
4 LP Duality

One of the most important ideas in linear programming is duality. The LP duality can be extended
to all convex optimization problems, in which case it is often referred to as Lagrangian duality.
The idea of duality is based on a very basic algorithmic idea: An optimization can be solved by
introducing and updating an upper bound fu and a lower bound fl for the optimal cost f∗ i.e.,
fl ≤ f∗ ≤ fu. If at any step fl = fu, then the optimality is obtained. Very often in practice,
the lower and the upper bounds cannot be exactly equal to each other for numerical reasons.
Hence, an algorithm may stop when the gap between them is small enough. Consider a generic
minimization problem. Finding an upper bound for this problem is simple: just take any feasible
solution x ∈ Ω. Then, from the definition of the optimal value, we have that f∗ ≤ f(x). Hence
fu = f(x) is an upper bound. By this definition, if one needs to improve the upper bound, one
can simply find another feasible solution with a smaller cost. Finding and updating lower bounds
is more complicated and is what we call dual. There is a general idea in finding lower bounds for
LPs, which we explain in the following example:

Example 10. Consider the following optimization:

Here is the same steps in a more abstract form. Let us say that an optimization is written as

f∗ = min
(x1,x2,...,xn)∈Rn

c1x1 + c2x2 + . . .+ cnxn

subject to

a11x1 + a12x2 + . . .+ a1nxn ≤ b1

a21x1 + a22x2 + . . .+ a2nxn ≤ b2
...

am1x1 + am2x2 + . . .+ amnxn ≤ bm

(39)

Introduce nonpositive dual variables u1, u2, . . . , um ≤ 0. Multiply the kth inequality constraint
in (39) to uk and add the resulting inequalities, which gives

(

m
∑

k=1

ukak1

)

x1 +

(

m
∑

k=1

ukak2

)

x2 + . . .+

(

m
∑

k=1

ukakn

)

xn ≥

n
∑

k=1

ukbk (40)

If the dual variables are chosen, such that

(

m
∑

k=1

ukak1

)

= c1,

(

m
∑

k=1

ukak2

)

= c2, . . . ,

(

m
∑

k=1

ukakn

)

= cn (41)

Then, we conclude that for all feasible solution x, the relation f(x) ≥
n
∑

k=1

ukbk. Hence the optimal

value also satisfies f∗ ≥
n
∑

k=1

ukbk, which using the matrix notation can be written as f∗ ≥ uTb.

We can also use the matrix notation and write (41) as

ATu = c (42)

We can summarize what we have found in the following statement: Denote the optimal value in

(30) by f∗. If a nonpositive vector u ≤ 0 satisfies ATu = c, then f∗ ≥ uTb.

Now, I can take a step further: If any vector u ≤ 0 satisfying ATu = c provides me a lower
bound uTb, then I can take the maximum of such lower bounds as the ”best” lower bound. The
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min
x

cTx

subject to
Ax ≤ b

max
u

bTu

subject to
ATu = c

u ≤ 0

min
x

cTx

subject to
Dx = e

x ≥ 0

max
u

eTu

subject to
DTu ≥ c

min
x

cTx

subject to
Ax ≤ b

x ≥ 0

max
u

bTu

subject to
ATu ≤ c

u ≤ 0

Table 1: The primal and dual relations.

maximization leads to the following optimization:

max
u∈Rm

uTb

subject to

ATu = c

u ≤ 0 (43)

The optimization is (43) is called the dual of the optimization in (30). In this context, the
optimization in (30) is referred to as primal. We derived the dual optimization for the specific
form in (30). In fact, any LP has a dual, obtained in a similar fasion as above. Table 1 shows the
dual optimizations for a number of primal forms. Even more generally, you can create the dual for
any optimization, which does not immediately fit into the standard forms, through the following
set of rules:

1. Identify if the optimization is minimization or maximization. In the next steps, the instruc-
tions within the parenthesis are for maximization.

2. For any constraint, say the ith constraint, introduce a dual variable ui.

3. If the optimization is minimization (maximization), the dual optimization is a maximization
(minimization), which gives a lower (upper) bound of the primal optimization. In the dual
score (cost) function, the coefficient of ui is the constant term bi of the ith constraint.

4. If the optimization is minimization (maximization), introduce the constraint ui ≥ 0 (ui ≤ 0)
for every constraint of the form gi(x) ≥ bi and ui ≤ 0 (ui ≥ 0) for every constraint of the form
gi(x) ≤ bi. For any equality constraint leave its corresponding variable ui unconstrained.

5. for every primal variable xj , introduce an equality constraint, where the coefficient of ui

equals the coefficient of xj in the ith constraint. The constant is cj , the coefficient of xj in
the cost.

Example 11. Inequality constraints in the dual form: Let us obtain the third row in Table
1. It shows how inequality constraints (other than u ≤ 0) can appear in the dual optimization.
Consider the left hand side optimization of the third row. For the constraints Ax ≤ b, we have
dual variables u ≤ 0. For the constraints x ≥ 0 take dual parameters s ≥ 0. Then, the dual
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optimization by the above rule is given by

max
u,s

bTu

subject to

ATu+ s = c

u ≤ 0

s ≥ 0 (44)

It is observed that the variables s are slack variables in the dual optimization. Hence, they can
be removed to obtain

max
u

bTu

subject to

ATu ≤ c

u ≤ 0

(45)

As a general rule, the dual parameters for the positivity constraints x ≥ 0 are slack variables and
yield to inequality constraints when they are removed.

The important result that we established here is that the optimal value of the dual optimization
is always less than the optimal value of the primal one. This is called the weak duality theorem.
If you take a closer look at the above argument, you will notice that we did not make use of the
fact that the variable space is R

n. In fact, the variable space does not need to be R
n in order

to obtain the weak duality result. Notice that in this case, the primal is not an LP anymore.
However, the variables of the dual optimization are always real and the dual is LP.

Example 12. Consider the integer optimization

min
(x1,x2)∈Z2

−x1 − 0.64x2

subject to

50x1 + 31x2 ≤ 250

−3x1 + 2x2 ≤ 4

x1 ≥ 0

x2 ≥ 0 (46)

Notice that this is an integer program and not LP. Still, the dual optimization can be calculated
by the third row in Table 1, which leads to

max
(u1,u2)∈R2

250u1 + 4u2

subject to

50u1 − 3u2 ≤ −1

31u1 + 2u2 ≤ −0.64

u1 ≤ 0

u2 ≤ 0 (47)

Solving the dual with CVX will lead to the optimal value −5.098. Hence, the minimum value in
(46) is larger than −5.098. In fact, the minimum value of (46) is obtained at x1 = 5, x2 = 0, with
the optimal value −5. It is said that the duality gap in this case equals −5− (−5.098) = 0.098.

We saw that dual optimizations provide lower bounds for LP minimizations. In Example 12, we
also observed that the duals can provide lower bounds for other optimizations, which are similar
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to LPs, but different in their variable domain. Now, let us focus again on LPs i.e., the cases where
the variables are real. A more profound result in this case is that not only the dual optimal value
is smaller than the primal one, but also they are equal. This result is called strong duality and
is more difficult to prove. Hence, we neglect the proof in this course.

Example 13. Consider the so called LP relaxation of the integer optimization (46), which is
obtained by modifying its variable space to R

2:

min
(x1,x2)∈R2

−x1 − 0.64x2

subject to

50x1 + 31x2 ≤ 250

−3x1 + 2x2 ≤ 4

x1 ≥ 0

x2 ≥ 0 (48)

Notice that the dual of (48) is exactly the one in (47), but this time the optimal value of the
primal can be calculated by CVX to obtain exactly the same value as in (47):−5.098. This is
obtained at x1 = 1.9482..., x2 = 4.9223.... In this case, the duality gap is zero.

One of the advantages of the CVX package is that you do not need to explicitly write the
dual and separately encode in CVX. In the class, I will show you how to solve by CVX the dual
program simultaneously with the primal one.
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