
10 Continuous optimization algorithms

In this session, we will take brief look at the continuous optimization algorithms. I will mainly
focus on the unconstrained optimizations, but also point out to some aspects of the constrained
ones. In the context of continuous optimization, the term algorithm often refers to a specific type
of algorithms. In this type of algorithms, there exists a state xn, which is often the best solution so
far. The algorithm is in fact a map xn+1 = Φ(xn) which generates the next best solution from the
current solution. You may have noticed that n shows the number iterations that we have applied
the map. The algorithm starts from an initial point x0. The initial point can be selected in
different ways. It can be purely random or it can be rule-based. Sometimes the output of another
approximate optimization algorithm can be used as an initial point. This is called a warm start.

The most important issue in convex optimization is convergence. In practice, the algorithm
stops after a finite (and often bounded) number of iterations, but in theory, the algorithm can
iterate forever to generate an infinite sequence of solutions {xn}

∞

n=0. The aim of the optimization
algorithm is to insure that the limit

x̄ = lim
n→∞

xn (92)

is an optimal solution. Even this aim is not always possible to achieve. As seen, the sequence and
consequently the limit depend on the initial point. However, if an algorithm is exact (converges
to an optimal solution) and the optimal solution is unique, then x̄ = x∗ is the same for any choice
of the initial point. An important concept for the algorithms is the convergence speed. For any
ǫ > 0, the convergence seed is defined by the smallest number N(ǫ), where for all n > N(ǫ) the
relation ‖xn − x̄‖ < ǫ holds. The smaller the function N(ǫ) is, the faster the algorithm converges.
If there exists a constant µ > 0 such that

lim
n→∞

‖xn − x̄‖2
‖xn+1 − x̄‖2

= µ (93)

then it is said that the algorithm converges linearly and µ is called the convergence rate. In
this case ‖xn − x̄‖2 decreases exponentially and the function N(ǫ) is logarithmic.

Consider the optimization
min
x∈Rn

f(x) (94)

Many algorithms provide convergence by ensuring that at each iteration f(xn) ≤ f(xn+1). How-
ever, some algorithms may not.

Example 25. Line search with iterative grid refinement: If x = x ∈ [a b] ⊂ R then the
problem is called line search. The interval [a b] is called the uncertainty interval. The line search
can be written as

min
x∈[a b]

f(x) (95)

The line search can be exactly solved for a group of functions, called quasiconvex or unimodal3:
Define the level set Sα for a function f(x) and a constant α as

Sα = {x | f(x) ≤ α} (96)

A function f is quasiconvex if for any α the level set Sα is an interval. Figure 9 shows an
example of a unimodal (quasiconvex) function and an example of a function which is not unimodal
(multimodal). A quasiconvex (unimodal) function, which is not constant in any interval is called
strictly quasiconvex. Let us now give an algorithm to perform line search for unimodal functions.
First, we define uniform k−grid on an interval [a b] as the finite set Gk([a b]) = {a, a + δ, a +
2δ, . . . , a+ (k − 1)δ}, where δ = b−a

k
. Then, we can perform the following steps:

3The term quasiconvex is also used for multi-variable functions, but unimodality is only defined for a real

function.

37



α

Sα

(a) Unimodal

α

Sα

(b) Multimodal.

Figure 9: The concept of unimodality.

1. Start from the uncertainty interval I0 = [a b]. Take the grid G0 = Gk([a b]) and define
δ0 = b−a

k
take x0 as the point in G0 with the minimum objective value f . Set n=1.

2. Take the refined uncertainty interval In = [xn−1 − δ xn−1 + δ], the refined grid Gn =
Gk([xn−1 − δ xn−1 + δ]) and δn = 2δn−1/k. Take the minimum xn over the grid.

3. Update n to n+ 1 and goto step 2.

Notice that xn ∈ In. Hence |xn − xn−1| ≤ δn. On the other hand, δn = δ0(2/k)
n. This shows

that the sequence xn is absolutely convergent for k > 2. Denote the limit by x̄. Notice that xn is
the minimum over Gn. If k is odd then xn−1 ∈ Gn, which shows that f(xn) ≤ f(xn−1). However,
if k is even this might not be the case.

Now, suppose that f is strictly quasiconvex, we show that the optimal point x∗ ∈ In for all
n. So, x∗ ∈ I0 ∩ I1 ∩ . . . ∩ In ∩ . . . = {x̄}, and hence x̄ = x∗. The proof is by induction: x∗ ∈ I0
is trivial. Now, suppose that x∗ ∈ In and xn is the minimum point over Gn. Without loss of
generality, I assume that the xn is a middle point in Gn (the other cases are similarly proved).
Then, f(xn) ≤ f(xn + δ) and f(xn) ≤ f(xn − δ). It is simple to see that if the minimum point
x∗ is not in the interval In+1 = [xn − δ xn + δ], the function cannot be strictly quasiconvex as the
level set Sα=f(xn) will have two disjoint parts. Hence, x∗ ∈ In+1, which proves the result.

Many continuous algorithms are based on local search. This means that the map xn+1 =
Φ(xn) is such that ‖xn+1−xn‖2 is small. One way to provide such a map is to solve the following
restricted optimization

xn+1 = arg min
x∈Rn

f(x)

subject to

‖x− xn‖2 ≤ µn (97)

The parameter µn is called the step size. Clearly, in this case f(xn+1) ≤ f(xn) and the optimiza-
tion often converges a point x̄. If we select µn such that it does not converge to 0, then the point
x̄ is the minimum point in its small neighborhood i.e., there is an ǫ > 0, such that

x̄ = arg min
x∈Rn

f(x)

subject to

‖x− x̄‖2 ≤ ǫ (98)

Such a point is called a local optimal solution. In this context the optimal solution is referred
to as a global optimal solution. A global optimal solution is also a local optimal solution, but
there might be many local optimal solutions that are not globally optimal. There is an exception
to this rule: For convex functions, any local optimal solution is a global optimal solution.

The restricted optimization in (97) might still not be easy to solve. However, since it is local
we might be able to approximate it. The next example shows a very important method.

38



Example 26. The gradient descent method: If the step size is small and the function f is
differentiable, we can use Taylor expansion to approximate the cost function in (97):

f(x) ≈ f(xn) +∇T f(xn)(x− xn) (99)

Replacing this result in (97) leads to

xn+1 = arg min
x∈Rn

f(xn) +∇T f(xn)(x − xn)

subject to

‖x− xn‖2 ≤ µn (100)

This optimization can be solved to obtain

xn+1 = xn − µn∇f(xn) (101)

This is called gradient descent algorithm. Unlike the exact restricted optimization, here the step
size is important. There are two methods to find the step size. first, to predefine a sequence
{µn}

∞

n=0 of step sizes. Second, to choose it at each iteration. The following is a simple way to
select the step size

µn = argmin
µ>0

f(xn − µ∇f(xn)) (102)

In some cases the above rule can reduce the speed of convergence, but in many cases it is successful.
The important observation is that the above optimization is a line search and can be exactly solved
in some cases.

39


