
14 2. Examples

such problems here (many examples can be found in Chvátal’s book cited in
Chapter 9), and we will present problems in which the use of linear program-
ming has different flavors.

2.2 Flow in a Network

An administrator of a computer network convinced his employer to purchase
a new computer with an improved sound system. He wants to transfer his
music collection from an old computer to the new one, using a local network.
The network looks like this:

3

1

1

4

1

4

3

4

c
e

b

a

d

1

1

o

n

What is the maximum transfer rate from computer o (old) to computer n

(new)? The numbers near each data link specify the maximum transfer rate
of that link (in Mbit/s, say). We assume that each link can transfer data in
either direction, but not in both directions simultaneously. So, for example,
through the link ab one can either send data from a to b at any rate from 0
up to 1 Mbit/s, or send data from b to a at any rate from 0 to 1 Mbit/s.

The nodes a, b, . . . , e are not suitable for storing substantial amounts of
data, and hence all data entering them has to be sent further immediately.
From this we can already see that the maximum transfer rate cannot be used
on all links simultaneously (consider node a, for example). Thus we have to
find an appropriate value of the data flow for each link so that the total
transfer rate from o to n is maximum.

For every link in the network we introduce one variable. For example, xbe

specifies the rate by which data is transfered from b to e. Here xbe can also be
negative, which means that data flow in the opposite direction, from e to b.
(And we thus do not introduce another variable xeb, which would correspond
to the transfer rate from e to b.) There are 10 variables: xoa, xob, xoc, xab,
xad, xbe, xcd, xce, xdn, and xen.

We set up the following linear program:

2.2 Flow in a Network 15

Maximize xoa + xob + xoc

subject to −3 ≤ xoa ≤ 3, −1 ≤ xob ≤ 1, −1 ≤ xoc ≤ 1
−1 ≤ xab ≤ 1, −1 ≤ xad ≤ 1, −3 ≤ xbe ≤ 3
−4 ≤ xcd ≤ 4, −4 ≤ xce ≤ 4, −4 ≤ xdn ≤ 4
−1 ≤ xen ≤ 1

xoa = xab + xad

xob + xab = xbe

xoc = xcd + xce

xad + xcd = xdn

xbe + xce = xen.

The objective function xoa +xob +xoc expresses the total rate by which data
is sent out from computer o. Since it is neither stored nor lost (hopefully)
anywhere, it has to be received at n at the same rate. The next 10 constraints,
−3 ≤ xoa ≤ 3 through −1 ≤ xen ≤ 1, restrict the transfer rates along the
individual links. The remaining constraints say that whatever enters each of
the nodes a through e has to leave immediately.

The optimal solution of this linear program is depicted below:

2

1

1

1

1

2

2

3

c
e

b

a

d

1

1

o n

The number near each link is the transfer rate on that link, and the arrow
determines the direction of the data flow. Note that between c and e data has
to be sent in the direction from e to c, and hence xce = −1. The optimum
value of the objective function is 4, and this is the desired maximum transfer
rate.

In this example it is easy to see that the transfer rate cannot be larger,
since the total capacity of all links connecting the computers o and a to the
rest of the network equals 4. This is a special case of a remarkable theorem
on maximum flow and minimum cut, which is usually discussed in courses on
graph algorithms (see also Section 8.2).

Our example of data flow in a network is small and simple. In practice,
however, flows are considered in intricate networks, sometimes even with
many source nodes and sink nodes. These can be electrical networks (current
flows), road or railroad networks (cars or trains flow), telephone networks
(voice or data signals flow), financial (money flows), and so on. There are
also many less-obvious applications of network flows—for example, in image
processing.

16 2. Examples

Historically, the network flow problem was first formulated by
American military experts in search of efficient ways of disrupting
the railway system of the Soviet block; see

A. Schrijver: On the history of the transportation and max-
imum flow problems, Math. Programming Ser. B 91(2002)
437–445.

2.3 Ice Cream All Year Round

The next application of linear programming again concerns food (which
should not be surprising, given the importance of food in life and the diffi-
culties in optimizing sleep or love). The ice cream manufacturer Icicle Works
Ltd.2 needs to set up a production plan for the next year. Based on history,
extensive surveys, and bird observations, the marketing department has come
up with the following prediction of monthly sales of ice cream in the next
year:

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

100

200

300

400

500

600

700

sales [tons]

Now Icicle Works Ltd. needs to set up a production schedule to meet
these demands.

A simple solution would be to produce “just in time,” meaning that all
the ice cream needed in month i is also produced in month i, i = 1, 2, . . . , 12.
However, this means that the produced amount would vary greatly from
month to month, and a change in the produced amount has significant costs:
Temporary workers have to be hired or laid off, machines have to be adjusted,

2 Not to be confused with a rock group of the same name. The name comes from
a nice science fiction story by Frederik Pohl.

2.3 Ice Cream All Year Round 17

and so on. So it would be better to spread the production more evenly over
the year: In months with low demand, the idle capacities of the factory could
be used to build up a stock of ice cream for the months with high demand.

So another simple solution might be a completely “flat” production sched-
ule, with the same amount produced every month. Some thought reveals that
such a schedule need not be feasible if we want to end up with zero surplus
at the end of the year. But even if it is feasible, it need not be ideal either,
since storing ice cream incurs a nontrivial cost. It seems likely that the best
production schedule should be somewhere between these two extremes (pro-
duction following demand and constant production). We want a compromise
minimizing the total cost resulting both from changes in production and from
storage of surpluses.

To formalize this problem, let us denote the demand in month i by di ≥ 0
(in tons). Then we introduce a nonnegative variable xi for the production in
month i and another nonnegative variable si for the total surplus in store
at the end of month i. To meet the demand in month i, we may use the
production in month i and the surplus at the end of month i− 1:

xi + si−1 ≥ di for i = 1, 2, . . . , 12.

The quantity xi + si−1− di is exactly the surplus after month i, and thus we
have

xi + si−1 − si = di for i = 1, 2, . . . , 12.

Assuming that initially there is no surplus, we set s0 = 0 (if we took the
production history into account, s0 would be the surplus at the end of the
previous year). We also set s12 = 0, unless we want to plan for another year.

Among all nonnegative solutions to these equations, we are looking for one
that minimizes the total cost. Let us assume that changing the production
by 1 ton from month i− 1 to month i costs e 50, and that storage facilities
for 1 ton of ice cream cost e 20 per month. Then the total cost is expressed
by the function

50
12∑

i=1

|xi − xi−1|+ 20
12∑

i=1

si,

where we set x0 = 0 (again, history can easily be taken into account).
Unfortunately, this cost function is not linear. Fortunately, there is a

simple but important trick that allows us to make it linear, at the price of
introducing extra variables.

The change in production is either an increase or a decrease. Let us intro-
duce a nonnegative variable yi for the increase from month i− 1 to month i,
and a nonnegative variable zi for the decrease. Then

xi − xi−1 = yi − zi and |xi − xi−1| = yi + zi.

A production schedule of minimum total cost is given by an optimal so-
lution of the following linear program:

18 2. Examples

Minimize 50
∑

12

i=1
yi + 50

∑
12

i=1
zi + 20

∑
12

i=1
si

subject to xi + si−1 − si = di for i = 1, 2, . . . , 12
xi − xi−1 = yi − zi for i = 1, 2, . . . , 12
x0 = 0
s0 = 0
s12 = 0
xi, si, yi, zi ≥ 0 for i = 1, 2, . . . , 12.

To see that an optimal solution (s∗,y∗, z∗) of this linear program indeed
defines a schedule, we need to note that one of y∗

i
and z∗

i
has to be zero for

all i, for otherwise, we could decrease both and obtain a better solution. This
means that y∗

i
+ z∗

i
indeed equals the change in production from month i− 1

to month i, as required.
In the Icicle Works example above, this linear program yields the follow-

ing production schedule (shown with black bars; the gray background graph
represents the demands).

100

200

300

400

500

600

700

production
[tons]

Below is the schedule we would get with zero storage costs (that is, after
replacing the “20” by “0” in the above linear program).

100

200

300

400

500

600

700

production
[tons]

2.4 Fitting a Line 19

The pattern of this example is quite general, and many problems of opti-
mal control can be solved via linear programming in a similar manner. A neat
example is “Moon Rocket Landing,” a once-popular game for programmable
calculators (probably not sophisticated enough to survive in today’s compe-
tition). A lunar module with limited fuel supply is descending vertically to
the lunar surface under the influence of gravitation, and at chosen time inter-
vals it can flash its rockets to slow down the descent (or even to start flying
upward). The goal is to land on the surface with (almost) zero speed before
exhausting all of the fuel. The reader is invited to formulate an appropriate
linear program for determining the minimum amount of fuel necessary for
landing, given the appropriate input data. For the linear programming for-
mulation, we have to discretize time first (in the game this was done anyway),
but with short enough time steps this doesn’t make a difference in practice.

Let us remark that this particular problem can be solved analytically, with
some calculus (or even mathematical control theory). But in even slightly
more complicated situations, an analytic solution is out of reach.

2.4 Fitting a Line

The loudness level of nightingale singing was measured every evening for a
number of days in a row, and the percentage of people watching the principal
TV news was surveyed by questionnaires. The following diagram plots the
measured values by points in the plane:

loudness level [dB]

TV watchers [%]

60

50

40

20 30 40 50

The simplest dependencies are linear, and many dependencies can be well
approximated by a linear function. We thus want to find a line that best fits
the measured points. (Readers feeling that this example is not sufficiently
realistic can recall some measurements in physics labs, where the measured
quantities should actually obey an exact linear dependence.)

