
5 LP Optimality Conditions

So, the strong duality theory yields us to an indirect way to calculate the optimal cost of an LP:
by solving its dual. What about the optimal solution? Does the dual optimal solution provides us
any information about the primal optimal solution? The answer is positive. Again, proving the
results is beyond our ability and we just state them. The main result in this case is known as the
complementary slackness condition, which we state in the following, but first let me make a
short reminder: An inequality constraint is called active at a feasible solution if it holds at this
point with equality. Let us move on to the complementary slackness conditions:

Theorem 1. Given a LP problem and its dual, consider a primal feasible solution x and a dual
feasible solution u. These two points are both optimal solutions of their corresponding problems
if and only if the following two conditions hold:

1. For any primal inequality constraint, if its corresponding dual parameter ui is nonzero, then
the constraint has to be active at x.

2. For any dual inequality constraint, if its corresponding primal parameter xi is nonzero, then
the constraint has to be active at u.

Let us consider and example:

Example 14. Take the example in (48) with its dual in (48). Using CVX, we get u1 =
−0.0203..., u2 = −0.0052. Hence, both dual parameters are non-zero and due to the comple-
mentary slackness conditions, both primal conditions are active:

50x1 + 31x2 = 250

−3x1 + 2x2 = 4 (49)

which can be solved to obtain x2 = 50×4+3×250
50×2+3×31 = 950

193 = 4.9223... and x1 = 250×2−31×4
50×2+3×31 = 376

193 =
1.9482. This is what we previously obtained by directly solving the primal optimization. You can
try the same idea on the dual variables and see that they can be calculated from the complementary
slackness conditions and the primal solution.

This is not an accident that we could find in example (14) the primal solution from the dual
one. In fact, it can be proved that there exists a dual solution (i.e., it is not true for every dual
solution, but for at least one particular one), from which we can construct one primal solution
(i.e., not all of them) by the following method:

1. Find all inactive dual constraints and set their corresponding primal variables to zero.

2. Find all nonzero dual parameters and write their corresponding primal constraints with
equality.

3. Solve the resulting system of linear equations (the primal equality constraints and the ones
obtained from step 2) for the remaining primal variables (the ones that are not set to zero
in step 1).

Example 15. Minimum cost network flow problem: Consider a digraph G = (V,A). A flow on G

is defined as an assignment x : A → R, which designates to each arc a a value x(a), also denoted
by xa. Suppose that there exists another assignment c : A → R, where c(a) = ca is the cost of
unit flow on the arc a i.e., the total cost of the flow is given by

f(x) =
∑

a∈A

caxa (50)

The flow should satisfy a set of balance conditions. For each node v define its sets of outgoing arcs
(i.e., the ones which initiate from v) as A+(v) and the ingoing ones (i.e., the ones terminating at
v) as A−(v). Also, take for each node v ∈ V , a balance value bv. Then, we must have that

∀v ∈ V,
∑

a∈A+(v)

xa −
∑

a∈A−(v)

xa = bv (51)
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Finally for each arc a ∈ A, there exists an upper bound ua, such that

∀a ∈ A, 0 ≤ xa ≤ ua (52)

The problem is to find a flow with minimal total cost. This can be written as the optimization

min
(xa∈R)

∑
a∈A

caxa

∀v ∈ V,
∑

a∈A+(v)

xa −
∑

a∈A−(v)

xa = bv

∀a ∈ A, 0 ≤ xa ≤ ua (53)

An example of the minimum cost flow problem is the maximum s-t flow problem that we considered
in the previous lectures. In the maximum s-t flow problem, there are input (source) and output
(sink) nodes vs, vt and we are to maximize the total flow between them. In the previous lectures,
we wrote this problem in a slightly different form: the input and output nodes did not have
balance constraints. One way to bring the max s-t flow into the above format is to introduce a
new arc a0 from vt to vs. Then, we have that bv = 0 for every v ∈ V , and ca = 0 for all arcs
except for a0, where ca0

= −1. In the previous lectures, we dealt with undirected graphs, but took
an arbitrary directions for the edges and assumed −ua ≤ xa ≤ ua (or equivalently |xa| ≤ ua).
Here, we can only have 0 ≤ xa ≤ ua. To overcome this problem, for each edge e = {u, v} in the
previous problem, we define two arcs instead a1 = (u, v) and a2 = (v, u), and set 0 ≤ xa1

≤ ua

and 0 ≤ xa2
≤ ua. (Can you see the relation between this trick and what we did for the absolute

value functions in the previous lecture?).
Now, let us find out the dual of this optimization. It is not in one of the standard forms. So,

we may use our general recipe. We have three different set of constraints:

1. The equality constraints
∑

a∈A+(v)

xa−
∑

a∈A−(v)

xa = bv, for which we take the dual parameters

yv, respectively.

2. The inequality constraints xa ≤ ua, for which we take the dual parameters za ≤ 0, respec-
tively.

3. The inequality constraints xa ≥ ua, for which we take the dual parameters sa ≥ 0, respec-
tively.

I use the notation h(a) and t(a) to refer to the head (initial node) and the tail (terminal node)
of the arc a, respectively. Then, the dual can be written as

max
(yv),(za,sa)

∑
v∈V

bvyv +
∑
a∈A

uaza

∀a ∈ A, yh(a) − yt(a) + za + sa = ca

∀a ∈ A, sa ≥ 0

∀a ∈ A, za ≤ 0

(54)

As expected, the dual parameters sa are slack variables and can be eliminated, which leads to

max
(yv),(za)

∑
v∈V

bvyv +
∑
a∈A

uaza

∀a ∈ A, yh(a) − yt(a) + za ≤ ca

∀a ∈ A, za ≤ 0

(55)
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In the maximum flow problem that we previously considered, the balance terms bv are zero.
Also, the costs ca are zero, except for ca0

= −1. In this case, the dual problem becomes

max
(yv),(za)

∑
a∈A

uaza

∀a ∈ A\{a0}, yh(a) − yt(a) + za ≤ 0

a = a0 ⇒ yh(a) − yt(a) ≤ −1

∀a ∈ A, za ≤ 0

(56)

In the next lectures, we will see that this optimization has an important interpretation: It is a
special type of the so-called weighted minimum cut problem. The strong duality shows that
the cost of the maximum flow problem is equal to the cost of its corresponding minimum-cut
problem. We will talk more about this so-called min-cut-max-flow theorem in the next lectures.

Another interesting observation in (55) is that for every value of α ∈ R, if the dual parameters
yv and ha are feasible, so are the parameters yv + α and ha. Replacing yv by yv + α in the dual
cost function, improves the cost value by α

∑
v∈V

bv. Hence, if
∑
v∈V

bv 6= 0, the dual optimization is

unbounded by letting α tend to infinity. Hence by the duality theorem, the primal optimization
is infeasible in this case. We always assume that

∑
v∈V

bv = 0.

Now, let us try the complementary slackness conditions:

1. Take the primal inequality xa ≤ ua. Its corresponding dual parameter is za ≤ 0. Hence at
the optimal point

∀a ∈ A, za < 0 ⇒ xa = ua (57)

2. Take the dual inequality yh(a) − yt(a) + za ≤ ca its corresponding primal parameter is xa.
Hence, we get at the optimal point

∀a ∈ A, xa > 0 ⇒ yh(a) − yt(a) + za = ca (58)

Finally, we try to find a primal solution from a proper dual solution. The first step is to
identify arcs with inactive dual constraints. Let me call the set of these arcs A1. From
the second part of the complementary slackness condition the primal parameters of A1 are
zero. Next, I identify the set A2 of arcs with nonzero dual parameters za < 0. By the
first part of the complementary slackness conditions, the primal parameters of A2 should
be equal to ua. Finally for a suitable choice of the dual solution, it is now possible to find
the remaining dual parameters in A3 = A\(A1 ∪ A2) from the set of equality constraints∑
a∈A+(v)

xa −
∑

a∈A−(v)

xa = bv. Note that we replace the value of the primal variables in A1

and A2. So, the unknowns are only in A3 and the system of equation has a unique solution.
It turns out that this system of equations satisfies the so-called totally uni-modularity

property, such that if all parameters ua, ba and ca are integer, then its solution is also integer.
Overall, I showed that if the parameters are integer, then the minimum cost network flow
problem always has an integer solution, although it is essentially over all real numbers.

20


