6 Exercise Set No. 6

1. In the gradient descent method, when the exact solution of line search in Equation 102 (in the lecture notes) is used, the algorithm is called steepest descent. Consider the following optimization

$$
\begin{equation*}
\min _{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}} x_{1}^{2}+2 x_{2}^{2}+4 x_{1}+4 x_{2} \tag{3}
\end{equation*}
$$

Show by induction that starting from $\mathbf{x}_{0}=\left(x_{1}^{(0)}, x_{2}^{(0)}\right)=(0,0)$ and using the steepest descent method, we have that

$$
\begin{equation*}
\mathbf{x}_{n}=\left(x_{1}^{(n)}, x_{2}^{(n)}\right)=\left(\frac{2}{3^{n}}-2,\left(-\frac{1}{3}\right)^{n}-1\right) \tag{4}
\end{equation*}
$$

what is the convergence point $\overline{\mathbf{x}}$? Prove or disprove that $\overline{\mathbf{x}}$ is the global optimal point.
2. Sensor array antennas are frequently used for estimating the direction θ of a target that sends electromagnetic signals. The output of the sensors is a vector of complex numbers $\mathbf{y}=\left(y_{1}, y_{2}, \ldots, y_{m}\right) \in \mathbb{C}^{m}$, where m is the number of sensors. For a special type of antennas, the direction of the target is found by solving

$$
\begin{equation*}
\max _{\theta \in \mathbb{R}}\left|y_{1}+y_{2} e^{-j \theta}+y_{3} e^{-2 j \theta}+\ldots+y_{m} e^{-(m-1) j \theta}\right|_{2}^{2} \tag{5}
\end{equation*}
$$

where $j=\sqrt{-1}$ is the imaginary unit and $|x+j y|=\sqrt{x^{2}+y^{2}}$ for $x, y \in \mathbb{R}$ is the absolute value function. Suppose that in one experiment $m=4$ sensors obtained the following output

$$
\begin{equation*}
\mathbf{y}=\left(y_{1}=1, y_{2}=0.6+0.8 j, y_{3}=-0.3+1 j, y_{4}=-1+0.3 j\right) \tag{6}
\end{equation*}
$$

(a) Substitute the \mathbf{y} vector of (6) into (5) and calculate the gradient with respect to θ. (Hint: you may use Euler's formula: $e^{j \phi}=\cos (\phi)+$ $j \sin (\phi)$ for $\phi \in \mathbb{R}$.
(b) Write a MATLAB code which implements the gradient descent method with the step size $\mu=10^{-2}$ and runs for 100 iterations. Hand in your MATLAB code. (Notice that it is maximization problem)
(c) Run your code for two different initial points $\theta_{0}=0$ and $\theta_{0}=-1$. Plot by MATLAB the objective value $f\left(\theta_{n}\right)$ and the optimal point θ_{n} versus the iteration n for both cases (4 plots in total. Include axis labels and captions for better readability.)
(d) Plot by MATLAB the objective function for $\theta \in[-\pi \pi]$. What is the global optimal point? Which of the two starting points above leads to the global optimal point?

