
9 Lagrangian Duality

In the previous lectures, we saw that LP duality has remarkable implications in the theory of
LP and ILP. Today, we are going to see that the theory of duality can be extended to other
optimizations. The very fundamental idea for the duality theory is to provide lower (upper)
bounds for the minimization (maximization) optimization.

We are going to talk about a method which is widely attributed to Lagrange, but of course he
did not know at his time about the general duality theory. In fact, what we call the Lagrangian
duality theory is formalized in the twentieth century, along with the LP duality. The Lagrangian
duality establishes a weak duality result (a loose bound), but for convex functions it can be a
strong duality theory (exact optimal value). For the differentiable convex functions, there is an
equivalent for the complementary slackness conditions, known as the Karush-Kuhn-Tucker (KKT)
conditions. These are very popular concepts in the modern optimization theory.

Let us start from the most general form of the Lagrange duality theory. I will focus without
loss of generality on minimization problems. Take a general optimization problem as in (2):

f∗ = min
x∈Ψ

f(x)

subject to

g1(x) ≤ 0
g2(x) ≤ 0

...
gm(x) ≤ 0

,

h1(x) = 0
h2(x) = 0

...
hp(x) = 0

(75)

Now, we are going to perform similar steps as in the LP duality theory. Define a dual variable
ui ≤ 0 for each constraint g(x) ≤ 0. If a constraint is in the form g(x) ≤ 0 we will take ui ≥ 0,
but this is not the case in our example. Take also free dual variables vi ∈ R for the constraints
hi(x) = 0. Remember that in the linear LP case, we made the linear combination of the constraints:

Φ(x,u,v) = u1g1(x) + u2g2(x) + . . .+ umgm(x) + v1h1(x) + v2h2(x) + . . .+ vphp(x) ≥ 0 (76)

where u = (u1, u2, . . . , um)T and v = (v1, v2, . . . , vm)T . In the LP theory at this point, we would
define constraints over the dual variables, in order to enforce Φ(x,u,v) to be similar to f(x).
Then we could simply get a good inequality for f(x). However, for general functions, we cannot
have any kind of similarity between Φ(x,u,v) and f . A brilliant observation by Lagrange helps
us to proceed with this issue. Define the Lagrangian form:

L(x,u,v) = f(x)− Φ(x,u,v) (77)

and consider the minimization
Γ(u,v) = min

x∈Ψ

L(x,u,v) (78)

Notice that the optimization in (78) is unconstrained. The function Γ(u,v) is called the La-

grangian dual function. I am going to show that for any u ≤ 0 and v, we have that f∗ ≥ Γ(u,v):
Denote the optimal solution of (75) by x∗. Then, Γ(u,v) ≤ L(x∗,u,v) simply because Γ(u,v)

is the minimum value. Further, we know that x∗ is feasible in (75). Hence, according to (76), we
have that Φ(x∗,u,v) ≥ 0 and L(x∗,u,v) = f∗ − Φ(x∗,u,v) ≤ f∗. This gives the result as

Γ(u,v) ≤ L(x∗,u,v) ≤ f∗. (79)

Finally, notice that f∗ ≥ Γ(u,v) is true for any u ≤ 0 and v. Hence, the best lower bound is
obtained by maximizing Γ(u,v) over all feasible dual variables:

Γ∗ = max
u∈Rm,v∈Rp

Γ(u,v)

subject to

u ≥ 0 (80)
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The optimization in (80) is called the Lagrangian dual optimization. The Lagrangian weak

duality states that Γ∗ ≤ f∗.

Example 23. Support Vector Machine: Stroke (brain attack) is the second most important
cause of death in the world. In order to decrease the death chance and also its long-lasting effects,
it is important to diagnose the stroke in a very short time. The main difficulty is that there exist
two different types of stroke, ischemic (clots) and hemorrhagic (bleeding), which require different
types of treatment. Computer-assisted techniques are designed to enhance diagnosing the stroke
type by rapidly collecting a number of clinical parameters, such as blood pressure, a number of
electroencephalogram (EEG) parameters and etc.

Currently, there does not exists a good model to link the clinical parameters and the type of
stroke. Our purpose is to learn a simple model from a number of clinical trials, which enhances
predicting the stroke type. Let us assume that there are m diagnosed patients and denote the
clinical parameters of the kth patient by

xk =









x1,k

x2,k

. . .
xn,k









, (81)

where m is the number of parameters for each patient. Let tk = 1 if the kth patient is diagnosed
by the ischemic stroke and tk = 0 otherwise. We are to learn a simple rule to detect the type of
the stroke. Our detector consists of a weighting vector w and a threshold b. For a given data
vector x, it will set t = 0 if wTx+ b < 0 and t = 1 otherwise. The SVM method suggests to solve
the following optimization to obtain the best predictor:

min
w∈Rn,b∈R

‖w‖22

∀i ∈ [m],

{

wTxi + b ≥ 1 ti = 1
wTxi + b ≤ −1 ti = 0

(82)

Let us write the dual optimization. First, define the dual variable ui for the i
th constraint. Notice

that ui ≥ 0 for ti = 1 and ui ≤ 0 for ti = 0. Now, let us write the Lagrangian form

L(w, b,u) = ‖w‖22 −
∑

i|ti=1

(wTxi + b− 1)ui −
∑

i|ti=0

(wTxi + b+ 1)ui (83)

which can also be written as

L(w, b,u) = ‖w‖22 −wT c− bβ + α (84)

where

c =
m
∑

i=1

uixi, β =
m
∑

i=1

ui, α =
∑

i|ti=1

ui −
∑

i|ti=0

ui (85)

Now, let us calculate the Lagrange dual function by minimizing the Lagrangian form:

min
w=(w1,w2,...,wm),b

‖w‖22 −wT c− βb + α

= min
w1∈R

(w2
1 − c1w1)

+ min
w2∈R

(w2
2 − c2w3)

+ . . .

+ min
wn∈R

(w2
n − cnwn)

+min
b∈R

(−βb)

+α (86)
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where we used the fact that the Lagrangian form is separable i.e., it can be written as the sum
of n+ 1 terms and the ith term only depends on the ith variable. Notice that

min
w∈R

(w2 − cw) = −
c2

4
(87)

and

min
b∈R

(−βb) =

{

0 β = 0
−∞ β 6= 0

(88)

Hence, we obtain that

Γ(u) =



















−
‖

m∑

i=1

uixi‖
2

2

4 +
∑

i|ti=1

ui −
∑

i|ti=0

ui

m
∑

i=1

ui = 0

−∞
m
∑

i=1

ui 6= 0

(89)

Since the maximal solution of the dual never happens at −∞, the dual optimization is given by

max
u∈Rm

−
‖

m∑

i=1

uixi‖
2

2

4 +
∑

i|ti=1

ui −
∑

i|ti=0

ui

subject to
n
∑

i=1

ui = 0

∀i ∈ [m]

{

ui ≥ 0 ti = 1
ui ≤ 0 ti = 0

(90)

In some cases, strong Lagrangian duality holds i.e., we have that Γ∗ = f∗. Here, is one example:

Theorem 2. Suppose that the functions f(x) : R → R and gi(x) : R → R are convex and the
functions hj(x) : R → R are affine. Furthermore, suppose that there is a feasible point x1, such
that gi(x1) < 0 for all i. Then, strong duality holds.

The second part of the above conditions (the existence of x1) is called the Slater’s condition.
It can be replaced by other conditions, which are generally known as constraint qualifications.

Example 24. The conditions of strong duality hold for the SVM example if it is feasible. Hence,
strong duality holds for the SVM example.

9.1 Karush-Kuhn-Tucker Conditions

There are also different generalizations of the complementary slackness conditions. The most
popular one is the so-called Karush-Kuhn-Tucker (KKT) condition. Unlike the complementary
slackness conditions, the KKT theorem is not in general ”if and only if”. The general statement
of the theorem is as follows

Theorem 3. Consider the primal optimization in (75). Suppose that a point x0 is a primal
optimal solution and the set of constraints I = {i1, i2, . . . , il} are active. Suppose that at x0, gi
are continuous for i /∈ I and differentiable for i ∈ I. Further, suppose that ∇gi(x0) for i /∈ I are
linearly independent and f is also differentiable. Then, there is a dual feasible point u and v such
that.

1. For each i, if the ith inequality constraint is inactive, then ui = 0.

2. We have that

∇f(x0)−
∑

i∈I

ui∇gi(x0)−

p
∑

i=1

vi∇hi(x0) = 0 (91)
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Notice that there might be other points, which satisfy the conditions above, including Items 1
and 2, but are not global optimal points (and not even local ones!). Any point that satisfies all
the conditions in Theorem 3 is called a KKT point. There is actually a more restricted form of
the KKT theorem, which is in the form of ”if and only if”. It is often called the sufficient KKT

condition:

Theorem 4. Suppose that the functions f(x) and gi(x) are convex and hj(x) are affine. Fur-
thermore, the point x0 is a KKT point. Then, x0 is a (global) optimal solution for the primal
optimization.
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