Non-Functional Requirements for Machine
Learning: Challenges and New Directions

Jennifer Horkoff
Chalmers and the University of Gothenburg
Jjennifer.horkoff@cse.gu.se

Abstract—Machine Learning (ML) provides approaches which
use big data to enable algorithms to ‘“learn”, producing outputs
which would be difficult to obtain otherwise. Despite the advances
allowed by ML, much recent attention has been paid to certain
qualities of ML solutions, particularly fairness and transparency,
but also qualities such as privacy, security, and testability. From
a requirements engineering (RE) perspective, such qualities are
also known as non-functional requirements (NFRs). In RE, the
meaning of certain NFRs, how to refine those NFRs, and how
to use NFRs for design and runtime decision making over
traditional software is relatively well established and understood.
However, in a context where the solution involves ML, much of
our knowledge about NFRs no longer applies. First, the types of
NFRs we are concerned with undergo a shift: NFRs like fairness
and transparency become prominent, whereas other NFRs such
as modularity may become less relevant. The meanings and
interpretations of NFRs in an ML context (e.g., maintainability,
interoperability, and usability) must be rethought, including
how these qualities are decomposed into sub-qualities. Trade-
offs between NFRs in an ML context must be re-examined.
Beyond the changing landscape of NFRs, we can ask if our
known approaches to understanding, formalizing, modeling, and
reasoning over NFRs at design and runtime must also be
adjusted, or can be applied as-is to this new area? Given these
questions, this work outlines challenges and a proposed research
agenda for the exploration of NFRs for ML-based solutions.

Index Terms—Non-Functional Requirements, NFRs, qualities,
Machine Learning, Requirements Engineering

I. INTRODUCTION

Machine Learning (ML) describes a computational ap-
proach which uses large amounts of data to enable algorithms
to “learn”, performing tasks which are difficult to achieve
via standard software. This enables solving difficult problems
such as recognizing images, diagnosing cancer, and estimating
insurance [1]. Despite the advances allowed by ML, recently
much attention has been paid to certain gqualities of ML
solutions, particularly fairness [2], but also transparency [3],
security [4], privacy [5], and testability [6].

Much existing work has been devoted to understanding,
decomposing, managing, formalizing and reasoning over qual-
ities of typical non-ML software. Such qualities are often
included as part of non-functional requirements (NFRs). These
include well-studied NFRs such as performance, reliability,
maintainability, and usability, but also security, privacy, and
customer satisfaction [7], [8].

From the perspective of traditional software, the meaning of
certain qualities, how to refine those qualities, and how to use
such qualities for design and runtime reasoning is relatively

well understood. However, when the software solution involves
ML, some of our knowledge about NFRs may no longer
apply. Fundamentally, the way in which we ‘design’, ‘run’, and
‘maintain’ ML-based solutions differs. The broad question of
how SE methods and procedures can be adapted for ML-based
solution development is already starting to be considered in
venues such as the SEMLConf [9]. Here we focus particularly
on methods for NFRs.

In particular, the nature of ML means that the meaning
of many NFRs for ML solutions differs compared to regular
software, and these NFRs are often not well understood (e.g.,
what is fairness? [10]). What does it mean for an ML-enabled
system to be maintainable? Are NFRs such as compatibility
and modularity still relevant? Some NFRs may have reduced
importance for ML solutions compared to typical software. On
the other hand, NFRs such as fairness [2] and transparency [3]
have become critical from an ML perspective, whereas previ-
ous NFR work has not typically emphasized these dimensions.
Further, as-yet-unexplored NFRs such as “retrainability” may
also become relevant.

The complexity of NFRs has long been managed by re-
finement, e.g., security is typically refined to confidentiality,
integrity, etc. Not only may the meaning of certain NFRs
change in an ML context, but the refinements may also need
to be rethought and updated. In typical NFR research, we are
aware of common quality trade-offs, often called conflicting
NFRs [7], e.g., security and performance. But recent work is
only just beginning to explore quality trade-offs in the ML
space [2]. Do known trade-offs still apply in the case of ML?
Do new trade-offs exist?

In a traditional system, one can collect and implement many
functional requirements (FRs). The overall function or purpose
of an ML application is much more focused; e.g., recognize
a face or diagnose a disease. Thus, there are far fewer FRs,
and ML research has focused on the NFRs associated directly
with those key FRs, e.g., accuracy of facial recognition, perfor-
mance of diagnosis. Because an ML application has few FRs,
one can argue that the effective satisfaction of NFRs becomes
particularly critical. However, in practice, ML implementations
will be integrated with more standard software as part of larger
and more complex systems (e.g., in a self-driving car), which,
as a whole, will have many complex FRs and NFRs.

In this paper, we consider whether traditional knowledge
about NFRs and quality from a requirements perspective can
apply to ML-based systems. We can view this knowledge

from two dimensions: 1) knowledge of NFRs, i.e., what
are common and important NFRs, how are they interpreted,
refined, measured, and how they can conflict, and 2) methods
for NFRs, i.e., catalogues of NFRs [8], modeling methods
like the NFR framework [7], methods to reason over NFRs,
e.g., [11], [12], to use NFRs to monitor software, e.g., [13], and
drive software adaptation and evolution, e.g., [14], [15], etc.
In this work, we make the argument that the first dimension
(1) must be at least partially re-thought in light of the rise of
ML. Many of the ideas and techniques considering NFRs for
traditional software (2) may still be valid, but it is possible that
techniques may need revamping in light of this new paradigm,
or that new, completely novel techniques are needed.

The next section outlines the state-of-the-art, followed by an
illustrative and motivating ML example. Research challenges
and an agenda are outlined, followed by a discussion and
consideration of future work.

II. STATE-OF-THE-ART
A. NFRs in Requirements Engineering

Requirements Engineering (RE) research has long made the
argument that eliciting and considering NFRs is critical for
the success of systems [7]. Such systems could be technically
sound, but fail due to issues in quality. Such an argument is
particularly relevant for ML solutions, whose effectiveness lies
mainly in the quality of the outcomes they provide.

What is an NFR? Simply, an NFR is any quality or at-
tribute which is non-functional. This broad definition, defining
something critical in terms of what it is not, is not ideal, as has
been discussed by several authors, e.g. [16], [17]. Our purpose
here is not to define NFRs in a satisfactory way, but to explore
their application to ML. The concept of quality has had better
luck in terms of a precise definition, being covered by several
prominent ontologies, e.g., DOLCE [18]. More recent work in
RE uses ideas from DOLCE to treat NFRs as qualities over an
entity [19], usually a functional requirement, the system, or a
system component, e.g., “send mail (entity) quickly (quality)”
or “the system (entity) should be secure (quality)”.

Although qualities of ML solutions and NFRs for ML
solutions are similar, technically one can think of NFRs as
the requirements over the quality, e.g., the quality is usability
of system X, while the NFR is “System X must be usable”,
which ideally should be defined in a measurable way, e.g.,
“90% of test users would rate the system as an 8/10 in terms
of usability”. Although there is a distinction, for simplicity, in
this work we treat NFRs and qualities as synonyms.

NFR Catalogues. To facilitate a consideration of NFRs,
catalogues of software qualities were created. For example,
the ISO/IEC 25010 standard divides system/software product
quality into eight categories, including performance efficiency,
compatibility, usability, and security [8]. Each quality is further
decomposed; e.g., compatibility is refined into co-existence
and interoperabilty. Such catalogues provide iterative refine-
ment of NFRs into sub-qualities, possibly sub-sub-qualities,
sometimes down to measurable indicators, when possible.

Languages and Reasoning. Much work focuses on captur-
ing NFRs in visual modeling languages, sometimes with an
underlying metamodel and semantics, facilitating (semi-) auto-
mated qualitative and quantitative methods to support decision
making, e.g., [7], [11], [12]. Usually, approaches allow users
to use NFRs to select among possible alternative functional
requirements, e.g., given FRs and NFRs, many of which are
in conflict, which requirements should we implement?

Runtime, Adaptation, and Evolution. NFR approaches
were extended to consider a requirements-based view of
runtime system operation, where functional and quality re-
quirements could be monitored at runtime, based on data from
the running system, e.g., [13], [20]. Work in this area went
further to consider requirements-based runtime adaptation,
e.g., a certain quality aspect is not sufficiently satisfied at
runtime, thus the system will evolve and adjust to try to gain
better performance or quality, all while considering quality
trade-offs [14], [15].

Linking Data to Quality. A related line of work uses an
adaption of common requirements notations to link business
data to organizational goals, including qualities [21], allowing
for continuous goal-based business intelligence. More recent
work focuses on the design of data analytic systems for
business, which may include ML algorithms [22], [23]. This
work focuses on finding designs which fit domain-specific
analytic questions, considering aspects of quality performance
for various ML options. In this case, the authors adapt existing
RE languages to consider data analytics at the syntax level (no
formal semantics or metamodel), and they use existing analysis
procedures without modification.

B. Qualities for Machine Learning.

ML encompasses over a dozen algorithm types (e.g., Re-
gression, Bayesian, Instance-based, Deep Learning, Neural
Networks), with many more specific algorithms (e.g., Lo-
gistic Regression, Linear Regression, Naive Bayes, Nearest
Neighbor) [1]. Most work on ML topics provide examples
and algorithm details, including performance results, but do
not focus on a wide range of NFRs or quality aspects. We
summarize a selection of current work considering NFRs for
ML in the following.

Accuracy & Performance. Most ML work reports on
algorithm accuracy (often precision and recall), i.e., how
“correct” the output is compared to reality. Further work looks
more broadly at algorithm performance (e.g., [24]), including
comparisons of performance in specific contexts (e.g., [25]).

Fairness. Recent work has focused on technical solutions
to make ML algorithms more fair, finding that the removal of
sensitive features (e.g., race, gender) is not sufficient to ensure
fair results, and considering the trade-off between fairness
and other NFRs [2]. Work in this area has attempted to find
mathematical or formal definitions of fairness, e.g. statistical
parity, individual fairness, and has found that the accurate
implementation of fairness depends more on how fairness
is defined and measured than how it is implemented [26].
Empirical work has asked practitioners about their needs for

fairness in ML, finding that in practice, engineers want to
consider the side effects of fairness and see fairness in the
context of the broader system [27].

Transparency. Although the results of ML can have signif-
icant real-world impact, it is often not clear how these results
are derived, causing issues in trust and transparency. Work has
begun to look at better explaining ML results [3], [28] to try
to mitigate this issue.

Security & Privacy. Efforts have been made to address pri-
vacy concerns when using big (often personal) data to facilitate
ML. Work in [4] introduces protocols for preserving privacy
in various ML approaches, and explicitly acknowledges the
trade-off in terms of algorithm speed when revising techniques
for privacy. Similarly, Bonawitz et al. introduce a method to
preserve privacy in ML, focusing on keeping the overhead
in terms of runtime and communication low [5]. Papernot et
al. recognize the increase in ML-related security and privacy
threats and create a threat model for ML [29].

Testability. Work exists which considers systematically
testing the outcome of ML systems (e.g., [6]). However, the
majority of work focuses on the other direction, applying ML
to improve software testing strategies (e.g., [30]).

Reliability. Further work has considered reliability in ML,
e.g., looking at the reliability of individual ML predictions,
focusing on reliability estimation [31].

Other NFRs for ML, such as sustainability or maintainabil-
ity, have not seen significant attention. In most cases, one can
find work applying ML techniques for prediction of the NFR,
e.g., to predict maintainability [32], but not work considering
the NFR as it applies to ML. Similarly, efforts like the AIRE
workshop series focuses on applying Al to RE, and typically
not the other direction.

From a broader perspective, there are efforts to apply SE
techniques to the application of ML [9], with a focus on
reliability, testing and evolution. As far as we are aware, there
is no unified collection or consideration of many NFRs for
ML, including a consideration of ML-specific quality trade-off
data. Current work consists of only individual considerations
of specific quality trade-offs, e.g., privacy vs. processing
time. Similarly, we are not aware of approaches for explicitly
monitoring ML implementations at runtime, or considerations
of what exactly runtime monitoring may mean in this context.

III. NFRS FOR MACHINE LEARNING EXAMPLE

As a concrete example of an ML solution and its associated
qualities, consider an airport which may screen passengers
against images of people of interest; here a precise match is
desirable, as the cost of misidentification is relatively high,
yet the processing time may be relatively slow (e.g., 20
seconds), given the time one takes to get through security.
These desired quality requirements should be captured and
considered through the solution lifetime.

In order to understand what ML solutions may meet our
quality requirements, we can attempt a relatively straightfor-
ward application of existing frameworks for NFR modeling,
such as the NFR Framework [7] or iStar [11]. We do so

P . Novelty
Ri
@assmcatl@ (egresst (Detection
i OR i
¥
OR
< Semi- >< Active > <§einforcemen>

Problem Type

Algorithm
Characteristics

Algorithm Reg ression < Bayesian > < Instanl;e->
Type ase
oRN R
NEETES
Algorithm <Log lstIC> < '—'"eaf neighbour AR

Assumptions and
Optimizations

@5

Qualities

Storage Implementa_mon
Complexity

Fig. 1. Example Solution Space Representation evaluating Nearest Neighbor
against Relevant Quality attributes (Simplified and Incomplete)

using layers to separate different ML concepts in Fig. 1.
We decompose available algorithms by problem type (clas-
sification, regression, etc.), then by algorithm characteris-
tics (supervised, unsupervised, etc.), and by algorithm types
(regression, Bayesian, etc.). The hierarchy and classification
is yet incomplete, with the dimensions of incompleteness
indicated by ellipses (...). We add a simple syntax addition
to capture algorithm assumptions (A) and optimizations (O),
e.g., the Naive Bayesian algorithm assumes that the probability
of all relevant events are independent, and optimizations such
as Laplace Smoothing can be applied to account for unseen
observations. The Nearest Neighbor algorithm can apply op-
timizations such as data projection or weighting the distances
between neighbors.

We can collect information on quality performance from ex-
isting sources. In some cases, such data is available generally;
e.g., Nearest Neighbor without any optimizations has a very
high running time, comparatively, but this decreased with a
data projection optimization [1]. Other comparisons are more
contextual, but often provide more specific findings; e.g., when
applied to identify spam email, a variant of Nearest Neighbor
has a high accuracy (~97%) [33]. We can use existing analysis
procedures such as [12] to evaluate an option in the model,
such as Nearest Neighbour (in dark purple), against relevant
qualities (bottom row). In this model, the evaluated algorithm
solution, Nearest Neighbour, may be suitable for the airport
recognition case due to its high accuracy and lower speed.

Although this example helps to illustrate the use of NFR-
based RE techniques for ML understanding and selection,
many questions remain. Here we stick to well-known and
easily measurable qualities such as accuracy and speed (Time).
What if we had included fairness, transparency or security?
Here we show only one level of qualities, but how do these
qualities decompose into sub-qualities? How can these qual-

ities be decomposed to measurements? We have also found
some information linking the technical space to quality per-
formance, but this information is scattered and has significant
gaps. The notion of trade-offs here (e.g., accuracy vs. time)
is covered only implicitly, and we are similarly lacking data
to feed into models of this type. Finally, this model considers
only design-time decisions, not covering runtime monitoring,
or re-design or evolution in the face of change. We outline
these challenges further in the next section.

IV. CHALLENGES

Inspired by our example, and given our understanding of
ML and of related work, we outline challenges related to
treatment of NFRs for ML. The first four challenges relate to
knowledge of NFRs (1), while the last three focus on methods
(2). We acknowledge that this initial list of challenges may be
incomplete.

C1. Our understanding of NFRs for ML is fragmented and
incomplete, including how to define and refine NFRs in ML-
specific contexts. Take fairness as an example. The general
public are beginning to realize that ML algorithms may have
an influence on critical decisions, and that such decisions
may enforce unintended biases towards various vulnerable
groups [34]. ML researchers have heard the call, and are
working to find technical solutions to account for fairness
(e.g., [2]). But what is fairness in these cases? How can it be
effectively defined in ways understandable by ML? Does this
definition change depending on the ML approach used (e.g.,
linear regression, neural networks). What type of fairness is
needed? How does this change depending on the domain and
context? We can ask similar questions for all of these qualities
in an ML context, e.g., what constitutes maintainability of a
ML solution? Portability? Usability? Similarly, how are these
qualities refined in an ML-context, and does this refinement
echo the non-ML cases?

C2. Our knowledge of how various ML algorithms, along
with their optimizations and assumptions, affect relevant ML
qualities, including trade-offs among qualities, is incomplete
and fragmented.

The new meanings, refinements, and contexts of NFRs as
applied to ML mean that our known space of NFR conflicts
will have to be readjusted. Recent work has already begun to
explore conflicts between specific NFRs in ML, e.g., fairness
trade-offs can include performance or accuracy [2], privacy-
preserving ML involves trade-offs with algorithm speed [4],
but further work may find trade-offs in other, unanticipated
quality dimensions such as reusability or testability. How
does one balance trade-offs between these critical qualities
in ML solutions? Such questions will become pressing as ML
becomes more widespread.

C3. Given our new understanding of the meaning and
refinements of NFRs, we must also understand how NFRs can
be measured in practice for ML-based solutions.

In typical SE, work on software metrics has established
a large body of possible metrics, linked to desired system
quality, measurable at design or runtime, e.g., cross-references

between components indirectly measure modularity, or number
of runtime errors measure reliability. Some of these metrics
can be applied as-is to ML solutions, while others must be
reconsidered and rethought in an ML context, based on revised
definitions of qualities, e.g., modifiability. Simple measure-
ments like “average time to implement a change to the code”
will no longer apply.

C4. We need to understand the effects of ML algorithms on
desired qualities not only during ML solution design, but at
runtime — during the lifetime of the ML solution.

In an ML context, runtime monitoring presents new chal-
lenges, understanding how to measure relevant qualities such
as fairness or privacy, as ML-supported decisions are made
in practice. This is particularly challenging due to the nature
of ML implementations, as transparency concerning the inner
workings of such algorithms is an open challenge.

C5. ML researchers and users currently lack an ML-specific
way to express and specify quality requirements for ML,
including targets and trade-offs, and the influence of domain
context.

Although much of existing NFR-aware approaches can
be reused in an ML context (see our Section III example),
we anticipate that the rise of ML will reveal a variety of
new concepts and challenges (e.g., training data, retraining,
optimizations, networks, supervision) that will change the
content and design of languages capturing NFRs for ML
systems. Similarly, approaches supporting decision making
using these languages will have to be adapted, not only as the
underlying concepts are updated, but as the type of decisions
and space of alternatives differ. E.g., the question is no longer
“which requirements do I implement?”, but “which algorithm
type, with what characteristics, assumptions, training data, and
optimizations do I use?”

C6. We need to understand how evolution, both in terms of
available training data, and in terms of quality requirements
and thresholds, may affect our ML solutions. How do we use
our knowledge of ML quality performance to understand when
to re-train? When to modify our solutions?

If we can understand how to define, refine and measure
quality of ML solutions, monitoring quality over ML-based
systems at runtime, we can understand when quality thresholds
reach a point such that changes must be made. This can
be changes in terms of available data, or changes in the
requirements, particularly quality requirements or permissible
quality levels. Existing approaches for software evolution for
non-ML systems will need to be revisited and updated for an
ML context.

C7. We need to understand how ML-based solutions inte-
grate with typical software from a quality perspective.

Increasingly, data scientists and software engineers must
work together to produce long-term, holistic, complex software
solutions which include ML components. Thus, NFRs must be
considered not only over ML components, with their unique
quality definitions, refinements, and trade-offs, but also over a
combination of ML solutions and typical software.

V. RESEARCH DIRECTIONS

Given the challenges outlined in the previous section, here
we outline a number of research objectives and plans which
may address these challenges. Given the size of the problem,
there are a wide variety of possible approaches which may
address these challenges. Our suggestion is one of many pos-
sible approaches, and may be expanded as further challenges
arise.

Obj1. Explore and define NFRs for ML, including possible
interpretations and refinements of prominent NFRs in a variety
of exemplar contexts.

Survey ML literature for NFRs. There is a need for one or
more systematic literature reviews to find NFR-related defi-
nitions and refinements for ML. This should include relevant
contextual information (e.g., the type of problem solved, the
algorithm applied, and optimizations) which may affect the
nature of the NFR decomposition and definition. For example,
sustainability may have a different meaning when applying
ML in a medical domain as compared to application for
autonomous driving.

Ask ML experts about NFRs. One could use empirical
methods like surveys or interviews to derive knowledge from
ML experts or researchers, asking questions like: “what are
important qualities for ML solutions? In what context? How
are they refined?” Etc.

Consider Existing NFR Refinements. Taking sources such
as [8] or various NFR catalogues, consider if and in what
contexts such NFRs and their refinement may apply to ML.
This may also involve elicitation from ML experts, asking
them to confirm or deny the applicability of established
knowledge to ML. Via these efforts, NFR ML would be
derived bidirectionally, from ML to RE and back.

Obj2. Using the output of Objl, create a catalogue of NFRs
for ML.

Build NFR for ML Catalogue. The SLRs conducted in
Obj1 will have produced much information in terms of NFRs
for MLs, and this can be captured in a publicly available
catalogue. The catalogue should be made available online in
a format that allows feedback and comments.

Link to empirical knowledge. The empirical findings found
as part of Objl can be captured in the catalogue, including
links to sources and data concerning quality performance of
particular ML approaches in certain contexts.

Crowd sourcing. In order to improve the completeness
and accuracy of the catalogue, it may be possible to collect
feedback via crowd sourcing, e.g., to ML-related conferences
and groups. The output can be used not only for research but
educational purposes.

Obj3. Collect operationalizations and measures of NFRs for
ML refinements, when possible.

Focus on possible measurements of ML qualities, including
potential contextual variance of measurements. In addition to
searching through ML-related literature, one should explore
relevant literature in software quality and quality metrics
which may apply to ML NFRs.

Obj4. Develop a language and representation for expressing
NFRs specifically for ML solutions and required concepts.

Develop conceptual underpinning. Based on the surveys
conducted previously, researchers can produce an ontology
of concepts needed for expressing NFRs over ML. This can
be based on existing quality and NFR ontologies (e.g., [19]),
but adapted and adjusted for ML-specific concepts and needs
as based on the findings of Objl. For comprehension and
extension, the outcome can be captured as a visual metamodel.

Develop semantics. A formal semantics should be developed
for the concepts, as appropriate. This will facilitate precise
modeling and reasoning as in many existing RE approaches,
and should be inspired by existing guidelines such as [35].

Develop graphical and textual syntax. Work in [22], [23] has
already made progress in this subgoal. In order to be usable,
language instance models should be read/writable in a variety
of forms, including text, tables and graphical syntax, using
principles, for example, from the Physics of Notation [36].

Obj5. Develop methods to reason over NFRs for ML at
design time, making appropriate trade-offs to inform imple-
mentation decisions, and a runtime, continually monitoring
achievement of critical qualities.

Develop reasoning. At system design time, we want to
select ML solutions which make a good context-based trade-
off between desired NFRs. Using the concepts and semantics
developed thus far, and inspired by many existing approaches,
one can develop procedures to allow for interactive and auto-
mated trade-off analysis, helping users to design an ML solu-
tion which adequately accounts for NFRs. When accurate and
meaningful design-time data is available, approaches should
favor quantitative reasoning, providing numerical information
about NFR achievement. A mix of quantitative and qualitative
reasoning can be supported, as in [21], for example, to deal
with incomplete data.

Develop runtime reasoning. One can make use of the
measurements collected, along with the reasoning procedures
developed, to facilitate runtime monitoring and reasoning over
ML qualities, i.e. to understand how sub- and super-qualities
are satisfied as the ML solution runs.

Obj6. Create methods to deal with changing data and
changing quality requirements, including triggers based on
measurement thresholds, and a process for periodically re-
evaluating ML quality needs. Recent work concerning soft-
ware adaptation and evolution can feed into the satisfaction of
this objective.

Methods for changing NFRs. When quality requirements
change there must be procedures and methods in place to
guide changes to the ML-based systems. This may include
eliciting thresholds and deciding when and if to make changes,
depending on desired and current quality values.

Methods for changing data. As the sources, quality, and
content of data available for ML changes, methods are needed
to guide system changes. This includes when to change data
sources, or perhaps ML algorithm choices, and how often to
retrain based on current data.

VI. DISCUSSION AND CONCLUSIONS

Although our agenda is preliminary, to our knowledge this
is the first RE-oriented broad consideration of many types of
qualities over ML solutions. We aim to bring NFRs for ML
to the forefront, facilitating early consideration, definition, and
trade-off analysis, raising awareness over ML performance in
terms of such qualities, and understanding how this informa-
tion will lead to necessary changes.

The presented agenda opens significant opportunity for fu-
ture work. The quality findings and catalogue will reveal gaps
in ML knowledge, particularly defining and refining quality
characteristics for ML algorithms, as well as empirical data
reporting on quality trade-offs. This can lead to comparative
empirical work evaluating ML algorithms against different
quality attributes in different contexts. Gaps in terms of ML
quality achievement will also spearhead new technical efforts
to improve ML techniques to better satisfy such qualities,
similar to the effort of [2] for fairness and [4] for privacy.

Just as ML qualities such as fairness and transparency
are currently receiving much attention, other NFRs such as
sustainability and modifiability may receive similar attention.
Execution of the proposed agenda paves the way for consid-
ering these and other critical NFRs in an ML context.

REFERENCES

[11 A. Smola and S. Vishwanathan, Introduction to machine learning.
Cambridge University Press, 2008.

[2] T. Kamishima, S. Akaho, and J. Sakuma, “Fairness-aware learning
through regularization approach,” in 2011 IEEE 1l1th International
Conference on Data Mining Workshops. 1EEE, 2011, pp. 643-650.

[3] O. Biran and C. Cotton, “Explanation and justification in machine
learning: A survey,” in IJCAI-17 Workshop on Explainable Al (XAI),
2017, p. 8.

[4] P. Mohassel and Y. Zhang, “Secureml: A system for scalable privacy-
preserving machine learning,” in 2017 IEEE Symposium on Security and
Privacy (SP). 1EEE, 2017, pp. 19-38.

[5] K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B. McMahan,
S. Patel, D. Ramage, A. Segal, and K. Seth, “Practical secure aggregation
for privacy-preserving machine learning,” in Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security.
ACM, 2017, pp. 1175-1191.

[6] X. Xie, J. W. Ho, C. Murphy, G. Kaiser, B. Xu, and T. Y. Chen, “Testing
and validating machine learning classifiers by metamorphic testing,”
Journal of Systems and Software, vol. 84, no. 4, pp. 544-558, 2011.

[7] L. Chung, B. A. Nixon, E. Yu, and J. Mylopoulos, Non-functional
requirements in software engineering. Springer Science & Business
Media, 2000, vol. 5.

[8] ISO/IEC, “ISO/IEC 25010 - Systems and software engineering - Systems
and software Quality Requirements and Evaluation (SQuaRE) - System
and software quality models,” Tech. Rep., 2010.

[91 SEMLA, “Software engineering for machine learning applications

(SEMLA) initiative,” https://semla2018.soccerlab.polymtl.ca/program/,

2018, accessed: 2018-07-14.

R. Binns, “Fairness in machine learning: Lessons from political philos-

ophy,” arXiv preprint arXiv:1712.03586, 2017.

E. S. Yu, “Towards modelling and reasoning support for early-phase

requirements engineering,” in Proceedings of ISRE’97: 3rd IEEE Inter-

national Symposium on Requirements Engineering. 1EEE, 1997, pp.

226-235.

D. Amyot, S. Ghanavati, J. Horkoff, G. Mussbacher, L. Peyton, and

E. Yu, “Evaluating goal models within the goal-oriented requirement

language,” International Journal of Intelligent Systems, vol. 25, no. 8,

pp. 841-877, 2010.

Y. Wang, S. A. Mcilraith, Y. Yu, and J. Mylopoulos, “Monitoring and

diagnosing software requirements,” Automated Software Engineering,

vol. 16, no. 1, p. 3, 2009.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

(31]

(32]

(33]

[34]

[35]

[36]

V. E. S. Souza, A. Lapouchnian, K. Angelopoulos, and J. Mylopoulos,
“Requirements-driven software evolution,” Computer Science-Research
and Development, vol. 28, no. 4, pp. 311-329, 2013.

F. Dalpiaz, P. Giorgini, and J. Mylopoulos, “Adaptive socio-technical
systems: a requirements-based approach,” Requirements engineering,
vol. 18, no. 1, pp. 1-24, 2013.

M. Glinz, “On non-functional requirements,” in /5th IEEE International
Requirements Engineering Conference (RE 2007). IEEE, 2007, pp. 21—
26.

L. Chung and J. C. S. do Prado Leite, “On non-functional requirements
in software engineering,” in Conceptual modeling: Foundations and
applications. Springer, 2009, pp. 363-379.

A. Gangemi, N. Guarino, C. Masolo, A. Oltramari, and L. Schneider,
“Sweetening ontologies with dolce,” in International Conference on
Knowledge Engineering and Knowledge Management. Springer, 2002,
pp- 166-181.

F.-L. Li, J. Horkoff, J. Mylopoulos, R. S. Guizzardi, G. Guizzardi,
A. Borgida, and L. Liu, “Non-functional requirements as qualities, with
a spice of ontology,” in 2014 IEEE 22nd International Requirements
Engineering Conference (RE). 1EEE, 2014, pp. 293-302.

F. Dalpiaz, A. Borgida, J. Horkoff, and J. Mylopoulos, “Runtime
goal models: Keynote,” in Research Challenges in Information Science
(RCIS), 2013 IEEE Seventh International Conference on. 1EEE, 2013,
pp. 1-11.

J. Horkoff, D. Barone, L. Jiang, E. Yu, D. Amyot, A. Borgida, and J. My-
lopoulos, “Strategic business modeling: representation and reasoning,”
Software & Systems Modeling, vol. 13, no. 3, pp. 1015-1041, 2014.

S. Nalchigar and E. Yu, “Business-driven data analytics: a conceptual
modeling framework,” Data & Knowledge Engineering, vol. 117, pp.
359-372, 2018.

——, “Designing business analytics solutions,” Business & Information
Systems Engineering, Aug 2018.

M. Sokolova, N. Japkowicz, and S. Szpakowicz, “Beyond accuracy,
f-score and roc: a family of discriminant measures for performance
evaluation,” in Australasian joint conference on artificial intelligence.
Springer, 2006, pp. 1015-1021.

R. Caruana and A. Niculescu-Mizil, “An empirical comparison of
supervised learning algorithms,” in Proceedings of the 23rd international
conference on Machine learning. ACM, 2006, pp. 161-168.

S. Corbett-Davies and S. Goel, “The measure and mismeasure of
fairness: A critical review of fair machine learning,” arXiv preprint
arXiv:1808.00023, 2018.

K. Holstein, J. W. Vaughan, H. D. III, M. Dudik, and H. M.
Wallach, “Improving fairness in machine learning systems: What
do industry practitioners need?” CoRR, vol. abs/1812.05239, 2018.
[Online]. Available: http://arxiv.org/abs/1812.05239

A. Datta, S. Sen, and Y. Zick, “Algorithmic transparency via quantitative
input influence: Theory and experiments with learning systems,” in 20/6
IEEE symposium on security and privacy (SP). 1EEE, 2016, pp. 598—
617.

N. Papernot, P. McDaniel, A. Sinha, and M. Wellman, “Towards the
science of security and privacy in machine learning,” arXiv preprint
arXiv:1611.03814, 2016.

C. Murphy, G. E. Kaiser, and L. Hu, “Properties of machine learning
applications for use in metamorphic testing,” 2008.

Z. Bosni¢ and I. Kononenko, “An overview of advances in reliability
estimation of individual predictions in machine learning,” Intelligent
Data Analysis, vol. 13, no. 2, pp. 385-401, 2009.

R. Malhotra and A. Chug, “Software maintainability prediction using
machine learning algorithms,” Software Engineering: An International
Journal (SELJ), vol. 2, no. 2, 2012.

I. Androutsopoulos, G. Paliouras, V. Karkaletsis, G. Sakkis, C. D.
Spyropoulos, and P. Stamatopoulos, “Learning to filter spam e-mail: A
comparison of a naive bayesian and a memory-based approach,” arXiv
preprint ¢s/0009009, 2000.

R. Hauser, “Can we protect Al
https://tinyurl.com/y9lvgqxc8, March 2019.

L. Jureta, The design of requirements modelling languages: how to make
formalisms for problem solving in requirements engineering. Springer,
2015.

D. Moody, “The physics of notations: toward a scientific basis for con-
structing visual notations in software engineering,” IEEE Transactions
on software engineering, vol. 35, no. 6, pp. 756779, 2009.

from our Dbiases?”

