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Abstract. Polygonal hybrid systems are a subclass of planar hybrid
automata which can be represented by piecewise constant differential
inclusions. Here, we identify and compute an important object of such
systems’ phase portrait, namely invariance kernels. An invariant set is a
set of initial points of trajectories which keep rotating in a cycle forever
and the invariance kernel is the largest of such sets. We show that this
kernel is a non-convex polygon and we give a non-iterative algorithm for
computing the coordinates of its vertices and edges. Moreover, we present
a breadth-first search algorithm for solving the reachability problem for
such systems. Invariance kernels play an important role in the algorithm.

1 Introduction

A hybrid system is a system where both continuous and discrete behaviors in-
teract with each other. A typical example is given by a discrete program that
interacts with (controls, monitors, supervises) a continuous physical environ-
ment. In the last decade many (un)decidability results for a variety of problems
concerning classes of hybrid systems have been given [ACH+95,ABDM00,BT00],
[DM98,GM99,KV00]. One of the main research areas in hybrid systems is reacha-
bility analysis. Most of the proved decidability results are based on the existence
of a finite and computable partition of the state space into classes of states which
are equivalent with respect to reachability. This is the case for timed automata
[AD94], and classes of rectangular automata [HKPV95] and hybrid automata
with linear vector fields [LPY99]. For some particular classes of two-dimensional
dynamical systems a geometrical method, which relies on the analysis of topo-
logical properties of the plane, has been developed. This approach has been
proposed in [MP93]. There, it is shown that the reachability problem for two-
dimensional systems with piece-wise constant derivatives (PCDs) is decidable.
This result has been extended in [CV96] for planar piece-wise Hamiltonian sys-
tems and in [ASY01] for polygonal hybrid systems, a class of nondeterminis-
tic systems that correspond to piecewise constant differential inclusions on the
plane, see Fig. 1(a). For historical reasons we call such a system an SPDI [Sch02].
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Fig. 1. (a) An SPDI and its trajectory segment; (b) Reachability analysis of the SPDI

In [AMP95] it has been shown that the reachability problem for PCDs is unde-
cidable for dimensions higher than two.

Another important issue in the analysis of a (hybrid) dynamical system is the
study of its qualitative behavior, namely the construction of its phase portrait.
Typical questions one may want to answer include: “does every trajectory (ex-
cept for the equilibrium point at the origin) converge to a limit cycle?”, and
”what is the biggest set such that any point on it is reachable from any other
point on the set?”. There are very few results on the qualitative properties of tra-
jectories of hybrid systems [ASY02,Aub01,DV95,KV96,KdB01,MS00,SJSL00].
In particular, the question of defining and constructing phase portraits of hy-
brid systems has not been directly addressed except in [MS00], where phase
portraits of deterministic systems with piecewise constant derivatives are ex-
plored and in [ASY02] where viability and controllability kernels for polygonal
differential inclusion systems have been computed.

In this paper we show how to compute another important object of phase por-
traits of SPDIs, namely the invariance kernel. In general, an invariant set is a
set of points such that every trajectory starting in the set remains within the
set forever and the invariance kernel is the largest of such sets. We show that,
for SPDIs, this kernel for a particular cycle is a non-convex polygon and we
give a non-iterative algorithm for computing the coordinates of its vertices and
edges3. Clearly, the invariance kernel provides useful insight about the behavior
of the SPDI around simple cycles. Furthermore, we present an alternative algo-
rithm to the one presented in [ASY01] for solving the reachability problem for
SPDIs. This algorithm is a breadth-first search, in the spirit of traditional model
checking algorithms. Invariance kernels play a key role in the algorithm.

3 Notice that since SPDIs are partially defined over the plane, their invariance kernels
are in general different from the whole plane.



2 Preliminaries

2.1 Truncated affine multivalued functions

A (positive) affine function f : R → R is such that f(x) = ax + b with a > 0.
An affine multivalued function F : R → 2R, denoted F = 〈fl, fu〉, is defined by
F (x) = 〈fl(x), fu(x)〉 where fl and fu are affine and 〈·, ·〉 denotes an interval. In
what follows we will consider only well-formed intervals, i.e. 〈l, u〉 is an interval
iff l ≤ u. For notational convenience, we do not make explicit whether intervals
are open, closed, left-open or right-open, unless required for comprehension.
For an interval I = 〈l, u〉 we have that F (〈l, u〉) = 〈fl(l), fu(u)〉. The inverse
of F is defined by F−1(x) = {y | x ∈ F (y)}. It is not difficult to show that
F−1 = 〈f−1

u , f−1
l 〉. The universal inverse of F is defined by F̃−1(I) = I ′ iff I ′ is

the greatest non-empty interval such that for all x ∈ I ′, F (x) ⊆ I. Notice that
if I is a singleton then F̃−1 is defined only if fl = fu. These classes of functions
are closed under composition.
A truncated affine multivalued function (TAMF) F : R → 2R is defined by an
affine multivalued function F and intervals S ⊆ R+ and J ⊆ R+ as follows:
F(x) = F (x) ∩ J if x ∈ S, otherwise F(x) = ∅. For convenience we write
F(x) = F ({x} ∩ S) ∩ J . For an interval I, F(I) = F (I ∩ S) ∩ J and F−1(I) =
F−1(I ∩J)∩S. We say that F is normalized if S = DomF = {x | F (x)∩J 6= ∅}
(thus, S ⊆ F−1(J)) and J = ImF = F(S). In what follows we only consider
normalized TAMFs. The universal inverse of F is defined by F̃−1(I) = I ′ iff
I ′ is the greatest non-empty interval such that for all x ∈ I ′, F (x) ⊆ I and
F (x) = F(x).
TAMFs are closed under composition [ASY01]:

Theorem 1. The composition of two TAMFs F1(I) = F1(I ∩ S1) ∩ J1 and
F2(I) = F2(I∩S2)∩J2, is the TAMF (F2 ◦F1)(I) = F(I) = F (I∩S)∩J , where
F = F2 ◦ F1, S = S1 ∩ F−1

1 (J1 ∩ S2) and J = J2 ∩ F2(J1 ∩ S2).

2.2 SPDI

An angle ∠b
a on the plane, defined by two non-zero vectors a,b is the set of all

positive linear combinations x = α a + β b, with α, β ≥ 0, and α + β > 0. We
can always assume that b is situated in the counter-clockwise direction from a.
A polygonal differential inclusion system (SPDI) is defined by giving a finite
partition P of the plane into convex polygonal sets, and associating with each
P ∈ P a couple of vectors aP and bP . Let φ(P ) = ∠bP

aP
. The SPDI is ẋ ∈ φ(P )

for x ∈ P .
Let E(P ) be the set of edges of P . We say that e ∈ E(P ) is an entry of P if for
all x ∈ e and for all c ∈ φ(P ), x+cε ∈ P for some ε > 0. We say that e is an exit
of P if the same condition holds for some ε < 0. We denote by In(P ) ⊆ E(P )
the set of all entries of P and by Out(P ) ⊆ E(P ) the set of all exits of P .

Assumption 1 All the edges in E(P ) are either entries or exits, that is, E(P ) =
In(P ) ∪Out(P ).



Example 1. Consider the SPDI illustrated in Fig. 1(a). For each region Ri, 1 ≤
i ≤ 8, there is a pair of vectors (ai,bi), where: a1 = b1 = (1, 5), a2 = b2 =
(−1, 1

2 ), a3 = (−1, 11
60 ) and b3 = (−1,− 1

10 ), a4 = b4 = (−1,−1), a5 = b5 =
(0,−1), a6 = b6 = (1,−1), a7 = b7 = (1, 0), a8 = b8 = (1, 1).

A trajectory segment of an SPDI is a continuous function ξ : [0, T ] → R2 which
is smooth everywhere except in a discrete set of points, and such that for all
t ∈ [0, T ], if ξ(t) ∈ P and ξ̇(t) is defined then ξ̇(t) ∈ φ(P ). The signature, denoted
Sig(ξ), is the ordered sequence of edges traversed by the trajectory segment, that
is, e1, e2, . . ., where ξ(ti) ∈ ei and ti < ti+1. If T = ∞, a trajectory segment is
called a trajectory.

Assumption 2 We will only consider trajectories with infinite signatures.

2.3 Successors and predecessors

Given an SPDI, we fix a one-dimensional coordinate system on each edge to
represent points laying on edges [ASY01]. For notational convenience, we will use
e to denote both the edge and its one-dimensional representation. Accordingly,
we write x ∈ e or x ∈ e, to mean “point x in edge e with coordinate x in the
one-dimensional coordinate system of e”. The same convention is applied to sets
of points of e represented as intervals (e.g., x ∈ I or x ∈ I, where I ⊆ e) and to
trajectories (e.g., “ξ starting in x” or “ξ starting in x”).
Now, let P ∈ P, e ∈ In(P ) and e′ ∈ Out(P ). For I ⊆ e, Succee′(I) is the set of all
points in e′ reachable from some point in I by a trajectory segment ξ : [0, t] → R2

in P (i.e., ξ(0) ∈ I ∧ ξ(t) ∈ e′ ∧ Sig(ξ) = ee′). We have shown in [ASY01] that
Succee′ is a TAMF4.

Example 2. Let e1, . . . , e8 be as in Fig. 1(a) and I = [l, u]. We assume a one-
dimensional coordinate system such that ei = Si = Ji = (0, 1). We have that:

Fe1e2(I) =
[

l
2 , u

2

]
Fe2e3(I) =

[
l − 1

10 , u + 11
60

]
Feiei+1(I) = I 3 ≤ i ≤ 7 Fe8e1(I) =

[
l + 1

5 , u + 1
5

]
with Succeiei+1(I) = Feiei+1(I ∩ Si) ∩ Ji+1, for 1 ≤ i ≤ 7, and Succe8e1(I) =
Fe8e1(I ∩ S8) ∩ J1.

Given a sequence w = e1, e2, . . . , en, Theorem 1 implies that the successor of I
along w defined as Succw(I) = Succen−1en ◦ . . . ◦ Succe1e2(I) is a TAMF.

Example 3. Let σ = e1 · · · e8e1. We have that Succσ(I) = F (I ∩ S) ∩ J , where:
F (I) =

[
l
2 + 1

10 , u
2 + 23

60

]
S = (0, 1) and J = ( 1

5 , 53
60 ) are computed using Theorem 1.

For I ⊆ e′, Preee′(I) is the set of points in e that can reach a point in I by a
trajectory segment in P . We have that[ASY01]: Preee′ = Succ−1

ee′ and Preσ =
Succ−1

σ .
4 In [ASY01] we explain how to choose the positive direction on every edge in order

to guarantee positive coefficients in the TAMF.



Example 4. Let σ = e1 . . . e8e1 be as in Fig. 1(a) and I = [l, u]. We have that
Preeiei+1(I) = F−1

eiei+1
(I ∩ Ji+1) ∩ Si, for 1 ≤ i ≤ 7, and Pree8e1(I) = F−1

e8e1
(I ∩

J1) ∩ S8, where:
F−1

e1e2
(I) = [2l, 2u] F−1

e2e3
(I) =

[
l − 11

60 , u + 1
10

]
F−1

eiei+1
(I) = I 3 ≤ i ≤ 7 F−1

e8e1
(I) =

[
l − 1

5 , u− 1
5

]

Besides, Preσ(I) = F−1(I ∩ J) ∩ S, where F−1(I) = [2l − 23
30 , 2u− 1

5 ].

2.4 Qualitative analysis of simple edge-cycles

Let σ = e1 · · · eke1 be a simple edge-cycle, i.e., ei 6= ej for all 1 ≤ i 6= j ≤ k. Let
Succσ(I) = F (I ∩ S) ∩ J with F = 〈fl, fu〉 (we suppose that this representation
is normalized). We denote by Dσ the one-dimensional discrete-time dynamical
system defined by Succσ, that is xn+1 ∈ Succσ(xn).

Assumption 3 None of the two functions fl, fu is the identity.

Let l∗ and u∗ be the fixpoints5 of fl and fu, respectively, and S ∩ J = 〈L,U〉.
We have shown in [ASY01] that a simple cycle is of one of the following types:

STAY. The cycle is not abandoned neither by the leftmost nor the rightmost
trajectory, that is, L ≤ l∗ ≤ u∗ ≤ U .

DIE. The rightmost trajectory exits the cycle through the left (consequently the
leftmost one also exits) or the leftmost trajectory exits the cycle through the
right (consequently the rightmost one also exits), that is, u∗ < L ∨ l∗ > U .

EXIT-BOTH. The leftmost trajectory exits the cycle through the left and the
rightmost one through the right, that is, l∗ < L ∧ u∗ > U .

EXIT-LEFT. The leftmost trajectory exits the cycle (through the left) but the
rightmost one stays inside, that is, l∗ < L ≤ u∗ ≤ U .

EXIT-RIGHT. The rightmost trajectory exits the cycle (through the right)
but the leftmost one stays inside, that is, L ≤ l∗ ≤ U < u∗.

Example 5. Let σ = e1 · · · e8e1. We have that S ∩ J = 〈L,U〉 = ( 1
5 , 53

60 ). The
fixpoints of the equation in example 3 are such that L = l∗ = 1

5 < u∗ = 23
30 < U .

Thus, σ is STAY.

The classification above gives us some information about the qualitative behav-
ior of trajectories. Any trajectory that enters a cycle of type DIE will eventually
quit it after a finite number of turns. If the cycle is of type STAY, all trajectories
that happen to enter it will keep turning inside it forever. In all other cases, some
trajectories will turn for a while and then exit, and others will continue turn-
ing forever. This information is very useful for solving the reachability problem
[ASY01].

5 Obviously, the fixpoint x∗ is computed by solving a linear equation f(x∗) = x∗,
which can be finite or infinite (see Lemma 6, page 45 of [Sch02]).



Example 6. Consider again the cycle σ = e1 · · · e8e1. Fig. 1(b) shows the reach
set of the interval [0.95, 1.0] ⊂ e1. Notice that the leftmost trajectory “converges
to” the limit l∗ = 1

5 . Fig. 1(b) has been automatically generated by the SPeeDI
toolbox [APSY02] we have developed for reachability analysis of SPDIs.

The above result does not allow us to directly answer other questions about
the behavior of the SPDI such as determine for a given point (or set of points)
whether any trajectory (if it exists) starting in the point remains in the cycle
forever. In order to do this, we need to further study the properties of the system
around simple edge-cycles and in particular STAY cycles. See [Sch03] for some
important properties of STAY cycles.

3 Invariance Kernel

In this section we define the notion of invariance kernel and we show how to
compute it. In general, an invariant set is a set of points such that for any point
in the set, every trajectory starting in such point remains in the set forever and
the invariance kernel is the largest of such sets.
In particular, for SPDI, given a cyclic signature, an invariant set is a set of
points which keep rotating in the cycle forever and the invariance kernel is the
largest of such sets. We show that this kernel is a non-convex polygon (often
with a hole in the middle) and we give a non-iterative algorithm for computing
the coordinates of its vertices and edges.
In what follows, let K ⊂ R2. We recall the definition of viable trajectory. A
trajectory ξ is viable in K if ξ(t) ∈ K for all t ≥ 0. K is a viability domain if
for every x ∈ K, there exists at least one trajectory ξ, with ξ(0) = x, which is
viable in K.

Definition 1. We say that a set K is invariant if for any x ∈ K such that there
exists at least one trajectory starting in it, every trajectory starting in x is viable
in K. Given a set K, its largest invariant subset is called the invariance kernel
of K and is denoted by Inv(Kσ).

We denote by Dσ the one-dimensional discrete-time dynamical system defined
by Succσ, that is xn+1 ∈ Succσ(xn). The concepts above can be defined for Dσ,
by setting that a trajectory x0x1 . . . of Dσ is viable in an interval I ⊆ R, if xi ∈ I
for all i ≥ 0. Similarly we say that an interval I in an edge e is invariant if any
trajectory starting on x0 ∈ I is viable in I.
Before showing how to compute the invariance kernel of a cycle, we give a char-
acterization of one-dimensional discrete-time invariant.

Lemma 1. For Dσ and σ a STAY cycle, the following is valid. If I is such
that F (I) ⊆ I and F (I) = F(I) then I is invariant. On the other hand if I is
invariant then F (I) = F(I).

Proof: Suppose that F (I) = F(I) and F (I) ⊆ I, then F(I) ⊆ I, thus by
definition of STAY and monotonicity of F , we know that for all n, Fn(I) ⊆ I.



Hence I is invariant. Let suppose now that I is invariant, then for any trajectory
starting on x0 ∈ I, x0x1 . . . is in I and trivially F (I) = F(I). ut
Given two edges e and e′ and an interval I ⊆ e′ we define the ∀-predecessor
P̃re(I) in a similar way to Pre(I) using the universal inverse instead of just the
inverse: for I ⊆ e′, P̃reee′(I) is the set of points in e such that any successor of

such points are in I by a trajectory segment in P . We have that P̃reee′ = S̃uc
−1

ee′

and P̃reσ = S̃uc
−1

σ .

Theorem 2. For Dσ, if σ = e1 . . . ene1 is STAY then Inv(e1) = P̃reσ(J), else
Inv(e1) = ∅.

Proof: That Inv(e1) = ∅ for any type of cycle but STAY follows directly from
the definition of each type of cycle.
Let us consider a STAY cycle with signature σ. Let IK = F̃−1(J) = P̃reσ(J).
We know that F (F̃−1(J)) = F(F̃−1(J))6 and by STAY property, F (F̃−1(J)) ⊆
F̃−1(J), thus by Lemma 1 we have that IK is invariant. We prove now that IK is
indeed the greatest invariant. Let suppose that there exists an invariant H ⊆ S
strictly greater than IK . By assumption we have that IK = F̃−1(J) ⊂ H, then
by monotonicity of F , F(F̃−1(J)) ⊂ F(H) and since F(F̃−1(J)) = J7 we have
that J ⊂ F(H), but this contradicts the monotonicity of F since J = F(S) ⊂
F(H) and then S ⊂ H which contradicts the hypothesis that H ⊆ S. Hence,
Inv(e1) = P̃reσ(J). ut
The invariance kernel for the continuous-time system can be now found by prop-
agating P̃re(J) from e1 using the following operator. The extended ∀-predecessor
of an output edge e of a region R is the set of points in R such that every trajec-
tory segment starting in such point reaches e without traversing any other edge.
More formally,

Definition 2. Let R be a region and e be an edge in Out(R). The e-extended

∀-predecessor of I, P̃ree(I) is defined as:

P̃ree(I) = {x | ∀ξ . (ξ(0) = x ⇒ ∃t ≥ 0 . (ξ(t) ∈ I ∧ Sig(ξ[0, t]) = e))}.

The above notion can be extended to cyclic signatures (and so to edge-signatures)
as follows. Let σ = e1, . . . , ek be a cyclic signature. For I ⊆ e1, the σ-extended
∀-predecessor of I, P̃reσ(I) is the set of all x ∈ R2 for which any trajectory
segment ξ starting in x, reaches some point in I, such that Sig(ξ) is a suffix of
e2 . . . eke1.
It is easy to see that P̃reσ(I) is a polygonal subset of the plane which can be

calculated using the following procedure. First compute P̃reei(I) for all 1 ≤ i ≤ n

and then apply this operation k times: P̃reσ(I) =
⋃k

i=1 P̃reei(Ii), with I1 = I,
Ik = P̃reeke1(I1) and Ii = P̃reeiei+1(Ii+1), for 2 ≤ i ≤ k − 1.

6 See Lemma 13 in [Sch03] for a proof.
7 See Lemma 12 in [Sch03] for a proof.
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Fig. 2. Invariance kernel.

Now, let define the following set:
Kσ =

⋃k
i=1(int(Pi) ∪ ei)

where Pi is such that ei−1 ∈ In(Pi), ei ∈ Out(Pi) and int(Pi) is the interior of
Pi.
We can now compute the invariance kernel of Kσ.

Theorem 3. If σ is STAY then Inv(Kσ) = P̃reσ(P̃reσ(J)), otherwise Inv(Kσ) =
∅.
Proof: Trivially Inv(Kσ) = ∅ for any type of cycle but STAY. That Inv(Kσ) =

P̃reσ(P̃reσ(J)) for STAY cycles, follows directly from Theorem 2 and definition

of P̃re. ut
Example 7. Let σ = e1 . . . e8e1. Fig. 2 depicts: (a) Kσ, and (b) P̃reσ(P̃reσ(J))

4 Reachability Algorithms for SPDIs

4.1 Previous algorithm [ASY01]

The decidability proof of [ASY01] already provides an algorithmic way of decid-
ing reachability in SPDIs, which was implemented in our tool SPeeDI [APSY02].
We will give an overview of the algorithm to be able to compare and contrast
it with the new algorithm that we are proposing. The decidability proof is split
into three steps:

1. Identify a notion of types of signatures, each of which ‘embodies’ a number
of signatures through the SPDI.

2. Prove that a finite number of types suffice to cover all edge signatures. Fur-
thermore, given an SPDI, this set is computable.

3. Give an algorithm which decides whether a given type includes a signature
which is feasible under the differential inclusion constraints of the SPDI.

We will not go into the details (see [ASY01] for more details), but will outline a
number of items which will allow us to compare the algorithms.



Definition 3. A type signature is a sequence of edge signatures with alternating
loops: r1s

+
1 r2s

+
2 . . . s+

n rn+1s
∗. The ri parts of the type signature are called the

sequential paths while the si parts called iteration paths. The last iteration path
s is always a STAY loop. The interpretation of a type is similar to that of regular
expressions:
signatures(r1s

+
1 r2s

+
2 . . . s+

n rn+1s
∗) df= {r1s

k1
1 r2s

k2
2 . . . skn

n rn+1s
k | ki > 0, k ≥ 0}

In [ASY01], one can find details of how to decide whether a given type signature
includes an edge signature which is feasible. Clearly, given a source edge es

and a destination edge ef , there potentially exists an infinite number of type
signatures from es to ef . To reduce this to a finite number, [ASY01] applies a
number of syntactic constraints which ensure finiteness, but do not leave out any
possibly feasible edge signatures. Using these constraints it is easy to implement
a depth-first traversal of the SPDI to check all possible type signatures. Note
that a breadth-first traversal would require excessive storage requirements of all
intermediate nodes.
From our experience in using SPeeDI, our implementation of this algorithm,
the main deficiency of this approach is that incorrect systems which may have
‘short’ counter-examples (in terms of type signature length) end up lost in the
exploration of long paths — either taking an excessive amount of time to find
the counter-example, or coming up with a long counter-example difficult to use
for debugging the hybrid system. Ideally, we should be able to find a shortest
counter-example without the need of exhaustive exploration of the SPDI.

4.2 A Breadth-First Algorithm

As is evident from the previous section, it is desirable to have a breadth-first
algorithm to be able to identify shortest8 counter-examples and be able to use
standard algorithms for optimisation.

Definition 4. The edge graph of an SPDI with partition P is the graph with
the region edges as nodes: N = ∪P∈PE(P ); and transitions between two edges
in the same partition with the first being an input and second an output edge:
T = {(e, e′) | ∃P ∈ P . e, e′ ∈ P, e ∈ In(P ), e′ ∈ Out(P )}.

Example 8. To illustrate the notion of an edge-graph, Fig. 3 illustrates the edge-
graph corresponding to the SPDI representing the swimmer example given in
Fig. 1(a).

Definition 5. The meta-graph of an SPDI S is its edge graph augmented with
the loops in the SPDI:

1. An unlabelled transition for every transition in the original graph: {e →
e′ | input edge e and output edge e′ belong to the same region }

8 Note that shortest, in this context, is not in terms or length of path on the SPDI, or
number of edges visited, but on the length of the abstract signature which includes
a counter-example.



Fig. 3. The edge-graph of the swimmer SPDI example

2. A set of labelled transitions, one for each simple loop in the original graph
which is eventually left: {e se

# e′ | head(s) 6= e′, esee′ is a valid path in S}
3. A set of labelled sink edges, one for each simple loop of type STAY which is

never left: {e se
ª | ese is a valid path in S, se is a STAY loop}.

Note that reachability along a path through the meta-graph corresponds to that
of a type signature as defined in the previous section. For example e1 → e2

s1#
e3

s2ª would correspond to e1e2s
+
1 e3s

∗
2. From the result in [ASY01], which states

that only a finite number of abstract signatures (of finite length) suffices to
describe the set of all signatures through the graph, it immediately follows that
for any SPDI, it suffices to explore the meta-graph to a finite depth to deduce
the reachable set.

Proposition 1. Given an SPDI S, reachability in S is equivalent to reachability
in the meta-graph of S. ut
To implement the meta-graph traversal, we will define the functions correspond-
ing to the different transitions which, given a set of edge-intervals already visited,
return a new set of edge-intervals which will be visited along that transition:

→ (E) df= {Succee′(i) | i ∈ E, i ⊆ e, e → e′}
# (E) df= {Succp(i) | i ∈ E, i ⊆ e, e

σ
# e′, p prefix eσ+e′}

ª (E) df= {Succp(i) ∩ Inv(Kσ) | i ∈ E, i ⊆ e, e
σ
ª, p prefix eσ∗}.

Note that, using the techniques developed in [ASY01], we can always calculate
the first two of the above. Furthermore, we are guaranteed that if E consists of
a finite number of edge-intervals, so will → (E) and # (E). Unfortunately, this
is not the case with ª (E). However, it is possible to compute whether a given
set of edge-intervals and ª (E) (E being a finite set of edge-intervals) overlap.
If we consider the standard model checking approach, we can use a given SPDI
with transitions →, meta-transitions #, sink-transitions ª and initial set I:

R0
df= I Rn+1

df= Rn∪ → (Rn)∪ # (Rn)∪ ª (Rn)
We can terminate once nothing else is added: RN+1 = RN . Edge-interval sets
Rn can be represented enumeratively. However, as already noted, STAY loops
represented by sinks may induce an infinite number of disjoint intervals. However,
since sinks are dead end transitions, we can simplify the reachability analysis by
performing the sinks only at the end:



Rn+1
df= Rn∪ → (Rn)∪ # (Rn)

Since the termination condition depended on the fact that we were also applying
the sink transitions ª, we add this when we check the termination condition:
RN∪ ª (RN ) = RN+1∪ ª (RN+1). Although the problem has been simply
moved to the termination test, we show that this condition can be reduced to
the simpler, and testable: RN+1 \RN ⊆ Inv, where Inv is the set of all invariance
kernels

⋃
σ∈STAY Inv(Kσ). The proof of correctness of the algorithm can be found

in [Pac03].
We can now implement the algorithm in a similar manner as standard forward
model checking:

preR := {}; R := Src;

while (R \ preR 6⊆ Inv)
preR := R; R := R∪ → (R)∪ # (R);
if (Dst overlaps R) then return REACHABLE;

if (Dst overlaps (R ∪ ª (R)))

then return REACHABLE else return UNREACHABLE;

5 Conclusion

One of the contributions of this paper is an automatic procedure to obtain an
important object of the phase portrait of simple planar differential inclusions
(SPDIs [Sch02]), namely invariance kernels.
We have also presented a breadth-first search algorithm for solving the reacha-
bility problem for SPDIs. The advantage of such an algorithm is that it is much
simpler than the one presented in [ASY01] and it reminds the classical model
checking algorithm for computing reachability. Invariance kernels play a crucial
role to prove termination of the BFS reachability algorithm.
We intend to implement the algorithm in order to empirically compare it with
the previous algorithm for SPDIs [APSY02].

Acknowledgments. We are thankful to Eugene Asarin and Sergio Yovine for the
valuable discussions.
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