
6 The Integer Linear Programs

Integer Linear Programming (ILP) is one of the broadest areas of integer programming.
Although one can easily conceive a ”non-linear” integer program, still the term ”integer program-
ming” is sometimes exclusively used for ILPs. Nowadays, Mixed ILP (MILP) problems are also
very popular in industry: You might want to switch on or off some machines (the integer part),
while at the same time tuning the angle of some robot arms (the continuous part). The focus of
this course is on ILPs and their algorithms. It should be readily seen that LPs are very much
connected to ILPs. As we see in this chapter, the LP theory is indeed very helpful to devise ILP
algorithms.

An ILP is an optimization problem, which is identical to a LP from every respect, except that
its variable space is the set of all integers. If the constraints of an ILP restrict its variables to be
either 0 or 1, it is called a 0-1 ILP. The ILP problems are often expressed in the standard form:

min
x∈Zn

cTx

Ax ≤ b

x ≥ 0 (59)

The equality constraints are not popular in ILPs. The reason is that they can easily get infeasible
or dramatically change the feasible set.

Example 16. Consider two integer variables x, y and the constraint x + y = 1. One can easily
write x = 1 − y with an arbitrary integer y. Now, let us assume that there is a small change in
the second coefficient and the constraint is changed to x+ 1.01y = 1. Then, x = 1− 1.01y is not
a solution for x as it might not be integer. In fact, in the new case the solutions for x and y are
x = 1− 101k and y = 100k for an arbitrary integer k. You see that even a small perturbation can
entirely change the solution set. Now, consider 1.01x+ 1.01y = 1. This equation does not have
any integer solution!

From the above example, it is seen that the integer linear equality constraints cannot be easily
eliminated by solving the system of linear equations. There is another standard way to exchange
any equality constraint with two inequalities: You can write h(x) = 0 as h(x) ≥ 0 and h(x) ≤ 0.
However, as I have already mentioned, it is unlikely to encounter equality constraints in a practical
ILP problem. Every ILP problem can also be brought into the augmented form by introducing
the slack variables. However, you should be careful that the slack variables are still continuous.
Hence the augmented form of an ILP is in fact MILP.

Unlike LPs, there is no easy way to solve a generic ILP. In fact, the worst ILP problems are
among the most difficult problems in the interesting family of non-deterministic polynomial (NP)
problems2. Hence, there are a number of ideas that one can apply to an ILP and hope that at
least the result is a good approximation algorithm.

A very simple, but still very popular way to treat an ILP is to expand the variable space from
Z
n to R

n and keep the other parts unchanged. This is called LP relaxation, as the resulting
optimization is LP. We have already encountered LP relaxation in Examples 12 and 13. Generally
speaking, the LP relaxed optimization has lower optimal value than its corresponding ILP. We
saw this fact in Examples 12 and 13 by strong duality and observing that they have identical dual
optimizations. There is a much simpler way to see this: Indeed R

n is ”larger” than Z
n. Hence,

any feasible solution of ILP is also a feasible solution of the relaxed ILP. This means that the
relaxed LP can do ”at least as good as” the ILP, simply by selecting the optimal solution of the
ILP.

How about the optimal solutions? In general, the optimal solution of the LP relaxation is not
necessarily integral (i.e. it might contain non-integer values). Unfortunately, no strong relation

2If you are familiar with the theory of computational complexity, you can understand it in a more technical way:
The ILP is NP-complete, since other NP-complete problems such as the boolean satisfiability (SAT) problems can
be reduced to ILPs.

21



between, a non-integral solution and the ILP solution is known. After obtaining the non-integral
LP solution, one generally transforms this solution to an integral one by heuristic methods, which
are generally known as rounding. For example, one might round the LP solution to the nearest
integral point. However, this does not always lead to a good result.

Example 17. Take Example 13 again. The ILP solution is at (5, 0), while rounding the LP
solution (1.95, 4.92) to the nearest integral point leads to (2, 5), which is in no sense close to (5, 0).
Moreover, the point (2, 5) does not satisfy the first constraint. So, it is not a feasible solution at
all! We might instead round the LP solution to (2, 4), which is feasible. The cost at this point is
−4.56, while the ILP optimal cost is −5.

There are more sophisticated rounding schemes, which I am not going to talk about here. The
LP solution can also be used as an input to a more sophisticated optimization technique. Another
way to deal with the problem of non-integral solutions is to modify the LP solvers, such that they
only search over integral feasible solutions. This is what we are going to talk about, but before
that let me mention some further aspects of LP relaxation.

Although in many cases the solution of the relaxed LP is not integral, in some cases it can be.
There are certain cases, where we can even guarantee that the solution is integral. The augmented
form with a totally unimodular matrix is an important example.

Example 18. Consider the optimization in (59) and its LP relaxation:

min
x∈Rn

cTx

Ax ≤ b

x ≥ 0 (60)

Assume that all the entries of A, b and c are integer. Remember that the dual of (60) is

min
u∈Rn

bTu

ATu ≤ c

u ≤ 0 (61)

Suppose that u∗ is a dual optimal solution. We want to find the primal solution from the
complementary slackness conditions. The complementary slackness conditions give that

1. For any i with ui < 0, we must have that the ith row in Ax ≤ b holds with equality at the
primal optimal solution.

2. For any index j with inactive dual constraint, we must have that xj = 0 at the primal
optimal solution.

Obtain a submatrix S of A by the following procedure: only keep those rows i of A, which are
mentioned in Item 1 above and discard all columns j of A mentioned in Item 2. Denote by xc the
nonzero component of x (See figure 5) i.e. the ones that are not set to zero by the Item 2 above.
Also denote by cc, the part of vector c corresponding to the active constraints, the ones in Item
1. Now, for a proper choice of the dual solution, we should have that the unidentified part xc of
vector x is calculated by

Sxc = cc (62)

From linear algebra, we know that the solution of this system of equations is rational (fractional),
where the denominator is the determinant det(S) of S. Now, we can conclude that the solution
xc is integral if det(S) = ±1. The problem is that when the dual solution is not given, we do
not know S. There is a special case, where we can conclude that the solution is integral, even if
we do not know S: When every invertible submatrix of A has determinant ±1. This matrix is
called totally unimodular. We conclude that the LP relaxation in (60) has at least one integral
solution if the matrix A is totally unimodular. Notice that there still might exist non-integral
solutions. It might also happen that a matrix A is not totally unimodular, but still an integer
solution exists.

22



AActive

x is zero here

This part is xc

c

This part is cc

Figure 5: An example of S matrix and xc. The darker gray region is S and the lighter one is cc.

As soon as the solution of the LP relaxation is integral, it is also the solution of the ILP.
The reason is simple: The LP searches over all its feasible solutions, including all integral feasible
solutions, so its optimal integral point is certainly better than all other feasible integral points.

Example 19. In the minimum cost network flow problem in Example 15, suppose that we have
an additional constraint that the flow has to be integral (has to have integer parameters). Let
us call this the minimum cost integer network flow problem. For the LP relaxation, the
underlying matrix is totally unimodular. Hence, as long as the costs ck, balance terms bk and the
capacities uk are integer, the LP relaxation has an integer solution. Hence, there is no integrality
gap.

Example 20. From the definition, it is clear that when A is totally unimodular, so is its transpose
AT . This means that when A is totally unimodular and all parameters are integer the dual
optimization in (61) also has an integer solution. Remember that the dual of the minimum cost
network flow problem is given in (55). For the special case of maximum s-t flow. We arrived at the
optimization in (56). Since the corresponding matrix to the minimum cost network flow problem
is totally unimodular, its dual also has an integer solution. This shows that even if we assume
that the variables in (55) or more specifically (56) are integer, the optimal value and its integer
solutions do not change. We call the resulting optimization the integer dual. Here is a summary:
the primal ILP and its LP relaxation have the same optimal value and similar integer solutions.
Also, the dual and its integer restriction have the same optimal value and similar integer solutions.
This yields to two results: First, from strong duality for LPs, the minimum cost integer network
flow and its integer dual have the same optimal value. Second, the complementary slackness
conditions hold for all solutions of the minimum cost integer network flow and its integer dual.

Now, let us specialize these results for the maximum s-t flow problem. The integer dual is
given by

max
(yv∈Z),(za∈Z)

∑
a∈A

uaza

∀a ∈ A\{a0}, yt(a) − yh(a) + za ≤ 0

a = a0 ⇒ yt(a) − yh(a) ≤ −1

∀a ∈ A, za ≤ 0

(63)

First, notice that we can add any integer value n to all variables yv and the cost will not
change. This means that, I can make one variable, say yvt zero without decreasing the cost. Now,
I show that the integer dual optimization above has a solution where yv ∈ {0, 1}. In fact, I show

23



that there is a solution where over all yv values, yvs is the maximal value, yvt is the minimal value
and yvs − yvt = 1. In this case, I can reduce n = yvt from every yv value, which sets yvt = 0,
yvs = 1 and all others to be either zero or one.

Now, let me show that there is a solution where over all yv values, yvs is the maximal value,
yvt is the minimal value and yvs − yvt = 1. Take any other optimal solution {yv} and {za}. If
yvs is not the maximum value of yv or yvs − yvt > 1, find all nodes with maximal yv and reduce
their value yv by one unit. If yvt is not the minimum value, find all the nodes with the minimal
value yv and increase their value yv with one unit. It remains as an exercise (not mandatory) to
show that these steps keep the solution feasible. It is clear that the cost does not change as we
don not change {za} values. I can repeat this procedure until my conditions are satisfied. Finally,
I arrive at my desired solution yv ∈ {0, 1} by changing all yv values to yv − yvt . Notice that each
za satisfies two constraints za ≤ 0 and za ≤ yh(a) − yt(a). So, the maximization will automatically
activate one of these two. Notice that yh(a) − yt(a) can only be 0, 1 or −1. So, at the optimal
solution za ∈ {0,−1}. It is now clear that za = −1 only happens when yh(a) = 0 and yt(a) = 1.

The fact that the integer dual optimization has a 0-1 solution means that we can restrict it
more, without changing its optimal value or its 0-1 solutions:

max
(yv∈{0,1}),(za∈{0,−1})

∑
a∈A

uaza

∀a ∈ A\{a0}, yt(a) − yh(a) + za ≤ 0

yvt = 0

yvs = 1

(64)

Now, we can give an important interpretation about the optimization in (64). Define S = {v ∈
V | yv = 1}. Then the optimization in (64) gives you the subset S of nodes such that the total
cost of its corresponding sum, ∑

a|t(a)∈S, h(a)∈Sc

ua (65)

is minimized. The argument above shows that the minimum cost for the cut in the dual is equal
to the maximum flow in the network. this is the min-cut-max-flow theorem.

24


