-arrays are annotated in the array types, by a level-parameter, this is the T in the code above. The level-parameter can be either grid, block, warp or thread, corresponding to the hierarchy of organization for GPU threads, and annotates the sequential/parallel structure of the underlying iteration scheme. How levels are used will be explained in the context of FCL in the next section.

The main advantage of push-arrays compared with pull-arrays, is that they allow for efficient array append. Where the append of two pull arrays will involve conditionals, the append of two push-arrays can be achieved by generating two separate loop structures and offsetting the writer function.

In FCL we keep the concepts of pull and push arrays, but abstract away from their actual representation, as will be illustrated in the rest of the paper.

3. Case studies in FCL
In this section we will demonstrate the use of FCL by implementing three different GPU algorithms, array reversal, array transposition using shared memory and parallel reduction.

3.1 Array reversal
Consider a program that reverses an array:

$$\text{fun reverse arr} =$$

$$\begin{align*}
\text{let n} &= \text{length arr} \\
\text{in generate n} \ (\text{fn i} \to \text{index arr} \ (n - i - 1))
\end{align*}$$

This program is implemented using the function generate, a language primitive that creates a new array by mapping the given function over the index-space $[0; n - 1]$. The program here cannot be compiled directly to GPU code, as it does not mention how it should be mapped to sequential or parallel loops. The arrays in this example are pull-arrays, and are identified by types of the form [a], where a is a type variable, representing an arbitrary non-function type. To compile an FCL program into a kernel, we require the user to add an iteration scheme, detailing how this kernel should be mapped to the threads of the GPU. Such iteration schemes are annotated by a level, which can be either thread (sequential execution), warp, block, or grid. The iteration scheme is added using a function called push. Let us demonstrate, and create a block-level version of reverse.

$$\text{fun revBlock arr} = \text{push } \text{block} \ (\text{reverse arr})$$

Notice how the iteration scheme is reflected in the array type, [a]<block>, which is a push-array (from Obsidian). If we were to compile this function, FCL would generate a kernel reversing the entire array using a block-level computation. That is, the computation would only run in a single block, and thus only run on a single of the GPUs streaming multiprocessors. To distribute across several blocks, the input-arrays have to be partitioned and the resulting reversed array-chunks need to be concatenated back together again in the right order. In this case, the order of the chunks also needs to be reversed before concatenation.

$$\text{fun revDistribute} \ (\text{chunkSize arr} =$$

$$\begin{align*}
\text{splitUp chunkSize arr} \\
\text{map reverseBlock} \\
\text{reverse} \\
\text{concat chunkSize}
\end{align*}$$

The operator $>$ is reversed function application from F# and Elm, also known as forward-pipe. Notice that the same reverse-function can be used both to reverse the order of elements and the order of the blocks. The operation concat is what distributes the computation across a grid of blocks, as is also evident from its type:

$$\text{concat : int} \to \text{[[a]<level>]} \to \text{[a]<1+level>}$$

This means that each subarray is executed in a separate block, and concat makes sure that each block writes its result to adjacent subsections of the array it returns. Alternatively we could have applied push <grid> directly to the primitive reverse function, to add a grid-level iteration scheme to the array, but that is only possible in simple cases, where we do not need to manipulate the amount of data processed by each block or how results are combined. Neither splitUp nor concat is a primitive of FCL, and more complicated tiling and interleaving can thus be implemented, as we will see in the following example.
Also, we apply the function \texttt{force}:

\begin{verbatim}
fun transposeTiled tileDim cols rows mat =
 nate 2D tiles with the functions:

 - array into chunks (one following the other), we split and concatenate
 - all steps fused, performing just as well as the standard OpenCL
 scheme, writing the array to shared memory, after which the array
 can again be indexed arbitrarily:

 The important thing to note is that this reading/writing order is
 coalesced, but the indexing into the input array will not.

 A more efficient approach is to chunk up the matrix in smaller
 2D tiles, transpose each tile in shared memory, before stitching
 the tiles back together again (in transposed order). This approach
 makes both reads and writes to global memory coalesced, as the
 threads can first collaborate on moving data to shared memory, and
 afterwards collaborate on copying data from shared memory to the
 output-array.

 The important thing to note is that this reading/writing order is
 encapsulated in \texttt{split2DGrid} and \texttt{concat2DGrid}, and a library
 of such operations can be provided to users.

 This algorithm follows roughly the same structure as the
 reverse-example. However, instead of splitting the linear input-
 array into chunks (one following the other), we split and concatenate
 2D tiles with the functions: \texttt{split2DGrid} and \texttt{concat2DGrid}. Also, we apply the function \texttt{force} which \textit{executes} an iteration scheme, writing the array to shared memory, after which the array can again be indexed arbitrarily:

 \texttt{force : [\ldots] \rightarrow [\ldots]}

 The result is a single kernel performing the transposition with
 all steps fused, performing just as well as the standard OpenCL
 implementation. For the sake of simplicity, the kernel in the form

 \texttt{transpose : int -> int -> [\ldots] -> [\ldots]}

 is merely a syntactic construction.

 The FCL prelude provides the following functions for splitting
 arrays in two and joining arrays element-wise. These are not FCL
 primitives, but their implementation is standard and left out because
 of lack of space.

 \begin{verbatim}
 halve : [\ldots] \rightarrow ([\ldots], [\ldots])
 zipWith : (a -> b -> c) \rightarrow [\ldots] -> [\ldots] -> [\ldots]
 \end{verbatim}

 The tuple returned by \texttt{halve} is merely a syntactic construction. They will not be present in the OpenCL kernel code. Using these we can now write a function for taking one reduction-step:

 \begin{verbatim}
 fun step <\ldots> f arr =
 let x = halve arr
 in push <\ldots> (zipWith f (fst x) (snd x))
 \end{verbatim}

 Notice that the function is polymorphic in the level-variable \texttt{<\ldots>}. This makes it possible to postpone the decision of whether \texttt{step} will run sequentially or at one of the parallel levels of the hierarchy.

 In Obsidian, we would have implemented this as a recursive
 function on the meta-level. As the function is doing a reduction on
 just a chunk of the array, we would statically know the size of this
 chunk, and Obsidian would generate an unrolled loop.

 In FCL we instead provide a built-in looping-construct, while
 \texttt{while}, which accepts a \textit{stop-condition} and \textit{stepping} function as arguments as well as the initial array.

 \begin{verbatim}
 fun \texttt{red} <\ldots> f arr =
 while \texttt{(fn arr => 1 \Rightarrow \texttt{length} arr)}
 (step <\ldots> f)
 (step <\ldots> f arr)
 |> push <\ldots>
 \end{verbatim}

 This will generate a while-loop, and automatically force values to
 shared memory between operations as well as performing a block-
 level synchronization between threads. In cases where the chunk
 size is known at compile time, we can use loop unrolling techniques
 to achieve the same code as if we had used Obsidian.

 The \texttt{while} construct assumes that arrays never need to grow
 during evaluation and thus reuses the same area of shared memory
 on each iteration. Also, \texttt{while} will always write the input array
 to shared memory before starting the iteration. To avoid doing a
 direct copy from global memory to shared memory, we take
 one initial step before starting the while-loop. This optimisation
 is called “First add during load” by Mark Harris [9].

 To get this to run over multiple blocks, we need to split a larger
 array and concatenate the results:

 \begin{verbatim}
 fun \texttt{reduceGrid} <\ldots> f arr =
 let \texttt{chunkSize} = \texttt{2 \times \texttt{BlockSize}}
 in \texttt{splitUp} \texttt{chunkSize} arr
 |> map \texttt{(red <\ldots> f)}
 |> \texttt{concat 1}
 \end{verbatim}

\end{verbatim}

\section{3.2 Transpose in shared memory}

Now consider the problem of matrix transposition. In FCL we only have one-dimensional arrays, which means that a two-dimensional matrix must be represented as its flat representation together with number of columns and rows. We are considering adding support for multidimensional-arrays, see Section 7.

If we follow a naive approach we can transpose a two-dimensional matrix, using the following \texttt{transposeTiled}-function:

\begin{verbatim}
sig transposeTiled : int -> int -> int -> int -> [\ldots] -> [\ldots]
fun transposeTiled tileDim cols rows mat =
 generate (cols * rows)
 (fn n =>
 let i = n div rows
 j = n mod rows
 in index arr (j * rows + i))
\end{verbatim}

If this version of \texttt{transposeTiled} were to be executed in parallel on the GPU, it would lead to uncoalesced writes. When adding an iteration scheme to the final array, the final writes will always be in coalesced, but the indexing into the input array will not.

To implement a reduction kernel, we will perform a tree-reduction inside each work-group; this is implemented by splitting the subarray in two, and performing and element-wise sum of the two halves. This is very similar to what has previously been shown in Obsidian.

The FCL prelude provides the following functions for splitting arrays in two and joining arrays element-wise. These are not FCL primitives, but their implementation is standard and left out because of lack of space.

\begin{verbatim}
halve : [\ldots] -> ([\ldots], [\ldots])
zipWith : (a -> b -> c) -> [\ldots] -> [\ldots] -> [\ldots]
\end{verbatim}

The tuple returned by \texttt{halve} is merely a syntactic construction. They will not be present in the OpenCL kernel code. Using these we can now write a function for taking one reduction-step:

\begin{verbatim}
sig step <\ldots> f arr =
 let x = halve arr
 in push <\ldots> (zipWith f (fst x) (snd x))
\end{verbatim}

Notice that the function is polymorphic in the level-variable \texttt{<\ldots>}. This makes it possible to postpone the decision of whether \texttt{step} will run sequentially or at one of the parallel levels of the hierarchy.

In Obsidian, we would have implemented this as a recursive
function on the meta-level. As the function is doing a reduction on
just a chunk of the array, we would statically know the size of this
chunk, and Obsidian would generate an unrolled loop.

In FCL we instead provide a built-in looping-construct, \texttt{while},
which accepts a \textit{stop-condition} and \textit{stepping} function as arguments as well as the initial array.

\begin{verbatim}
sig \texttt{red} <\ldots> f arr =
 while \texttt{(fn arr => 1 \Rightarrow \texttt{length} arr)}
 \texttt{step <\ldots> f}
 \texttt{step <\ldots> f arr}
 |> \texttt{push <\ldots>}
\end{verbatim}

This will generate a while-loop, and automatically force values to
shared memory between operations as well as performing a block-
level synchronization between threads. In cases where the chunk
size is known at compile time, we can use loop unrolling techniques
to achieve the same code as if we had used Obsidian.

The \texttt{while} construct assumes that arrays never need to grow
during evaluation and thus reuses the same area of shared memory
on each iteration. Also, \texttt{while} will always write the input array
to shared memory before starting the iteration. To avoid doing a
direct copy from global memory to shared memory, we take
one initial step before starting the while-loop. This optimisation
is called “First add during load” by Mark Harris [9].

To get this to run over multiple blocks, we need to split a larger
array and concatenate the results:

\begin{verbatim}
sig \texttt{reduceGrid} <\ldots> f arr =
 let \texttt{chunkSize} = \texttt{2 \times \texttt{BlockSize}}
 in \texttt{splitUp} \texttt{chunkSize} arr
 |> \texttt{map \texttt{(\texttt{red} <\ldots> f)}}
 |> \texttt{concat 1}
\end{verbatim}
The measured bandwidths are shown in Figure 2.

![Figure 2: Measured bandwidths on our three example programs. OpenCL bars are code from NVIDIA's OpenCL SDK, and we compare it to OpenCL kernels generated by FCL. The dashed line indicates the maximum bandwidth as measured by NVIDIA's benchmarking tool.](image)

Here #BlockSize will refer to either getLocalSize(0) / blockDim.x or a constant specified by the user as configuration option at compilation time.

Another difference from Obsidian also comes to light here; as we no longer distinguish between statically known values and dynamically known values, we are not able to infer that red <block> f always returns a single scalar. We solve this by requiring an extra argument to concat, an expression computing the size of each chunk to concatenate.

4. Performance

FCL is work in progress; thus certain optimizations are still not implemented. However, the performance on the previously shown examples is promising, and we have identified the bottlenecks that are currently limiting performance.

To benchmark the generated code, we have used an NVIDIA GeForce GTX 780 Ti, which is built on the Kepler architecture. It has provides 2880 cores (875 Mhz), and 3GB GDDR5 ram (7 Ghz, bus-width: 384 bit). Calculating the theoretical peak bandwidth we get 7GHz × 384bit = 336GB/s. In practice we can expect a 254.90GB/s maximum bandwidth, which we have measured using NVIDIA’s benchmarking tool (bandwidthTest).

Each benchmark has been executed on an array of 2^{32} 32-bit integers (67 MB). Timing was measured as wall-clock time on 1000 executions of the same kernel, preceded by a single warm-up run. The measured bandwidths are shown in Figure 2.

In the simple reverse example, we hit the measured maximum bandwidth as we hoped. The generated code is similar to the handwritten code by NVIDIA, except for block-virtualization, which is not used in NVIDIA’s version.

In the transpose example we are not quite on par with the handwritten code, and there are two reasons for that. First, we do not take care to avoid bank-conflicts, which we leave as future work. Second, we have quite a lot of extraneous divisions in the generated code. This is because we do not keep track of array shapes, and thus split2DGrid and concat2DGrid are performing some of the same work more than once. If we remove these double computations by hand, we achieve a performance boost, which is illustrated as FCL+handopt in the barplot. We are considering adding support for multi-dimensional arrays to tackle this issue, but this is also left as future work.

The reduction example is interesting; here we generate a completely unrolled loop, which performs reasonably well. To improve and reach the performance target set by NVIDIA’s heavily tuned kernel, we need to make each thread do an initial sequential reduction on a few elements, before the parallel tree-reduction we already have implemented.

5. Type system and semantics

To better understand the limitations, performance behavior and validate correctness of programs written in FCL, we will now turn to a more formal treatment of the language.

Previously, we have described both of the functions concat and concat2DGrid, which are used for distributing a computation. Both functions are written in terms of a more general operation, which we have named interleave, which in essence is a forward permutation on the indexes written to. However, in the limited treatment in this paper, we will focus on a simplified version of FCL with concat as a primitive, leaving out concat2DGrid and interleave. In all other aspects, this is a full treatment of FCL in its current state.

We use i, d and b to range over integers, doubles, and booleans, respectively. Let α range over an infinite set of type-variables and let x range over program variables. We use unaryop and binaryop to denote the sets of built in scalar operations.

Whenever z is some object, we write \vec{z} to range over sequences of similar objects. When we want to be explicit about the size of a sequence $\vec{z} = z_0, \cdots, z_{n-1}$, we often write it on the form \vec{z}^n.

The core syntax of FCL is defined as follows:

$$op :::= \text{unaryop} \mid \text{binaryop} \quad \text{(built-in operators)}$$

$$\begin{align*}
 &\text{generate} \mid \text{lengthPush} \mid \text{lengthPull} \\
 &\text{index} \mid \text{mapPush} \mid \text{mapPull} \\
 &\text{push} \mid \text{force} \mid \text{concat} \mid \text{while}
\end{align*}$$

$$bv :::= i \mid d \mid b \quad \text{(scalars)}$$

$$\gamma :::= \alpha \mid Z \mid 1 + \gamma \quad \text{(levels)}$$

$$e :::= bv \mid x \mid [e_1, \ldots, e_n] \mid op \quad \text{(expressions)}$$

$$\begin{align*}
 &\text{fn} \ x \ e \mid \text{fn} \ (\alpha) \ e \mid e \\
 &\text{let} \ x \ = \ e_1 \ \text{in} \ e_2 \\
 &\text{fst} \ e \mid \text{and} \ e
\end{align*}$$

Notice that the language has two application forms and two abstraction-forms; in addition to standard function application, we also have level-application, $e(\gamma)$, for functions that accept a level-parameter. We often use the following short-hands for the first four levels:

$$\begin{align*}
 \text{thread} &:= Z \\
 \text{block} &:= 1 + (1 + Z) \\
 \text{warps} &:= 1 + Z \\
 \text{grid} &:= 1 + (1 + (1 + Z))
\end{align*}$$

5.1 Type system

The syntax of FCL types, kinds and type-schemes is defined as follows:

$$bt :::= \alpha \mid \text{int} \mid \text{double} \mid \text{bool} \quad \text{(base types)}$$

$$\tau :::= \alpha \mid bt \mid (\tau_1, \tau_2) \mid \tau_1 \rightarrow \tau_2 \quad \text{(types)}$$

$$\langle \alpha \rangle \rightarrow \tau \quad \text{(pull arrays)}$$

$$\text{pull arrays}$$

$$\kappa :::= \text{BT} \mid \text{GT} \mid \text{TYP} \mid \text{LVL} \quad \text{(kinds)}$$

$$\sigma :::= \forall \alpha : \kappa. \sigma \mid \tau \quad \text{(type-schemes)}$$
lengthPull : \([a] \rightarrow \text{int}\)
lengthPush : \([(\text{let})] \rightarrow \text{int}\)
mapPull : \((\alpha \rightarrow \beta) \rightarrow \alpha \rightarrow [\beta]\)
mapPush : \((\alpha \rightarrow \beta) \rightarrow [\alpha](\text{letv}) \rightarrow [\beta](\text{letv})\)
generate : \(\text{int} \rightarrow ([\text{int} \rightarrow \alpha] \rightarrow \alpha)\)
index : \([\alpha] \rightarrow \text{int}\)
push : \(\text{letv} \rightarrow [\alpha] \rightarrow [\alpha](\text{letv})\)
force : \([\alpha](\text{letv}) \rightarrow [\alpha]\)
while : \([\alpha] \rightarrow \text{bool} \rightarrow ([\alpha] \rightarrow [\alpha](\text{letv})) \rightarrow [\alpha](\text{letv}) \rightarrow [\alpha]\)

Figure 3: Types of built-in operators.

The types of built-in array combinators are shown in Figure 3.

To define the set of valid types, we define a relation \(\Delta \vdash \tau\) below, where \(\Delta\) are the kinds environments, mapping type variables to kinds:

\[
\Delta ::= \alpha : \kappa, \Delta | \epsilon
\]

The kind-system divides types into four categories. Basic types (BT), ground types (GT), general types (TYP) and levels (LVL). Basetypes are types of scalar values, which are the only types of values allowed in push-arrays. Ground types are all types except function-types, and are the types allowed in pull-arrays.

Kind system

1. \(\Delta \vdash \text{int} : \text{BT}\)
2. \(\Delta \vdash \text{double} : \text{BT}\)
3. \(\Delta \vdash \text{bool} : \text{BT}\)
4. \(\Delta(\alpha) = \kappa\)
5. \(\Delta \vdash \tau_1 : \kappa, \Delta \vdash \tau_2 : \kappa, \Delta \vdash (\tau_1, \tau_2) : \kappa\)
6. \(\Delta \vdash \tau : \text{BT} \rightarrow \text{BT}\)
7. \(\Delta \vdash \tau : \text{GT} \rightarrow \text{GT}\)
8. \(\Delta \vdash \tau : \text{TYP} \rightarrow \text{TYP}\)
9. \(\Delta \vdash \tau : \text{TYP} \rightarrow \text{TYP}\)
10. \(\Delta \vdash \tau : \text{GT} \rightarrow \text{GT}\)
11. \(\Delta \vdash [\gamma] : \text{GT}\)
12. \(\Delta \vdash \gamma : \text{LVL}\)
13. \(\Delta \vdash 1 + \gamma : \text{LVL}\)

A type environment \(\Gamma\), is a set of type assumptions of the form \(x : \sigma\), mapping program variables to typeschemes:

\(\Gamma ::= x : \sigma, \Gamma | \epsilon\)

We define the relation \(\sigma \triangleright_\Delta \sigma'\) to denote that a type scheme \(\sigma'\) is an instance of another type scheme \(\sigma\).

\[
\Delta \vdash \tau : \kappa \quad \kappa \neq \text{LVL} \quad \Delta \triangleright_\Delta \sigma[\alpha \rightarrow \tau] \quad \forall \alpha, \sigma, \sigma' \triangleright_\Delta \sigma''\]

The type system allows inferences among sentences of the form \(\Delta, \Gamma \vdash e : \tau\), which are read: “under the assumptions \(\Delta, \Gamma\) the expression \(e\) has type \(\tau\) at level \(\gamma\).” The typing rules are shown on the opposing page. The \(\gamma\) annotation on the turnstyle, is used to restrict how array computations can be nested. In all other rules than the rule for \(\text{concat}\), \(\gamma\) is passed on unchanged, but in expression below a \(\text{concat}\) only operations on a lower level can be used.

Expression typing

\[
\Delta, \Gamma \vdash i : \text{int} \quad \Delta, \Gamma \vdash d : \text{double}
\]

\[
\Delta, \Gamma \vdash b : \text{bool}
\]

\[
\Delta, \Gamma \vdash e_1 : \tau, \text{for all } i \quad \Delta, \Gamma \vdash \tau_1 : \text{GT}
\]

\[
\Delta, \Gamma \vdash e_1 : \tau_1, \Delta, \Gamma \vdash e_2 : \tau_2
\]

\[
\Delta, \Gamma \vdash e : (\tau_1, \tau_2)
\]

\[
\Delta, \Gamma \vdash e : \tau_1, \Delta, \Gamma \vdash e : \tau_2
\]

\[
\Gamma(x) = \sigma \quad \sigma \triangleright_\Delta \tau
\]

\[
\Delta, \Gamma \vdash \text{let } x = e_1 \text{ in } e_2 : \tau
\]

\[
\Delta, \Gamma \vdash e_1 : \alpha \rightarrow \tau
\]

\[
\Delta, \Gamma \vdash \text{fn } x : \tau \Rightarrow e : \tau' \rightarrow \tau
\]

\[
\Delta, \Gamma \vdash \text{fn } (\alpha) : \tau
\]

\[
\Delta, \Gamma \vdash \text{concat } e_1 : [\alpha](\gamma)
\]

5.2 Dynamic semantics

We now turn towards the semantics of the language, which will help understand compilation of FCL terms and how the level-types instruct the compilation.

The evaluation relation we will define below, is annotated with a location. Locations emulate the hierarchical structure of a parallel machine, and are of the form:

\(\text{loc ::= Thread(thread_id)} \quad \text{thread_id} \in \mathbb{N}
\]

\(\mid \text{Group(\{loc_1, \ldots, loc_n\})}\)

Locations relates to levels, and we introduce similar shorthands.

\(\text{Warp(loc)} = \text{Group(\{\text{Thread(loc_1)}, \ldots, \text{Thread(loc_n)}\})}\)

\(\text{Block(loc)} = \text{Group(\{\text{Warp(loc_1)}, \ldots, \text{Warp(loc_n)}\})}\)

\(\text{Grid(loc)} = \text{Group(\{\text{Block(loc_1)}, \ldots, \text{Block(loc_n)}\})}\)

We also define whether a location is respecting a level, by the relation, \(\text{loc} \triangleright \gamma\), defined by the following two rules:

\[
\text{Thread(thread_id)} \triangleright Z \quad \text{loc} \triangleright \gamma \quad \text{for all } i
\]

\[
\text{Group(loc)} \triangleright 1 + \gamma
\]

Values in FCL are either base values (bv), pull arrays, push arrays or delayed concatenation of push-arrays.

\(v ::= \text{bv} \quad \text{(base values)}
\]

\(\mid e_1, \ldots, e_n \mid \quad \text{(pull array)}
\]

\(\mid e_1, \ldots, e_n(\gamma) \mid \quad \text{(push array)}
\]

\(\mid \text{concatDelay } e_1 e_2 \mid \quad \text{(delayed concat)}
\]

We extend the typing relation above to include typing of values.
We now define the promised dynamic semantics of FCL. Due to space limitations, we consider just the interesting cases involving force. The first two rules are administrative fusion rules, happening at compile time, there are a bunch more of these, which we are not able to display.

Small-step semantics

\[\text{mapPush } e \{ e_1, e_2, \ldots, e_n \} \rightarrow_{\text{loc}} e \{ e_1, e_2, \ldots, e_n \} \]

\[\text{mapPush } e \{ e_1, e_2, \ldots, e_n \}(\gamma) \rightarrow_{\text{loc}} e \{ e_1, e_2, \ldots, e_n \}(\gamma) \]

\[\text{concat } e_1 e_2 \rightarrow_{\text{loc}} \text{concatDelay } e_1 e_2 \]

\[\text{force } [b_1, \ldots, b_n]/(\text{thread}) \rightarrow_{\text{loc}} [b_1, \ldots, b_n] \]

\[e_i \rightarrow_{\text{Group}(\text{loc})} e'_i \text{ for all } i \in [1, n] \]

\[\text{force } e \{ e_1, e_2, \ldots, e_n \}((v_1)) \rightarrow_{\text{loc}} e \{ e_1, e_2, \ldots, e_n \}((v_1)) \]

Only programs of type \(\alpha(\gamma) \) can be fully evaluated under these semantics. For instance, we will require a reduction-kernel will return a singleton array instead of an integer. This is by intention, we want all programs to have explicit hierarchy-annotations, describing the level of execution, and currently this is only allowed for push-arrays.

Proposition 1 (Type Preservation). If \(\Delta, \Gamma \vdash e : \tau \) and \(e \rightarrow_{\text{loc}} e' \) for some location \(\text{loc} \triangleright \gamma \), then \(\Delta, \Gamma \vdash e' : \tau \).

Proposition 2 (Progress). If \(\Delta, \Gamma \vdash e : \tau \), then either \(e \) is a value or \(e \rightarrow_{\text{loc}} e' \) for some \(e' \).

6. Related work

FCL builds on previous work on Obsidian [14], from which both the concepts of push-arrays and level-variables originates. The language discussed by Dubach et al. [13] is also related, operating at a similarly low-level. It might be interesting to build a similar set of rewrite rules on top of FCL, and search for good rewrites.

The hierarchy in FCL and Obsidian, might also be compared to the concept of locales and sublocales in the Chapel language [6].

As previously mentioned other work has been done in the area of functional languages for GPU computing, but most efforts have been on optimizing compilers. This includes Futhark [10], Accelerate [5], Delite [4], Harlan [11], and Nessie [2].

7. Conclusion and Future work

We have presented FCL, a functional language for GPU algorithms. FCL is work in progress. Currently only device-code is generated, and host-code have to be written manually, but we plan to get that supported later this year. In addition, memory is currently allocated implicitly, and it thus not possible to reuse the same memory. We would want the possibility of writing an in-place version of reverse, writing the reserved array back to the same global-array.

Our limitation of only having one-dimensional arrays, will in many cases lead to unnecessary shape-computations, as we saw in the transpose example. We will thus investigate how shapes can be introduced, such that split2DGrid would split the array into a 2D array of 2D arrays.

Future work also includes bank-conflict avoidance, use of vectorised GPU-instructions, and the addition of sequential loops with array updates, perhaps in the style of Futhark [10].

Finally, we would like to implement some larger example programs in FCL, and attempt using FCL as an intermediate language for our APL-compiler [8].

References

