1.3 FORMULATING IPS AND BIPS

As in linear programming, translating a problem description into a formula-
tion should be done systematically, and a clear distinction should be made
between the data of the problem instance, and the variables {or unknowns)
used in the model.

(i) Define what appear to be the necessary variables.

(i) Use these variables to define a set of constraints so that the feasible points
correspond to the feasible solutions of the problem.

(iii) Use these variables to define the objective function.

If difficulties arise, define an additional or alternative set of variables and
iterate.

Defining variables and constraints may not always be as easy as in linear
programming. Especially for COPs, we are often interested in choosing a
subset S C N. For this we typically make use of the incidence vector of 5,
which is the n-dimensional 0-1 vector z° such that xf =1ije S, and
:cf = {J otherwise.

Below we formulate four well-known integer programming problems.

The Assignment Problem

There are n people available to carry out n jobs. Each person is assigned to
carry out exactly one job. Some individuals are better suited to particular
jobs than others, so there is an estimated cost ci; if person ¢ is assigned to
job j. The problem is to find a minimum cost assignment.

Definition of the variables. _
z;; = 1 if person 7 does job j, and z;; = 0 otherwise.

Definition of the constraints.
Each person i does one job:

n
ZIij=1fOI‘?;=1,...,n.
j=1

Each job j is done by one person:
n
Z-’I:ij =1forj=1,...,n
i=1
The variables are 0-1:

ziy €{0,1} fori=1,...,n,5=1,...
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Definition of the objective function.

The cost of the assignment is minimized: 7 sti
. ot
min 3" 3 e
i=1 j=1 i D
A T
The 0-1 Knapsack Problem L !
. . D
There is a budget b available for investment in projects during the coming year At
and n projects are under consideration, where a; is the outlay for project j,
and ¢; is its expected return. The goal is to choose a set of projects so that
the budget is not exceeded and the expected return is maximized.
Definition of the variables. T}
T; = 1 if project § is selected, and z; = 0 otherwise.
Definition of the constraints. D
The budget cannot be exceeded: - Tt
. .
Z (IjCL'j S b.
=1 o
The variables are 0-1: 7 : 3 T
z;€{0,1} forj=1,...,n. - om
Definition of the objective function. it
The expected return is maximized: S :_ls
in
T S
- shy
machj;vj. , L
=1 - cli
The Set Covering Problem pri
Nc
Given a certain number of regions, the problem is to decide where to instal] a o
set of emergency service centers. For each possible center the cost of installing o De
a service center, and which regions it can service are known. For instance, if T
the centers are fire stations, a station can service those regions for which a _ otl
fire engine is guaranteed to arrive on the scene of a fire within 8 minutes. The : ey
goal is to choose a minimum cost set of service centers so that each region is De
covered. . He
First we can formulate it as a more abstract COP. Let M = {1,...,m} '
be the set of regions, and N = {1,...,n} the set of potential centers. Let
S; © M be the regions that can be serviced by a center at J € N, and ¢; its -
installation cost. We obtain the problem: G He
q{[&%{; cj! UjeTS' = M}
; .




Now we formulate it as a BIP. To facilitate the description, we first con-
struct a 0-1 incidence matriz A such that a; =1ifi€8; anda; =0
otherwise. Note that this is nothing but processing of the data.

Definition of the variables.
zj = 1 if center j is selected, and z; = { otherwise,

Definition of the constraints.
At least one center must service region 1:

™
Zaija:j >lfori=1,...,m.
i=1
The variables are 0-1:
z;€{0,1} forj=1,...,n.

Definition of the objective function.
The total cost is minimized:

n
min E Cix;.
=1

The Traveling Salesman Problem (TSP )

This is perhaps the most notorious problem in Operations Research because
it is so easy to explain, and so tempting to try and solve. A salesman must
visit each of n cities exactly once and then return to his starting point. The
time taken to travel from city i to city j is ¢;j. Find the order in which he
should make his tour so as to finish as quickly as possible.

This problem arises in a multitude of forms: a truck driver has a list of
clients he must visit on a given day, or a machine must place modules on
printed circuit boards, or a stacker crane must pick up and depose crates.
Now we formulate it as a BIP.

Definition of the variables.
Ti; = 1 if the salesman goes directly from town i to town 7, and x5 =
otherwise. (z; is not defined for i =1, .. 1)

Definition of the constraints.
He leaves town i exactly once:

Z z;=1fori=1,...,n.
RV b
He arrives at town j exactly once:

Zxﬁ:l forj=1,...,n.
ity
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N

Fig. 1.2 Subtours

So far these are precisely the constraints of the assignment problem. A solu-
tion to the assignment problem might give a solution of the form shown in
Figure 1.2 (i.e., a set of disconnected subtours). To eliminate these solutions,
we need more constraints that guarantee connectivity by imposing that the

-salesman must pass from one set of cities to another, so-called cut-set con-
straints:

, Zzw,—jzlforSCN,S;w.

i€S j¢8

An alternative is to replace these constraints by subtour elimination con-
straints:

3N wy<lS|-lfrScN2<|S|<n—1.
i€8 jes
The variables are 0-1:

$ij€{0,1} fori=1,...,n,j=1,...,n,i7éj.

Definition of the objective function.
The total travel time is minimized:

non
mmz Zc,ej:r,-j.

i=1 j=1

1.4 THE COMBINATORIAL EXPLOSION

The four problems we have looked at so far are all combinatorial in the sense
that the optimal solution is some subset of a finite set. Thus in principle these
problems can be solved by enumeration . To see for what size of problem in-
stances this is a feasible approach, we need to count the number of possible
solutions.

The Assignment Problem. There is a one-to-one correspondence between as-
signments and permutations of {1,...,n}. Thus there are n! solutions to
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compare.

The Knapsack and Covering Problems. In both cases the number of subsets is
2". For the knapsack problem with b = 377_; a;/2, at least half of the subsets

are feasible, and thus there are at least 27~! feasible subsets.

The Troveling Salesman Problem. Starting at city 1, the salesman has n — 1
choices. For the next choice n — 2 cities are possible, and so on. Thus there
are (n — 1)! feasible tours.

In Table 1.1 we show how rapidly certain functions grow. Thus a T'SP
with n = 101 has approximately 9.33 x 10'%7 tours.

i3 logn n%% g2 Pl nl
10 332 316 10° 1.02x10° 3.6 x 10°
100 6.64 10.00 10* 1.27x10%0  9.33 x 10157
1000 9.97 31.62 105 1.07 x 10301 402 x 102567

Table 1.1 Some typical functions

The conclusion to be drawn is that using complete enumeration we can only
hope to solve such problems for very small values of n. Therefore we have to
devise some more intelligent algorithms, otherwise the reader can throw this
book out of the window.

1.5 MIXED INTEGER FORMULATIONS

Modeling Fixed Costs

Suppose we wish to model a typical nonlinear fixed charge cost function:
hzy=f+prif0<z<Cand h(z)=0ifz=0
with f > 0 and.p > 0 (see Figure 1.3).

hix)

0

Fig. 1.3 Fixed cost function
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Definition of an additional variable.
y=1if:1:>03ndy=()otherwise.

Definition of the constraints and objective function.
We replace h(z) by fy +pT, and add the constraints £ < Cy,y € {0,1}-

Note that this is not a completely satisfactory formulation, because al-
though the costs are correct when = > 0, it is possible to have the solution
z = 0,y = 1. However, as the objective is minimization, this will typically

not arise in an optimal solution.
Uncapacitated Facility Location (UFL)

Civen a set of potential depots N={1...,ntanda set M = {1,...,m} of
clients, suppose there is a fixed cost fj associated with the use of depot J,
and a transportation cost Ci; if all of client 4’s order is delivered from depot j.
The problem is to decide which depots to open, and which depot serves each
client so as to minimize the sum of the fixed and transportation costs. Note
that this problem is gimilar to the covering problem, except for the addition

of the variable transportation costs.

Definition of the variables.
We introduce a fixed cost or depot opening variable y; = 1 if depot 4 is used,

and y; = 0 otherwise.
xij 18 the fraction of the demand of client 4 satisfied from depot j.

Definition of the constraints.
Satisfaction of the demand of client :

n
Z:n,;j =1fori=1,...,m

=1
To represent the link between the Zij a.nd the 4 variables, we note that
S iem Tis < m, and use the fixed cost formulation above to obtain:

Zmij < my; forj € N,y; € {0,1} for 5 € N.
iEM

Definition of the objective function.
The objective i8 2 jen hj(mlj,...,:cmj) where hj(z:lj,...,mmj) = fi +
Yoiem CisTii if Zie M Lif > 0, so we obtain

‘miny 3 eigwij + > S
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Uncapacitated Lot-Sizing (ULS)

The problem is t6 decide on a production plan for an n-period horizon for a
single product. The basic model can be viewed as having data:

ft is the fixed cost of producing in period ¢.
P is the unit production cost in period .
ht is the unit storage cost in period .

d; is the demand in period ¢.

We use the natural (or obvious) variables:

z; is the amount produced in period ¢.
8¢ is the stock at the end of period &.
y: = 1 if production occurs in £, and 3 = 0 otherwise.

To handle the fixed costs, we observe that a priori no upper bound is given
on z,. Thus we either must use a very large value C = M, or calculate an
upper bound based on the problem data,

For constraints and objective we obtain:

n n k11
min Zptmt + E hise + Z feue
t=1 =1 =1

St_1+.'L't dt+SthI't=1,...,ﬂ
T My fort=1,...,n
so = 0,84, 74 0,y: € {0,1} fort =1,...,n.

If we impose that s, = 0, then we can tighten the variable upper bound
constraints to z; < (3., d;)y:. Note also that by substituting s; = Z:=1 Ti—
3¢ di, the objective function can be rewritten as S G +Y p fipp—K

where ¢; = p, + ht + ... + hn and the constant K = 3.7 he(35_, ).

Discrete Alternatives or Disjunctions

Suppose z € R™ satisfies 0 < z < u, and either alz < by or a2z < b

(see Figure 1.4). We introduce binary variables y; for ¢ = 1,2. Then if
M > max{a*z — b; : 0 < x < u} for i = 1,2, we take as constraints:

atx —by < M(1~y)fori=1,2
n+yw=1y¢€ {0,1} fori=1,2
0<z< u.
Now if y1 = 1, z satisfies a’x < b; whereas a®z < by is inactive, and conversely
if Yo = 1.
Such disjunctions arise naturally in scheduling problems. Suppose that
two jobs must be processed on the same machine and cannot be processed




