
7 Beyond LP Relaxation

LP relaxation is a powerful tool for approximating, or sometimes exactly finding, the solution of
an ILP, but as we have already seen, rounding the non-integral LP solution is generally difficult. In
this part, we discuss some methods to enhance the LP relaxation for integer programming. We will
talk about the primal-dual, branch-and-bound and cutting plane techniques. From these
three, I will discuss only the first one in details. The two others will only be briefly introduced.
Hence, I do not expect you to be able to implement the branch and bound or the cutting plane
algorithms, but you should be able to elaborate on the general ideas behind them. An implemen-
tation of these techniques can be found in the MATLAB function intlinprog. I remind that the
ILP problems are NP-complete, hence we do not expect any of these techniques to exactly solve
the generic problem. For example, the MATLAB function intlinprog has an adjustable time
limit. If the solution is not found before this deadline, the program will return the best solution
found so far.

Let us start by the primal-dual technique. The primal-dual method is in fact a generic method
for solving convex optimization problems. However, the original technique generally behaves
poorly, especially for the LP problems. There are a number of modified primal-dual techniques,
including some interior point methods, which have a state-of-the-art performance.

Although the primal-dual technique is not as suitable as, for example, the simplex method for
LP problems, it can help instead in some ILP ones to design approximate algorithms. To explain
this approach, I start from the basic technique for LP problems. Remember that a pair (x,u)
of primal and dual feasible solutions is an optimal pair for both the primal and dual problems
if and only if this pair satisfies the complementary slackness conditions. This means that if the
conditions are not satisfied, one can improve the primal and dual costs by modifying the pair. We
are going to explain the details on the standard form in 37, which we more often encounter.

There are many specific approaches to the primal-dual algorithm. The one that we consider
here is a simplified version, which is related to the Lagrange method of multipliers and can be
explained as follows:

1. Start by a dual feasible solution u0 (In many cases, u0 = 0 should work). Set the iteration
number t to 0.

2. At each iteration, we will find all (possibly infeasible) primal variable x that satisfy the primal
part of the complementary slackness conditions. This means that we find the non-active dual
constraints at ut and set their corresponding primal variables to zero. The others can be
arbitrary (but positive). Suppose that j1, j2, . . . , jp are the index of those primal variables,
whose corresponding dual constraints are inactive, and hence are arbitrarily positive.

3. Now, our goal is to update one of the dual variables, say ui to ui+ǫ, such that the constraints
are still satisfied, the dual cost is increased and in a sense we move toward satisfying the
entire complementary slackness conditions. For this, we look for an index i and a nonzero
real number ǫ, such that updating ui to ui+ǫ and keeping the other dual variables unchanged
leads to a dual feasible solution, and one of the two following situations happen:

• The step value ǫ is negative: The ith primal constraint is always violated, no matter
how we choose xj1 , xj2 , . . . , xjp ≥ 0, while the other primal variables are zero.

• The step value ǫ is positive: The ith primal constraint is always satisfied and inactive,
no matter how we choose xj1 , xj2 , . . . , xjp ≥ 0, while the other primal variables are zero.

4. If such an index i and step ǫ exist, add ǫ to the ith entry of ut to obtain ut+1, update the
iteration number t to t+ 1 and go to step 2. Otherwise, stop.

5. Now, ut is the dual optimal solution. Find the primal solution x from the complementary
slackness conditions.

25

The algorithm scheme above may sound complicated and counterintuitive. Indeed, I have
skipped many details regarding the derivation of the scheme, but the next example shows that in
fact the scheme often leads to intuitive algorithms. Another fact, which we encounter in the next
example is that, the primal-dual method can be easily used by restricting the primal values to be
integer (or binary in the case of 0-1 integer programing). Then, the result is always integral.

Example 21. The Internet had been expanding rapidly in the Free Republic of West Mordor, and
the government issued a regulation, purely in the interest of improved security of the citizens, that
every data link connecting two computers must be equipped with a special device for gathering
statistical data about the traffic. An operator of a part of the network has to attach the govern-
ment’s monitoring boxes to some of his computers so that each link has a monitored computer
on at least one end. Which computers should get boxes so that the total price is minimum? Let
us assume that there is a flat rate per box. Then, the number of boxes should be equivalently
minimized. Such a set of computers is called a minimum covering set for the links.

Let us denote the computers in the network by V = {v1, v2, . . . , vn} and the links by E =
{e1, e2, . . . , em}. Every link e ∈ E is between two computers v, w ∈ V . We are to select a subset
S ⊆ V such that for every link e ∈ E, one of its ends is in S and S has the smallest possible
cardinality. Introduce the indicator variables xi ∈ {0, 1}, where xi = 1 means that vi ∈ S and
xi = 0 implies that vi /∈ S. The cardinality of S equals x1 + x2 + . . . + xn. Hence, we can write
the following optimization

min
x=(x1,x2,...,xn)∈Zn

n∑

i=1

xi

subject to

∀e ∈ E,
∑

i|vi∈e

xi ≥ 1

xi ≥ 0 i = 1, 2, . . . , n (66)

In the above, v ∈ e means that v is connected to e. The first thing to observe is that I did
not restrict the variables to be less than or equal to 1. The reason is that the solution to this
optimization always consists of 0s and 1s. Suppose that one element, say x1 is 2 for example. I
can modify this variable to 1, without violating any constraint, while the cost will decrease. Now,
let us take the LP relaxation:

min
x=(x1,x2,...,xn)∈Rn

n∑

i=1

xi

subject to

∀e ∈ E,
∑

i|vi∈e

xi ≥ 1

xi ≥ 0 i = 1, 2, . . . , n (67)

The dual to this optimization can be written as

max
x=(u1,u2,...,un)∈Rn

n∑

i=1

ui

subject to

∀v ∈ V,
∑

j|v∈ej

uj ≤ 1

ui ≥ 0 i = 1, 2, . . . ,m (68)

where each dual variable is related to one link (i.e., one constraint in the primal optimization).
Let us try the primal-dual algorithm explained above.

1. We from y0 = 0 and set t = 0.

2. At each iteration, we find the indexes It = {i1, i2, . . . , ip}, for which
n∑

i=1

ui = 1.

26

3. Now, we find a link j(equivalent to a dual variable uj) and a step length ǫ such that

• Either the jth constraint is violated, no matter how I choose xis for i ∈ It. It is simple
to see that this is the case if and only if non of the two ends of this link is in It,

• or the jth constraint cannot get active. You may see that this cannot happen since at
least one of the two ends in this case should be in It and it can alway be adjusted to
make the constraint active.

In short, we only need to find an edge whose ends are not in It. We then increase uj until
the first dual constraint gets active. There are only two constraints including uj: the ones
related to the two ends of the link. So basically, we choose the end v with smaller slack value
ǫ = 1−

∑

j′|v∈e′
j

uj′ and add the value ǫ to uj .

4. If there is no j to select stop. Otherwise, go to 2.

5. The primal solution x, where xi = 1 if an only xi ∈ It is our approximate solution.

We can clear up the above explanations and summarize the algorithm. Notice that the dual
variables can only increase and the set It can only get larger. In fact, we do not need to calculate
It at the second step, since bu calculating we have It+1 = It ∪ {v}, where v is the end node of
the jth link with smaller slack value than the other end, calculated in the step 3. We can explain
these steps as below:

1. Start from y0 = 0 and I0 = {}. Set t = 0.

2. Find a link ej, which is not covered by It. If it does not exist, stop and return It as the set
of nodes.

3. Calculate the slack values ǫ = 1−
∑

j′|v∈e′
j

uj′ for v, being the two ends of ej . Select the smaller

one. Call this node and its corresponding slack value v and ǫ, respectively.

4. Update It+1 = It ∪ {v} and also uj , corresponding to ej , to uj + ǫ.

5. Update t = t+ 1 and go to step 2.

Since the algorithm adds one node at each iteration, it will stop in at most n iterations, which
impressively fast. How good the result is? It can be seen that the size of It at the stopping
point cannot be larger than twice the size of the smallest covering set. Hence, the solution of
the primal-dual method is a 2−approximation of the minimum covering set problem. I will show
this below, but first note that this result is promising. It is shown that if you use other ”more
intuitive” techniques the result can be 1000 times larger than the size of the minimum covering
set. You might suspect that the number 1000 was arbitrary; You can end up in situation with k
times larger result for any value of k. In many practical situations the solution of the primal-dual
method is much better than twice the minimum size, although we currently do not have a good
theory to explain it.

Now, let us prove that the primal-dual algorithm is a 2-approximation. We use the weak
duality result. At the stopping point, the dual parameters u1, u2, . . . , um are feasible and so the

dual cost
m∑

k=1

um is a lower bound for the primal optimal value, i.e. the size |Iopt| of the minimum

covering set Iopt, i.e.
m∑

k=1

um ≤ |Iopt| (69)

Then, the idea is to connect the size of the output |It| to the dual parameters. Recall that for any
i ∈ It, we have that its corresponding dual constraint is active, i.e.

∑

j|v∈ej

uj = 1. Now, if I denote

27

It = {i1, i2, ..., iq}, I can write

p = |It| =
∑

j|vi1∈ej

uj

︸ ︷︷ ︸

=1

+
∑

j|vi2∈ej

uj

︸ ︷︷ ︸

=1

+ . . .+
∑

j|vip∈ej

uj

︸ ︷︷ ︸

=1

(70)

Let us see how many times a particular dual variable uj appears in the right hand side of the
above. It is the number of nodes in It, which are connected to the jth link. I show this by αj . It
should be clear that 0 ≤ αj ≤ 2 as each link can be connected to at most two computers. Then, I
can write (70) as

p = |It| = α1u1 + α2u2 + . . .+ αmum ≤ 2

m∑

i=1

um (71)

Finally, (69) gives that |It| ≤ 2|Iopt|.

Our primal-dual algorithm is not always guaranteed to give us the best possible result, but
can be modified and improved. Often, the idea is that we should specify a ”good” primal solution
before taking a new variable. A good example is the assignment problem and the Hungarian

method. In the next example we will see why our approach fails for the assignment problem, but
will not explain the remedy (i.e., the Hungarian algorithm) in details.

Example 22. The assignment problem: In a company, a group of n applicants are selected to
take n job positions. Each job is taken by exactly one applicant and each applicant takes exactly
one job. However, there is a cost ci,j for assigning the job position i to the applicant j. The aim
is to find an assignment with a minimal cost. Here is an example:

(ci,j) =

1 2 3 3
3 4 4 2
1 2 4 3
3 1 2 4

(72)

To solve this problem, we take xi,j ∈ {0, 1} as the indicator that the job i is assigned to the
applicant j. We can write the optimization as

min
(xi,j∈{0,1})

∑

ij

ci,jxi,j

subject to

∀i,
∑

j

xi,j = 1

∀j,
∑

i

xi,j = 1 (73)

The dual can be written as

max
(yi,zj)

∑

i

yi +
∑

j

zj

subject to

∀i, j yi + zj ≤ 1 (74)

It is possible to show that the underlying constraint matrix for this problem is totally unimodular.
Hence, both the primal LP relaxation and dual problems have integer solutions. Here, we want
to derive a primal-dual algorithm for this problem.

1. We start from a dual feasible solution. Take yi = 0 and zj = 0 in this case.

2. Similar to the previous example, we keep track of the set of active dual constraints I =
{(i, j) | yi + zj = 1}. It is initiated by I = ∅.

28

3. At each iteration, we look for one of the dual variables yi or zj, such that its corresponding
constraint is violated. Without loss of generality, suppose that the variable is yi and

∑

j

xi,j ≤

1 for any choice of xi,j for (i, j) ∈ I. This means that for this value of i, no (i, j) is in I.

4. Choose ǫ as the minimum value of 1 − yi − zj over all values of zj (or yi if zj is selected in
the previous step) and update yi to yi + ǫ.

5. stop when there is no more choices.

If we try the above scheme on the example in (72) and take the variables y1, y2, y3, y4, z3, respec-
tively (i.e, all rows in order and then the third column) the algorithm stops, with the dual value
6, but there is no primal feasible point satisfying the complementary slackness conditions and the
dual can also be increased to 7 by the choice: yi = 0, 1, 0,−1 and zi = 1, 2, 3, 1.

29

