
2 Continuous Optimization

Although this course centers on the discrete optimization problems, it is useful first to briefly talk
about continuous optimization. Continuous optimization has become a fundamental tool in many
different applications. As we will discuss later, continuous optimization methods can also be used
for the discrete optimization problems by employing the so-called relaxation technique. Hence, it
is necessary for us to have a basic understanding of the continuous problems. There is a large class
of continuous optimization problems, called convex optimization, which can be exactly solved with
a reasonable complexity. A very specific type of convex optimizations is linear optimization. We
will spend a considerable amount of time to understand linear optimization problems, as it will be
our basic tool to deal with the discrete optimization problems. I want to remind here that there
are a number of other ideas to treat a discrete optimization problem, but we will not have time
to cover them in this course.

Since the variable space in a continuous optimization problem is infinite, exhaustive search is
impossible. Instead, a number of other algorithms, such as local search are popular in the continu-
ous case. We will briefly talk about them later, but what you need to readily know is that there are
well-optimized software packages that implement some state-of-the-art optimization techniques.
Some of them are free to use and so you only need to download and learn how to use them. In
this course, we will use the CVX optimization toolbox, which is a free MATLAB-based software.
I assume that you have a basic knowledge about MATLAB. In the class, we also go through a
CVX tutorial, which can be found here:

http://cvxr.com/cvx/doc/quickstart.html

A more comprehensive introduction to CVX can be found here:

http://cvxr.com/cvx/doc/CVX.pdf

2.1 Convex Optimization

To understand a convex optimization, we first need to know what convex functions and convex sets
are. A set Ω ⊆ R

n is called convex if taking any two points x1,x2, both inside Ω, the line segment
connecting x1 and x2 is completely inside Ω. A set, which is not convex is called nonconvex.
Figure 3 depicts a convex and a non convex set in the Euclidean plane R

2.
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Figure 3: a) A convex set. b) A nonconvex set.

Instead of the graphical representation, there is a more convenient way to write the definition
of a convex set. Notice that for any two points x1,x2 the line segment connecting x1,x2 is the
locus of all points λx1 + (1−λ)x2, where λ ∈ [0 1]. So, we can say that a set Ω ⊆ R

n is convex if:

∀x1,x2 ∈ Ω, λ ∈ [0 1]; λx1 + (1− λ)x2 ∈ Ω (11)
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One of the main properties of the convex sets is that they are closed under intersection i.e., if
I take two convex sets Ω1 and Ω2, then Ω1 ∩ Ω2 is also convex. Now, let us take the following
example:

Example 4. An n-dimensional half space S is a subset of Rn, which can be written as

S = {(x1, x2, . . . , xn) ∈ R
n | a1x1 + a2x2 + . . .+ anxn + b ≤ 0} (12)

where (a1, a2, . . . , an) ∈ R
n and b ∈ R are arbitrary real coefficients. (Try to plot a typical half

space in two dimensions n = 2). Now, we show that half-spaces are convex. Take two points
x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn), both in S. Also, take a coefficient λ ∈ [0 1]. Then,
we have that

λx + (1− λ)y = (λx1 + (1− λ)y1, λx2 + (1 − λ)y2, . . . , λxn + (1 − λ)yn) (13)

On the other hand, x,y ∈ S implies that

a1x1 + a2x2 + . . .+ anxn + b ≤ 0

a1y1 + a2y2 + . . .+ anyn + b ≤ 0 (14)

Multiply the first inequality by λ and the second one by (1−λ) and add the two. Notice that this
is a valid operation, since λ and 1− λ are both positive. We get

a1 (λx1 + (1− λ)y1) + a2 (λx2 + (1− λ)y2) + . . .+ an (λxn + (1 − λ)yn) + b ≤ 0 (15)

From (13), we get that λx+ (1 − λ)y ∈ S.

Half spaces are the building blocks of convex sets. It is possible to show that any convex set
is an intersection of a (possibly infinite) number of half spaces. An intersection of a finite number
of half spaces is called a convex polyhedral set.

Now, about convex functions: Take a real function f : Ω → R. Notice that this function can
be shown by a curve y = f(x) (more generally a surface in high dimensions), like the one in Figure
1. This function is convex if it satisfies the following two conditions:

1. Its domain set Ω is convex.

2. For any two points (x1, y1 = f(x1)) and (x2, y2 = f(x2)) on the curve of f(x), the line
segment connecting the two points is completely above the curve. Figure 4 shows a convex
and a non-convex function. Similar to convex sets, this condition for convex functions can
be written as

∀x1,x2 ∈ Ω, λ ∈ [0 1]; f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2) (16)
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Figure 4: a) A convex function. b) A nonconvex function.
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There are two different ways to verify that a function is convex. The first one is simply to use the
definition in (16). The second one can only be applied to the twice-differentiable functions. Here,
I only talk about the case where the function is univariate f(x) : R → R, although the second
method can also be used for multivariate functions: A twice-differentiable function f : R → R is
convex, if and only if its second derivative f (2)(x) is nonnegative (positive or zero) everywhere.
You see that the second method is simpler to check, but I should warn you that this method
only applies to second-differentiable functions. There are many interesting functions, which are
non-differentiable at least at one point and so the second method is not going to work for them.

Example 5. We want to show that the function f(x) = x2 is convex on R. Notice that this
function is twice differentiable and its second derivative is f (2)(x) = 2 > 0. Thus, the function is
convex. Also, we can use the first method by employing the definition of convex functions. Take
two real numbers x1, x2 and λ ∈ [0 1]. Notice that

0 ≤ λ(1 − λ)(x1 − x2)
2 (17)

We can write (17) as
0 ≤ λ(1 − λ)x2

1 + λ(1 − λ)x2
2 − 2λ(1− λ)x1x2 (18)

and further modified to

λ2x2
1 + (1− λ)2x2

2 + 2λ(1 − λ)x1x2 ≤ λx2
1 + (1− λ)x2

2 (19)

which leads to
λ2x2

1 + (1− λ)2x2
2 + 2λ(1 − λ)x1x2 ≤ λx2

1 + (1− λ)x2
2 (20)

and
(λx1 + (1− λ)x2)

2
≤ λx2

1 + (1 − λ)x2
2 (21)

This is exactly the definition of a convex function in 16.

Example 6. Another example of a convex function is an affine function. An affine function is
any function f(x) = f(x1, x2, . . . , xn) : R

n → R of the following form

f(x1, x2, . . . , xn) = a1x1 + a2x2 + . . .+ anxn + b (22)

where (a1, a2, . . . , an) ∈ R
n and b ∈ R are arbitrary real coefficients. It is left as an exercise (not

mandatory!) to show that an affine function is convex. Similar to half planes, affine functions are
building blocks of all convex functions. It is more difficult to explain this topic and I skip it in
favor of simplicity.

Now, I can explain what a convex optimization is. A minimization problem is called convex if

1. The feasible region is a convex set.

2. The cost function is a convex function.

In particular, an optimization in the form of (2) is convex if:

1. The variable space Ψ is Rn for some n and the function f is convex on R
n.

2. The functions gi(x) are convex on R
n.

3. The functions hj(x) are affine.

Let us take an example:
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Example 7. Consider the optimization

min
(x1,x2,x3,x4)∈R4

x1 + x2 + x3 + x4

subject to

x2
1 + x2

2 ≤ 1

x4 ≥ 0

2x1 + x2 − x3 + 3x4 = 1

x1 + x2 + 2x3 − x4 = 3 (23)

This is a convex optimization as the variable space is R
4, the cost function f(x) = x1 + x2 +

x3 + x4 is convex (affine in fact). The inequality constrains are associated with convex functions
g1(x1, x2, x3, x4) = x2

1+x2
2−1 and g2(x1, x2, x3, x4) = −x4, and the equality constraints are affine;

h1 = 2x1 + x2 − x3 + 3x4 − 1 and h2 = x1 + x2 + 2x3 − x4 = 3.
Note that we can eliminate the inequality constraints by writing them as

2x1 + x2 = x3 − 3x4 + 1

x1 + x2 = −2x3 + x4 + 3 (24)

which can be solved for x1 and x2 to obtain

x1 = 3x3 − 4x4 − 2

x2 = −5x3 + 5x4 + 5 (25)

We can now replace these relations in the optimization in (23) to eliminate x1, x2 as well as the
equality constraints

min
(x3,x4)∈R2

−x3 + 2x4 + 3

subject to

(3x3 − 4x4 − 2)2 + (−5x3 + 5x4 + 5)2 ≤ 1

x4 ≥ 0 (26)

After solving (26), we can calculate x1 and x2 from (25).

As seen, the affine equality constraints can always be eliminated by calculating a number of
variables in terms of the others. Hence, we may not consider equality constraints in a convex
optimization.
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