1 Introduction

This course is an introduction to the concept of discrete optimization. I should emphasize that
what we cover in this course is a very brief overview. We only study popular problems and
techniques that you are more likely to encounter in future. In fact, a comprehensive course on
this topics requires a much greater deal of time and effort than what we spend in this course. The
reason is that mathematical optimization, especially in the discrete case, lacks a generic approach.
This means that there is no small set of principles available, such that one can easilyll solve every
type of problems by referring to them. On the contrary, there has been a group of different ideas
in the course of history, which has been one by one applied to a large group of problems, and as a
result, some ideas are found to be successful for some problems and some not. A comprehensive
course, should go through all of these ideas and their suitable applications. Besides, there are a
number of challenging problems, for which no suitable idea has been found. It is not even known
whether these problems may be ”easily” solved or not, though there is a strong disbelief about it!
These topics are what you may find in a typical discrete optimization course book. However, as
I have already mentioned, we are not going to deal with all of them and simply stick to the ones
that we afford.

In spite of the above mentioned difficulties, mathematical optimization is one of the most useful
disciplines in our modern world. Industrial planning, organizational management, traffic manage-
ment, and many other tasks are hardly conceivable without the advanced optimization techniques.
We also have a very good understanding about the approximation techniques and when they are
not approximate anymore! But how did it all happen? By the rapid growth of industrialization
in the 19th and 20th century, many organizations eventually turned their attention to improving
their methods in order to increase their chance of success. Driven by the industrial needs, math-
ematicians started to formulate problems, in order to find the maximum amount of profit or the
minimum amount of undesired cost, etc. They called these problems mathematical optimization
or programming. Next, they devised algorithms to find the maximal or minimal values in their
problems, which has been since then substantally improved. Formulating a real-world problem as
a mathematical programming is often referred to as modeling, while the algorithms are some-
times called optimization methods and sometimes just algorithms. It took a while until the
importance of mathematical programming was understood by the society. After a long course
of research, the computerized optimization methods became so efficient in some cases that they
could easily lead to significant improvements in different industries, without a significant knowl-
edge about the nature of those indutries. At this time, it was not possible anymore to neglect
the role of optimization in practice. Nowadays, optimization is not used only for planning and
management. Machine learning, for example, is one of those areas, where optimization plays an
important role. I cannot further explain this topic as it requires a different background, which
I do not assume you have. However, I will point out to some of these applications later in the
course.

Now, let us talk in more details about a general optimization problem. Indeed, we need a good
notational convention to express our problems. Nowadays, there is a standard way to denote a
mathematical optimization, which often looks like the following:

min f(x)
subject to
Plx] (1)

In (), x denotes the parameter(s) that we can adjust and is called the optimization variable.
The set U is the set of all possible values that x admits and is called the variable space. Further,
f(x) denotes a function that assigns to each value in the variable space a real number, known as
the cost. The function f(x) is itself referred to as the cost function. Finally, P[x] represents a
set of constraints. The constraints restrict the variables to satisfy certain specifications. They

1This refers to the number of calculations an algorithm needs to solve a problem. We will shortly talk about it.

can be included simply by a number of statements like ” P[x] : x contains at least one zero.”, but
it is more popular to use numerical equality and inequalities to represent them. Here is how it
generally looks like:

oo @)
gm(x) <0 hp(x) =0

In @), each term g;(x) or hj(x) fori =1,2,...,mand j =1,2,...,pis a real function. So, a valid
choice of x should satisfy all the equality constraints h;(x) = 0 as well as the inequality con-
straints ¢;(x) < 0. An optimization, which does not have any constraint is called unconstrained.
Sounds a bit abstract!? Let us make a concrete example:

Example 1. A pharmaceutical company has discovered and is the only producer of a new type
of lung cancer drug. Hence, the company can control the market price of this drug by adjusting
its daily production. The amount of production is measured in the unit of boxes per day. The
company delivers its entire daily production to the market. The goal is to maximize the profit of
the company.

Suppose that the company produces and delivers to the market x boxes per day. According to
the demand curve, the market price of the drug p SEK/box is given by

p =900 — 0.4z (3)

On the other hand, the supply curve shows that the cost ¢ SEK /box of producing z boxes is given
by
c =100+ 0.6z (4)

For technical reasons, the company may not produce more than 500 boxes per day.
Now, the total profit of the company per day is given by f(z) = 2(p — ¢) = (800 — z) and we
can write down the following optimization:

max (800 — x)
TEZL

subject to
0 <z <500 (5)

You may notice that the optimization in (&) does not totally agree with the template we introduced
in [@):

1. First, notice that I used max, while the template in (2 employs min. This is indeed a valid
and very popular notation, but many books avoid one of the min or max when they explain
the theory. The reason is that one of them is enough to explain even the other one; You can
easily turn any maximization problem into an equivalent minimization by changing the sign
of the cost function. Take a look at Figure[Il As seen, the maximum point of f(x) is always
the same as the minimum point of — f(x). So, if one changes the sign of the cost function
the optimization remains unchanged, except for the sign of the optimal value. However, it
is occasionally more convenient to use the max notation. In this case, it is not appropriate
anymore to call f(x) cost function. Instead, it is often called score or utility function.

2. We also used 0 < x < 500 as a short hand notation for two constraints, namely 0 < z and
x < 500. However, these two are not in the form of ”g;(x) < 0”, but can be easily modified
to be. We can multiply 0 < z by minus one to obtain —x < 0 and subtract 500 from x < 500
to obtain x — 500 < 0. So, we get ¢g1(z) = —x and ga(z) = = — 500.

Hence, we can write (@) as

min —z(800 — x)

€L
subject to
- <0 (6)
x — 500 <0, (7)

which agrees with (2)).

Figure 1: Maximizing the function f(x)

Of course, the main task after modeling is to solve the optimization. The solution consists
of two parts: A value (or a point) x* in the variable space, which satisfies the constraints and
minimizes the cost function and the minimum value f* = f(x*). Any point in the variable space,
which satisfies the constraints is called a feasible solution and x* is referred to as an optimal
feasible solution or simply an optimal solution. The set of all feasible solutions is called the
feasible region. I often use to refer to the feasible region. Moreover, f* = f(x*) is called the
optimal value. There might be more than one optimal solution, but clearly there is a unique
optimal value. As a convention, f* = min f(x) means that f* is the optimal value. To refer to
the optimal solution, we use x* = argmin f(x). Technically, arg min f(x) is the set of all optimal
solutions. So, it is technically correct to write x* € argmin f(x), but the former notation is also
popular. In the form of ([@]), an individual inequality constraint g;(x) < 0 is said to be active at
the optimal point if g;(x*) = 0. Otherwise, it is called inactive.

An optimization might not have any solution. This is because either there is no existing feasible
solution (the feasible region is empty), in which case the optimization is called infeasible, or no
minimal value exists. The latter case often happens when the cost function can be decreased as
much as we desire. It can get less than —1, —1, 000,000, —10'%° or even smaller! In this case,
the optimization is said to be unbounded. There are more sophisticated situations, where the
minimal value does not exist. Take the following example.

Example 2. Consider the optimization

min &
zeR ¥

subject to
x>1 (8)

The cost is positive and can get as small as desired by increasing z to infinity, but it never reaches
zero. So, there is actually no minimum point for this optimization. Technically, the value 0 is
not the optimal value, since it is not attainable. It is instead called the infimum, but this is too
theoretical to be considered here.

Now, let us take a brief look at the optimization algorithms. Generally speaking the opti-
mization problems are divided into three different categories. Remember that the optimization

variable may consists of different entries, i.e. it can be written as x = (z1,2,...,z,), where n
is the number of entries. An optimization is called discrete if all the entries of x admit discrete
values. On the contrary, an optimization is called continuous if all the entries are real-valued
and the variable space is R™. A discrete optimization is called integer if the entries of x are
integer and the variable space is Z™. It is instead called binary if they only admit two values, for
example when the variable space is {0,1}". Discrete optimizations require different methods to
the continuous ones, although there are certain links between them. A number of issues, related
to the two classes of continuous and discrete optimizations, is summarized in Figure 2l If some
entries of x are discrete and some other continuous, the optimization is referred to as mixed.
One of the main issues with optimization algorithms is their speed. Speed is measured in terms

Mathematical Optimization

Continuous Optimization Discrete Optimization

Figure 2: The general classification of different optimization methods.

of the number of operations that an algorithm performs before termination. This is often called
the computational complexity of an algorithm. Algorithms are scarcely designed only for a
very single problem, but they often cover a family of problems with an arbitrary size. Denote the
size of a problem by n. Then, the computational complexity is a function C(n) of the size n. In
many cases, it is only important to know how fast C'(n) grows with n. Let us illustrate this with
a simple example.

Example 3. A social network is planning to broadcast an advertisement. The network has n
users and has already collected some information regarding the behavioral pattern of its users.
This information is turned into a set of scores s; for i = 1,2,...,n. The more the score s; is,
the more likely is that the i*" user will buy the product. For technical reasons, the network can
only broadcast the advertisement over 1000 users. The problem is to select them to maximize the
chance of selling the product (the total score).

It should be clear that the answer to the problem is to select 1000 users with the largest scores.
To do this, we first select the largest element, which needs n comparisons, then the second largest,
which needs n — 1 comparisons and so on. The total number of operations (comparisons) for this

algorithm is

1000 x (2n — 999)

Ci(n)=n+n-1D+n—-2)+...4+(n—999) = 5

= 1000n — 499500 (9)

So, the computational complexity of this algorithm grows linearly with the number of users.

Now, let us try to formulate the problem as a standard optimization problem in ([2]). Let us
introduce a set of indicators x; € {0,1} for ¢ = 1,2,...,n, such that 2; = 1 means that the ith
user is selected. We can write our problem as

max 181 + X282 + ...+ XpSp
X:(11;12;~~~7wn)€{071}n

subject to
1+ a2+ ...+ x5 <1000 (10)

Let us forget that the solution of this problem is the ”1000 largest scores” and solve the problem
by trying every possible vector x = (z1, Z2,...,z,) € {0,1}". This is called exhaustive search
or brute force. We should first examine that this vector satisfy the constraint and then check if
it produces a larger cost than the previously examined ones. Since, there are 2" different vectors
and each examination needs a number of operations (can you say how many ?), the complexity of
this algorithm is higher than 2", i.e. it is super-exponential.

To get a sense of how the two algorithms are different in speed, consider the ”facebook” case
with 1.5 billion users. The complexity of the first algorithm is less than 1000 % n, which is in the
order of 10'? comparisons. With an ordinary desktop computer, this should take few hours to
perform. Now take the second method. Its complexity is more than 21%° or around 10°°. To
see how large this number is, notice that if one billion desktop computers work for one thousand
years, they can only examine 103Y vectors! It is seen that exhaustive search cannot be a solution
for large problems and ”smarter” algorithms should be employed.

Another important aspect of the optimization algorithms is their precision. In general, it
might be difficult to find the optimal solution and the optimal value of an optimization problem
with a reasonable complexity, but many algorithms may offer an approximate solution in a more
affordable time. Suppose that a minimization problem has an optimal solution x* with the optimal
value f* = f(x*) > 0. It is said that an algorithm provides an «—approximate solution to this
problem, where o > 1, if its output is a feasible solution x such that f(x*) < f(x) < af(x*). The
solution x* is called the exact solution. Later in the course, we consider algorithms with both
exact and approximate solutions.

	Introduction
	Continuous Optimization
	Convex Optimization

	Linear Programming
	LP Duality
	LP Optimality Conditions
	The Integer Linear Programs
	Beyond LP Relaxation
	Branch-and-bound and Cutting Plane methods

