
3 Linear Programming

A special case of convex optimization is Linear Programming (LP). However, this special case
is of a great importance for us. It is not a big surprise that LP was one of the first optimization
problems, which were carefully studied and exactly solved; LP is associated with linear algebra,
one of the richest and most popular tool sets in the entire mathematics. Many later developments
in other areas of the optimization theory was inspired by LP. For example, the development of
the theory of convex optimization, to great extent owes to the understanding of LPs. Remember
that I previously talked about affine functions and half-spaces, being the building blocks of convex
functions and convex sets, respectively. In the same manner, linear programming is the building
block of all convex optimization problems. Again, I skip more detailed discussion. If you want to
know more about the convex optimization theory, you should take a course in convex optimization.

The main reason that we study linear optimization in this course is that it has a profound
application in the theory of discrete optimization. From the early days of discrete optimization
studies, it became clear that many problems of interest could be formulated as the so-called
Integer Linear Programs (ILP). ILPs are similar to LPs, but different in that their variable
space is discrete. Later, we will study ILPs and their relation with LPs. We will see how LPs can
solve ILPs or lead to approximate algorithms. Now, we focus on LP and its theory.

Let us start by the definition of an LP. An optimization problem in the form of (2) is linear if:

1. The variable domain is Rn for some n.

2. The cost function f(x) and the constraint functions gi(x) and hj(x) are all affine functions.

It is popular to write an LP as

min
x=(x1,x2,...,xn)∈Rn

c1x1 + c2x2 + . . .+ cnxn

subject to

a11x1 + a12x2 + . . .+ a1nxn ≤ b1

a21x1 + a22x2 + . . .+ a2nxn ≤ b2
...

am1x1 + am2x2 + . . .+ amnxn ≤ bm

,

d11x1 + d12x2 + . . .+ d1nxn = e1

d21x1 + d22x2 + . . .+ d2nxn = e2
...

dp1x1 + dm2x2 + . . .+ dmnxn = ep (27)

where the terms ak,l, bk, ck, dk,l, ek are all arbitrary real coefficients. As seen, it might be difficult
to read an optimization, written in the form of (27). Hence, a conciser notation is often used. Let
us introduce the following matrix definitions:

A =











a1,1 a1,2 . . . a1,n
a2,1 a2,2 . . . a2,n
...

...
. . .

...
am,1 am,2 . . . am,n











b =











b1
b2
...
bm











c =











c1
c2
...
cn











D =











d1,1 d1,2 . . . d1,n
d2,1 d2,2 . . . d2,n
...

...
. . .

...
dp,1 dp,2 . . . dp,n











e =











e1
e2
...
ep











(28)
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Now, the optimization in (27) is written as

min
x∈Rn

cTx

subject to,

Ax ≤ b

Dx = e (29)

Notice that we used the symbol ”≤” to refer to element-wise inequality.
The main issue here is that you do not need all the matrices A,b, c,D and e to express an

LP. In Example 7 we saw that the linear equality constraints can always be eliminated. Then, the
resulting LP is in the following form:

min
x∈Rn

cTx

subject to

Ax ≤ b

(30)

On the contrary, one can substantially simplify the inequality constraints by turning them into
equality ones. We show this in the following example.

Example 8. Consider the following optimization

min
(x1,x2)∈R2

2x2 − 3x1

subject to

2x1 − x2 ≤ 4

x1 + 3x2 ≥ 5

x2 ≥ 0 (31)

First of all, notice that the second and third inequalities can be written in the standard form of
(27) by multiplying them by −1. There is also no equality constraint. So, the two first inequality
constraints can be written as

2x1 − x2 ≤ 4

−x1 − 3x2 ≤ −5

(32)

Now take the first inequality. The statement that 2x1 − x2 is less than 4 is the same as it is
equal to 4− z1 for some non-negative (positive or zero) value of z1. Also for the second inequality,
−x1 − 3x2 is equal to −5− z2 for another non-negative value z2. So, we can write down the two
inequalities as

2x1 − x2 = 4− z1

−x1 − 3x2 = −5− z2

z1 ≥ 0

z2 ≥ 0 (33)

11



Hence, our optimization in (31) can be written as

min
(x1,x2,z1,z2)∈R4

2x2 − 3x1

subject to

2x1 − x2 + z1 = 4

−x1 − 3x2 + z2 = −5

z1 ≥ 0

z2 ≥ 0

x2 ≥ 0 (34)

The variables z1, z2 are called slack variables. We can go even further by noticing that in
(34), the variable x1 is not included in any inequality constraint. Hence, it can be eliminated by
calculating it from one of the equalities and replacing in the others. Take the second equality
constrain for example, which gives that x1 = 5 + z2 − 3x2. Plugging this expression into other
terms yields to

min
(x2,z1,z2)∈R3

11x2 − 3z2 − 15

subject to

−7x2 + 2z2 + z1 = −6

z1 ≥ 0

z2 ≥ 0

x2 ≥ 0 (35)

What I showed in the above example is that by introducing slack variables and eliminating
some others, you can always bring an LP into the following form:

min
x∈Rn

cTx

subject to

Dx = e

x ≥ 0 (36)

which means that every variable has to be positive and they should satisfy a number of additional
equality constraints. In many books, this is the canonical form of LP and is often referred to as
the augmented form. It is because some algorithms such as the simplex method only admit
this form. Moreover, this form is related to a very nice geometrical interpretation of LP, which
we should here neglect for simplicity. We also do not worry about the implementation, as we use
CVX, which can solve an LP in any arbitrary form. There is another interesting form of LP, which
naturally appear in solving many discrete optimization problems:

min
x∈Rn

cTx

subject to

Ax ≤ b

x ≥ 0 (37)

As seen, this is a special case of (30), where every variable is assumed to be positive.
Now, Let us talk about the solution of a LP. Remember Example 2, where the optimization

was not unbounded, but still it could not attain a minimum value. This cannot happen for a LP.
So, exactly one the following three cases happen for a LP: It has at least one optimal solution, it
is infeasible or it is unbounded.
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Example 9. As a simple example, consider the following optimization

min
x=(x1,x2,...,xn)∈Rn

c1x1 + c2x2 + . . .+ cnxn

subject to

x ≥ 0 (38)

Suppose that one of the elements, say ck0
is negative (not zero!). Then, one can fix all xks to

zero, except xk0
. The cost value will be xk0

ck0
, which is negative. By increasing xk0

to +∞, the
cost can get as small as desired. Hence, the optimization is unbounded. On the other hand, if all
cks are non-negative the cost cannot get negative, while it can be set to zero if we select x = 0.
Hence, in this case x∗ = 0 is an optimal solution and the optimal cost is zero.

With a similar argument, you should be able to show that a totally unconstrained LP is
unbounded, except when c = 0, in which case x∗ = 0 is an optimal solution.

LPs can be exactly solved by different algorithms. Developed in 1930s and 1940s, the simplex
method is one of the first and most popular LP techniques. Although the simplex method has a
good performance in practice, the algorithm can have a very high computational complexity in the
worst case scenario. The simplex method remained the best alternative for LPs until 1980s, when
the ellipsoid method and subsequently the Karmarkar’s projective techniques were introduced.
The later methods have provable low computational complexity, but more importantly, they led
to the development of the interior methods, which are applicable to all convex problems. In this
course, I am not going to talk about the details of these techniques. What you need to know is
that both the simplex and the interior point techniques are widely used in practice and often have
similar performance. In MATLAB, the simplex method is implemented in the linprog function.
The CVX package uses the interior point method.
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