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Specification and Verification of Normative
Texts using C-O Diagrams

Gregorio Dı́az, M. Emilia Cambronero, Enrique Martı́nez, and Gerardo Schneider

Abstract —C-O Diagrams have been introduced as a means to have a more visual representation of normative texts
and electronic contracts, where it is possible to represent the obligations, permissions and prohibitions of the different
signatories, as well as the penalties resulting from non-fulfillment of their obligations and prohibitions. In such diagrams we
are also able to represent absolute and relative timing constraints. In this paper we present a formal semantics for C-O
Diagrams based on timed automata extended with information regarding the satisfaction and violation of clauses in order
to represent different deontic modalities. As a proof of concept, we apply our approach to two different case studies, where
the method presented here has successfully identified problems in the specification.

Index Terms —Normative documents, electronic contracts, deontic logic, formal verification, visual models, timed automata,
C-O Diagrams.

✦

1 INTRODUCTION

IN software context, the term contract has tra-
ditionally as a metaphor to represent limited

kinds of “agreements” between software elements
at different levels of abstraction. The first use of
the term in connection with software programming
and design was by Meyer, in the context of the
language Eiffel (programming-by-contracts, or design-
by-contract) [1], and relied on Hoare’s notion of pre
and post-conditions and invariants. Though this
paradigm has proven to be useful for developing
object oriented systems, it seems to have short-
comings for novel development paradigms such as
service-oriented computing and component-based
development. These new applications have a more
involved interaction and therefore require a more
sophisticated notion of contracts.

As a response, behavioral interfaces have been
proposed to capture richer properties more than
simple pre and post-conditions [2]. With this spec-
ifications, it is possible to express contracts con-
cerning the history of events, including causality
properties. However, this approach is limited when
it comes to contracts containing exceptional behav-
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ior, since the focus is mainly on the interaction
concerning expected (and prohibited) behavior.

In the context of Service Oriented Architectures
(SOA), there are several service contract specifi-
cation languages, such as ebXML [3], WSLA [4],
and WS-Agreement [5]. These standardized speci-
fication languages suffer from one or more of the
following problems: they are restricted to bilateral
contracts, lack formal semantics (so it is difficult to
reason about them), their treatment of functional
behavior is rather limited and the sub-languages
used to specify security constraints are usually lim-
ited to small application-specific domains. The lack
of suitable languages for contracts in the context of
SOA is a clear conclusion of the survey [6] where
a taxonomy is presented.

Some researchers have investigated variants of
deontic logic [7] to specify different aspects of soft-
ware systems. Deontic logic is concerned (among
other things) with the formalization of moral and
legal obligations, permissions, and prohibitions, as
well as their interrelation and properties. Formaliz-
ing such notions is not an easy task, as witnessed
by the extensive research conducted by the deontic
community both from the philosophical and the
logical point of view [8]. From the computer sci-
ence and software engineering perspective, how-
ever, the focus is on legal and not moral aspects.
Therefore, in this paper we use deontic logic as
a source of inspiration to define formal languages
in order to specify contracts where (legal) obli-
gations, permissions, and prohibitions, as well as
events/consequences resulting from violations of
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obligations and prohibitions are of importance.
To further close the gap between contracts and its

representation, we consider that three criteria must
be met: a) the representation must be usable and
understandable for non-expert users, b) the logic
behind this representation must provide reasoning
techniques and c) the internal machine-codification
must be easy manipulated by programmer and al-
low runtime monitoring. We envision two possible
ways to accomplish this: i) the development of
suitable techniques to get a proper translation from
contracts written in natural language into formal
languages, or ii) the development of a graphical
representation (and tools) to manipulate contracts
at a high level, with formal semantics supporting
automatic translation into the formal language. In
this paper we take the second approach.

Previously we have introduced C-O Diagrams [9],
a graphical representation not only for electronic
contracts (e-contracts) but also for the specification
of any kind of normative text (Web service com-
position behavior, software product lines engineer-
ing, requirements engineering, etc.). C-O Diagrams
allow for the representation of complex clauses
describing the obligations, permissions, and prohi-
bitions of different signatories (as defined in deontic
logic), as well as reparations describing contractual
clauses in cases of non-fulfillment of obligations
and prohibitions. Also, C-O Diagrams permit users
to define real-time constraints. In [10], some of the
authors presented a set of satisfaction rules to check
whether or not a timed automaton satisfies a C-O
Diagram specification. These rules were necessary
but not sufficient.

One of the main motivations for using a graphical
contract representation is to ease the manipulation
and understanding of contracts by non-specialized
users. This idea is supported by many authors
in this field, including [11] and [12]. To support
the above we have presented in [9] an evaluation
of C-O Diagrams based on user-based tests, with
the purpose of comparing the understandability
of both C-O Diagrams and textual notations for e-
contracts. Results showed, at least in this study, that
a visual representation model was more usable than
its equivalent textual form.

The goal of this paper is to further develop our
previous work, in particular we present a formal se-
mantics for C-O Diagrams based on timed automata.
In order to capture the normative concepts of per-
mission, obligation and prohibition, as well as the
penalties in cases of certain violations, we provide
an extension of timed automata. This extension is
needed, among other reasons, as it is not easy to

represent the obligation to do something and the
penalty for not doing it (this cannot be simply
represented in timed automata as a branching, as
this would be understood as an or where both
branches have the same priority).

We use UPPAAL [13] to implement the obtained
timed automata, and its model checker to verify
properties about C-O Diagrams. As a proof of con-
cept we present two case studies: one in the field
of Web service composition and another in the field
of requirements engineering.

The paper is structured as follows: background is
shown in Section 2, Section 3 presents C-O Diagrams
and their syntax, Section 4 develops the formal
semantics of C-O Diagrams and Section 5 explains
the implementation of the resulting timed automata
in UPPAAL. Section 6 presents a case study of an
Online Auctioning Process and Section 7 presents a
case study of the engineering requirements of an
Adaptive Cruise Control system. Finally, the related
work is discussed in Section 8 and conclusions and
future work are commented in Section 9.

2 BACKGROUND

In this section we define the background formal-
ism used to verify C-O Diagrams, namely timed
automata, and a subset of Timed Computation Tree
Logic (TCTL), which is used by the UPPAAL model
checker to define the properties to be verified.

2.1 Timed Automata

A timed safety automaton, or simply timed automa-
ton (TA) [14] is essentially a finite automaton ex-
tended with real-valued variables. These variables
model the logical clocks in the system, and are
initialized to zero when the system is started. They
then increase their value synchronously as time
elapses, at the same rate. In the model there are also
clock constraints, which are guards on the edges
that are used to restrict the behavior of the automa-
ton, since a transition represented by an edge can
only be executed when the clock values satisfy the
guard condition. Transitions are not forced to be
executed when their guards are true, the automaton
can stay at a location without executing any tran-
sitions, unless an invariant condition is associated
with that location. In this case, the automaton may
remain at that same location as long as the invariant
condition is satisfied. Additionally, the execution of
a transition can be used to reset some clocks.

In what follows we consider a finite set of real-
valued variables C ranging over by x, y, . . . standing
for clocks, a finite set of integer-valued variables V ,
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ranging over by v, w, . . . and a finite alphabet Σ
ranging over by a, b, . . . standing for actions. We
will use letters r, r′, . . . to denote sets of clocks.
We will denote by Assigns the set of possible as-
signments, Assigns = {v := expr | v ∈ V}, where
expr are arithmetic expressions using naturals and
variables. Letters s, s′ . . . will be used to represent a
set of assignments. A guard, or invariant condition is
a conjunctive formula of atomic constraints of the
form: x ∼ n, x − y ∼ n, v ∼ n or v − w ∼ n, for
x, y ∈ C, v, w ∈ V , ∼∈ {≤, <,=, >,≥} and n ∈ IN.
The set of guards or invariant conditions will be
denoted by G, ranging over by g, g′, . . .

Definition 1: (Timed Automata) A timed automaton
is a tuple (N,n0, E, I), where

• N is a finite set of locations (nodes).
• n0 ∈ N is the initial location.
• E ⊆ N × G × Σ × P(Assigns) × 2C × N is the

set of edges, where the subset of urgent edges
is called Eu ⊆ E.

• I : N → G is a function that assigns invariant
conditions to locations.

2

From now on, we will write n
g,a,r
−→s n′ to de-

note (n, g, a, s, r, n′) ∈ E, and n
g,a,r
−→us

n′ when
(n, g, a, s, r, n′) ∈ Eu.

The semantics of a timed automaton is defined
as a state transition system, where each state repre-
sents a location, a clock valuation and a variable
valuation. We use the following notation: letters
u, z, . . . will represent clock valuations, i.e., func-
tions that assign non-negative real values to clocks,
u, z : C → IR+

0 . By u ∈ g we will represent that
the clock valuation u makes g to be true, where we
assume that when g is empty u ∈ g is true, and by
u+ d the clock valuation that takes u and increases
the value of every clock by d. Letters v, w, . . . will be
used to represent variable valuation, i.e., functions
that assign non-negative integer values to variables,
v, w : V → Z

+
0 .

Definition 2: (Timed Automaton Semantics) Let
A = (N,n0, E, I) be a timed automaton. The se-
mantics of A is defined as the timed labeled transition
system (Q, q0,→), where:

• Q ⊆ N × IR+
0

C
× Z

+
0

V
(set of states).

• q0 = (n0, 0, V0) ∈ Q, is the initial state, where 0
is the clock valuation that assigns every clock
to zero and V0 is the variable valuation that
assigns every variable to its initial value.

• →⊆ (Q × IR+
0 × Q) ∪ (Q × Σ × Q) (delay and

action transitions).
Delay transitions are of the form (q, d, q′), for d ∈

IR+
0 , denoted by q

d
−→ q′, and are defined by the

following rule:

- (n, u, v)
d

−→ (n, u+d, v) if and only if (u+d′) ∈
I(n), for all d′ ≤ d, d′ ∈ IR+

0 .

Action transitions are of the form (q, a, q′), for
a ∈ Σ, denoted by q

a
−→ q′, and are defined by

the following rule:

- (n, u, v)
a

−→ (n′, u′, v′) if and only if there is an

edge n
g,a,r
−→
s

n′, such that u ∈ g, u′(x) = u(x)

for all x 6∈ r, u′(x) = 0, for all x ∈ r, and
u′ ∈ I(n′).

2

A concurrent system is usually modelled by a set
of timed automata running in parallel. A Network
of Timed Automata (NTA) is then defined as a set
of timed automata that run simultaneously, using
the same set of clocks, and synchronizing on the
common actions. Then, we distinguish two types of
actions: internal and synchronization actions. Inter-
nal actions can be executed by the corresponding
automata independently, and they will be ranged
over the letters a, b . . ., whereas synchronization
actions must be executed simultaneously by two
automata. Synchronization actions are ranged over
letters m,m′, . . . and come from the synchroniza-
tion of two actions m! and m?, executed from two
different automata1. The semantics of a network of
timed automata is then defined straightforwardly,
as a natural extension of Def. 2.

Definition 3: (Semantics of an NTA) Let Ai =
(Ni, n0i , Ei, Ii), i = 1, . . . , k be a set of timed
automata. A state or configuration of the NTA
{A1, . . . ,Ak}, is a tuple (n, u, v), where n =
(n1, . . . , nk), with ni ∈ Ni, u is a clock valuation

for the clocks in the system, u ∈ IR+
0

C
, and v

is a variable valuation for the variables in the
system, v ∈ Z

+
0

V
. There are three rules defining the

semantics of an NTA:
• (n, u, v)

d
−→ (n, u + d, v) (delay rule) if and

only if u + d′ ∈ Ii(ni), for all i = 1, . . . , k and
for all d′ ≤ d, d′ ∈ IR+

0 .
• (n, u, v)

a
−→ (n′, u′, v′) (internal action rule)

if and only if there is an edge ni
g,a,r
−→s n′

i, for

some i ∈ {1, . . . , k}, such that n′
j = nj , for all

j 6= i, u ∈ g, u′(x) = u(x) for all x 6∈ r, u′(x) =
0, for all x ∈ r, and u′ ∈ ∧

h=1,...,k
Ih(n

′
h), and

such that v ∈ s, v′(w) = v(w) for all w 6∈ s,
v′(w) = s(w), for all w ∈ s.

• (n, u, v)
m
−→ (n′, u′, v′) (synchronization rule)

if and only if there exist i, j, i 6= j, such that:

1) n′
h = nh, for all h 6= i, h 6= j.

2) There exist two transitions ni
gi,m!,ri−→

si
n′
i and

nj
gj ,m?,rj
−→sj n′

j , such that u ∈ gi ∧ gj , u′(x) =

1. In the original definition the only internal action is τ , and
synchronizations always yield internal actions.
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u(x), for all x 6∈ ri ∪ rj , and u′(x) = 0, for
all x ∈ ri ∪ rj . And such that, v ∈ si ∧ sj ,
v′(w) = v(w) for all w 6∈ si ∪ sj , v′(w) = s(w)
for all w ∈ si ∪ sj .

3) u′ ∈ ∧
h=1,...,k

Ih(n
′
h). 2

2.2 UPPAAL Model Checker

UPPAAL [13] is a tool for modelling, validation
and verification of real-time systems. The validation
part is performed by graphical simulations and
the verification part by model checking. A system
in UPPAAL consists of a network of concurrent
processes, each of them modelled as a timed au-
tomaton.

Timed automata in UPPAAL have been extended
with bounded integer variables and channel syn-
chronization. Bounded integer variables can be read
or written by means of expressions labeling the
edges, and can be tested in guard conditions. Syn-
chronization channels are declared as chan c. An
edge labeled with c! synchronizes with another
labeled c?. A synchronization pair is chosen non-
deterministically if several combinations are en-
abled. UPPAAL also defines broadcast channels,
which are declared as broadcast chan c. In a broad-
cast synchronization one sender c! can synchronize
with an arbitrary number of receivers c?. If there
are no receivers, then the sender can still execute
the c! action, i.e. broadcast sending never blocks.
Another kind of channel defined by UPPAAL are
the urgent synchronization channels, which are de-
clared as urgent chan c. Delays may not occur if a
synchronization transition on an urgent channel is
enabled.

A state of an NTA in UPPAAL is defined by the
locations of each of the automata, and the clock
and variable valuations, as defined in subsection
2.1. Thus, a UPPAAL system is modelled as a
network of several timed automata in parallel, a
set of variables, a set of clocks, which are part of
the state, a set of channels and the variable types,
that is 〈 ~A, V ars, Clocks, Chan, T ype〉.

Another useful feature of UPPAAL are tem-
plates, that are parameterized generic declarations
of timed automata which can later be instantiated.

The simulation step in UPPAAL consists of run-
ning the system to check that it works properly
in normal conditions. Since simulation does not
guarantee system correctness completely, we must
use the verifier tool to check some properties of
the system that are of interest, and that should
be ensured in all conditions. For instance, we can
check reachability properties, i.e. if a certain state is

reachable or not. This is called model checking and
it is basically an exhaustive search that covers all
possible behaviors of the system.

Properties in UPPAAL are written in a formal
language which is a subset of Timed Computation
Tree Logic (TCTL) [15], where atomic expressions
are location names, variables, and clocks from the
modelled system.

The properties are defined using local properties
that are either true or false depending on a specific
local configuration. The term local means that the
property is checked in a specific automata state or
configuration2, according to the definition shown
in Table 1.

Definition 4: (Local Property) Given an UPPAAL
model 〈 ~A, V ars, Clocks, Chan, T ype〉. A formula ϕ

is a local property iff it is formed according to the
syntactical rules shown in Table 1.

2

In Def. 4 we have expressed the syntax of the
temporal logic that UPPAAL uses. Now, let us see
the definition of the five different property classes
that UPPAAL may check.

Definition 5: (Temporal Properties) Let
M = 〈 ~A, V ars, Clocks, Chan, T ype〉 be
an UPPAAL model, {(~n, u, v)}K =
(~n, u, v)0, (~n, u, v)1, ..., (~n, u, v)K be a sequence
of configurations of length K ∈ IN ∪ {∞}, and
let ϕ and ψ be local properties. Then the trace
semantics of M, written τ(M), is the set of timed
traces, as defined in [16]. We define TCTL temporal
properties to be those TCTL formulae where the
main operator is one of the following: A[], A <>

and −− >. See Table 2 to see the semantics of
such formulae, where �loc is a satisfaction relation
stating that a configuration {(~n, u, v)i} satisfies the
local property ϕ, that is, the proposition stated in
ϕ is fulfilled in {(~n, u, v)i}, with i ∈ 0 . . .K .

2

The temporal property operators dual to A[ ] and
A <> are defined as follows:

M � E <> ϕ iff ¬(M � A[ ] not(ϕ))
M � E[ ] ϕ iff ¬(M � A <> not(ϕ)).

For example, let us consider a property that spec-
ifies the situation in which a client has to increase
his credit card balance if it is zero. In UPPAAL
we use the lead to operator (−− >) since it allows
to express that if a a certain state is reached then
another given state will be reached later. The above
property could be expressed by the following TCTL

2. The state of a NTA is defined in Def. 3.
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TABLE 1
Local TCTL Properties

ϕ ::= deadlock

| A.n for A ∈ ~A and n ∈ NA

| x ⊲⊳ c for x ∈ Clocks, ⊲⊳∈ {<,<=,==, >=>}, c ∈ Z

| x− y ⊲⊳ c for x, y ∈ Clocks, ⊲⊳∈ {<,<=,==, >=>}, c ∈ Z

| v ⊲⊳ w for v, w ∈ V ars
⋃

Z, ⊲⊳∈ {<,<=, ! =,==,>=>}
| (ϕ1) for ϕ1 a local property
| not ϕ1 for ϕ1 a local property
| ϕ1 or ϕ2 for ϕ1, ϕ2 logical properties (logical OR)
| ϕ1 and ϕ2 for ϕ1, ϕ2 logical properties (logical AND)
| ϕ1 imply ϕ2 for ϕ1, ϕ2 logical properties (logical implication)

TABLE 2
Temporal TCTL Properties

M � A[ ] ϕ iff ∀{(~n, u, v)}K ∈ τ(M). ∀k ≤ K. (~n, u, v)k �loc ϕ

M � A <> ϕ iff ∀{(~n, u, v)}K ∈ τ(M). ∃k ≤ K. (~n, u, v)k �loc ϕ

M � ϕ−− > ψ iff ∀{(~n, u, v)}K ∈ τ(M). ∀k ≤ K
(~n, u, v)k �loc ϕ⇒ ∃k′ ≥ k. (~n, u, v)k′ �loc ψ

name

agent

Fig. 1. Box structure

formula:

CreditCard.balance == 0 −− >

Client.Increase(CreditCard.balance).

The property will be satisfied when after the credit
card balance is zero, the client increases the credit
card balance.

3 C-O Diagrams: SYNTAX

In this section we first present an intuitive de-
scription of C-O Diagrams, we proceed with the
diagrams’ formal syntax, and we finish with a
discussion on the different kind of time constraints
we can represent in C-O Diagrams.

3.1 General Description

In Fig. 1 we show the basic element of C-O Dia-
grams. It is called a box and represents a contract
clause. It is divided into four fields. On the left-
hand side of the box we specify the conditions
and constraints. The guard g specifies the conditions
under which the contract clause must be taken into
account (boolean expression). The time restriction tr
specifies the time frame during which the contract

clause must be satisfied (deadlines, timeouts, etc.).
The propositional content P, in the center, is the main
field of the box used to specify normative aspects
(obligations, permissions and prohibitions) that are
applied over actions, and/or the specification of the
actions themselves. The last field of these boxes,
on the right-hand side, is the reparation R. This
reparation, if specified by the contract clause, is a
reference to another contract that must be satisfied
in case the main norm is not satisfied (a prohibition
is violated or an obligation is not fulfilled, there is
no reparation for permissions). Each box also has
a name and an agent. The name is useful both
to describe the clause and to reference the box
from other clauses, so it must be unique. The agent
indicates who the performer of the action is.

Example 1: Let us consider the description of the
operation of a coffee machine containing, among
others, the following clauses:

• “The coffee machine must deliver coffee after
payment in less than one minute”, that is an
obligation including a deadline.

• “The client has the option to choose coffee with
milk”, that is an example of permission.

• “The client should not pay with coins different
from Euros or Dollars”, that is an example of
prohibition.

• “The coffee machine must deliver milk if coffee
with milk has been chosen”, that is a obligation
applied only if a condition is fulfilled.

• “The coffee machine must refund money if
coffee is not delivered”, that is a reparation to
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Clause Clause

SubClause1 SubClause1SubClause2 SubClause2

And-refinement Or-refinement

Fig. 2. AND/OR refinements in C-O Diagrams

Clause

SubClause1 SubClause2

Clause

SubClause1 SubClause2

Seq-refinement

Fig. 3. SEQ refinement and repetition in C-O Dia-
grams

the obligation of delivering coffee. 2

The basic element of C-O Diagrams can be refined
by using AND/OR/SEQ refinements. The aim of
these refinements is to capture the hierarchical
clause structure followed by most contracts. An
AND-refinement (left-hand side of Fig. 2) means
that all the subclauses must be satisfied in order to
satisfy the parent clause. An OR-refinement (right-
hand side of Fig. 2) means that it is only necessary
to satisfy one of the subclauses in order to satisfy
the parent clause, so as soon as one of its subclauses
is fulfilled, we conclude that the parent clause is
fulfilled as well. A SEQ-refinement (left-hand side
of Fig. 3) means that the norm specified in the target
box (SubClause2 in Fig. 3) must be fulfilled after
satisfying the norm specified in the source box (Sub-
Clause1 in Fig. 3). By using these structures we can
build a hierarchical tree with the clauses defined by
a contract, where the leaf clauses correspond to the
atomic clauses, that is, to the clauses that cannot be
divided into subclauses. There is another structure
that can be used to model repetition. This structure
is represented as an arrow going from a subclause
to one of its ancestor clauses (or to itself), meaning
the repetitive application of all the subclauses of the
target clause after satisfying the source subclause.
For instance, in the right-hand side of Fig. 3, we
have an OR-refinement with an arrow going from
SubClause1 to Clause. It means that after satisfying
SubClause1 we apply Clause again, but not after
satisfying SubClause2.

Only the specification of actions in the P field of
the leaf boxes of our diagrams is considered. The
composition of actions can be achieved by means
of the different kinds of refinement. In this way, an
AND-refinement can be used to model concurrency
“&” between actions, an OR-refinement can be used
to model a choice “+” between actions, and a SEQ-
refinement can be used to model sequence “;” of

-

aa bb

a b

Seq-refinement

-

- a & ba + b

a ; b

And-refinementOr-refinement

Fig. 4. Compound actions in C-O Diagrams

-

aa bb

a b

And-refinement

-

-

O O(a) (b)∧O O(a) (b)+

O O(a) ; (b)

O OO O

O O

Seq-refinement

Or-refinement

aO

Rep( (a))O

O O

Fig. 5. Composition of norms in C-O Diagrams

actions. In Fig. 4 we can see an example of how
to model these compound actions through refine-
ments, given two actions a and b. The composition
via an AND-refinement captures the case where
two or more clauses must be satisfied in order to
consider that the root clause has been satisfied as
well. In reference to our example in the figure, the
same result is achieved if action a is performed first
and then action b or viceversa3. On the other hand
, an OR-refinement just needs one of its subclauses
to be satisfied to consider the root clause satisfied.
The example shows that either the performance
of action a or action b is sufficient to consider
the root clause satisfied. The semantic behind this
OR-refinement includes both internal and external
choices since it is possible to capture a situation
where an external agent of a system, e.g. a user,
chooses the action to be performed. Therefore, a C-
O Diagram can capture a contract between several
parties from a generic point of view including both
types of choices.

The deontic norms (obligations, permissions and
prohibitions) that are applied over these actions
can be specified in any box of our C-O Diagrams,

3. We take the point of view of timed automata theory, that is,
clocks only evolve via the updates, guards and invariants over
transitions and states. This point of view leads us to semantically
describe concurrency as an interleaving of the concurrent actions
using several consecutive transitions with a compatible set of
updates, guards and invariants.
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affecting all the actions in the leaf boxes that are
descendants of this box. Whenever we use a leaf
box to specify the deontic norm, the norm only
affects the action we have in this box. The upper-
case “O” denotes an obligation, an upper case
“P” denotes a permission, and an upper case “F”
denotes a prohibition (forbidden). These letters are
written in the top left corner of the field P.

The composition of deontic norms is achieved by
means of the already mentioned refinements. Thus,
an AND-refinement corresponds to the conjunction
operator “∧” between norms, an OR-refinement
corresponds to the choice operator “+” between
norms, and a SEQ-refinement corresponds to the
sequence operator “;” between norms.

Example 2: Let us consider a leaf box specifying
the obligation of performing an action a, writ-
ten as O(a), and another leaf box specifying the
obligation of performing an action b, written as
O(b). These two norms can be combined in the
three different ways mentioned above through the
different kinds of refinement (Fig. 5). Considering
the coffee machine example, we can suppose that
action a corresponds to “payment (pay)” and action
b corresponds to “No different Coins (diffcoins)”,
so if we consider the combination of both obli-
gations with an AND-refinement, it is specified
that both obligations have to be satisfied in any
order. Fig. 6 shows the complete C-O Diagram for
the coffee machine example. The main clauses are
combined by using a SEQ-refinement, that is, ‘Cof-
fee Selection”, “Payment In Coins” and “Pouring”
clauses. Each one is composed of several sub-
clauses by different types of refinements. For in-
stance, the clause “Coffee Selection” is composed
of two subclauses “Coffee With Milk” and “Cof-
fee”, by an OR-refinement. These clauses represent
the permission of selecting coffee with or with-
out milk, respectively, and it is the agent client
who decides the desired type of coffee. The clause
“Payment In Coins” is the combination of two
subclauses: “Payment” and “No Diff Coins”, by
an AND-refinement. The first depicts the payment
obligation, and the second represents the prohi-
bition of using different types of coins. Finally,
the clause “Pouring” is composed of two sub-
clauses: “Pour Coffee&Milk” and “Pour Coffee”,
by an OR-refinement. “Pour Coffe&Milk” depicts
the obligation of delivering the coffee, where the
time restriction tPayment < 60 indicates that the cof-
fee machine must deliver the coffee in 60 seconds
after the payment. This clause also has a guard,
Opt==Milk, which indicates that the coffee machine
must deliver coffee with milk as this was the se-

TABLE 3
C-O Diagrams syntax

C := (agent, name, g, tr, O(C2), R) |
(agent, name, g, tr, P (C2), ǫ) |
(agent, name, g, tr, F (C2), R) |
(ǫ, name, g, tr,C1, ǫ)

C1 := C (And C)+ |C (Or C)+ |
C (Seq C)+|Rep(C)

C2 := a |C3 (And C3)
+ |C3 (Or C3)

+ |
C3 (Seq C3)

+

C3 := (ǫ, name, ǫ, ǫ, C2, ǫ)
R := C | ǫ

lected option. The clause “Pour Coffee” is similar
to the latter, representing that the selected option
was coffee without milk. These latter clauses have
a reparation “R1”, when the obligation of pouring
coffee is not satisfied, consisting of returning money
to the client. Finally if the process ends successfully,
the contract is applied again to serve a next client
(repetition refinement of the root clause). 2

3.2 Syntax

When defining C-O Diagrams, there are some syn-
tactic constraints that must be taken into account.
First, exactly one deontic norm must be specified
in each of the branches of our hierarchical tree, i.e.,
we cannot have an action without a deontic norm
applied over it and we cannot have deontic norms
applied over other deontic norms. Also, agents must
only be specified in the boxes where a deontic norm
is defined, being each agent associated to a concrete
deontic norm. Finally, the repetition of both, actions
and deontic norms, can be achieved by means of
the repetition structure we have in C-O Diagrams.

Definition 6: (C-O Diagrams Syntax). Let us con-
sider a finite set of real-valued variables C stand-
ing for clocks, a finite set of non-negative integer-
valued variables V , a finite alphabet Σ for actions,
a finite set of identifiers Ag for agents, and another
finite set of identifiers N for names. Thus, an action
a ∈ Σ is a set of assignments and resets over
variables V and clocks C, that is, a = {v := expr|v ∈
{V ∪ C}}. ǫ represent the empty expression. We
use C to denote the contract modelled by a C-
O Diagram. The syntax of a diagram is defined
by the EBNF grammar shown in Table 3, where
a ∈ Σ, agent ∈ Ag and name ∈ N . A guard g

is ǫ or a conjunctive formula of atomic constraints
of the form: v ∼ n or v − w ∼ n, for v, w ∈ V ,
∼ ∈ {≤, <,=, >,≥} and n ∈ IN, whereas a time
restriction tr is ǫ or a conjunctive formula of atomic
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Coffee Machine

Coffee_Selection Payment_In_Coins

CoffeeCoffee_With_Milk Payment No_Diff_Coins

Client

P(cwm)

Client Client

P(coffe) O(pay)

Client

F(diffcoins)

Pouring

Pour_Coffee&Milk Pour_Coffee

Machine

O(pc&m)

Machine

O(pc)R1 R1
payment

Opt==Milk Opt==NoMilk

name

proposition
agent

refinement

time restriction guard reparation

clause

t <60 paymentt <60

SEQ

OR
ORAND

Fig. 6. Coffee Machine C-O Diagram

constraints of the form: x ∼ n, for x ∈ C, ∼
∈ {≤, <,=, >,≥} and n ∈ IN. O, P and F are the
deontic operators corresponding to obligation, per-
mission and prohibition, respectively, where O(C2)
states the obligation of performing C2, F (C2) states
prohibition of performing C2, and P (C2) states the
permission of performing C2. And, Or, Seq and Rep
are the operators corresponding to the refinements
we have in C-O Diagrams, AND-refinement, OR-
refinement, SEQ-refinement and REP-refinement,
respectively. 2

The first three lines of the grammar shown in
Table 3 define that the simplest contract we can
have in C-O Diagrams is that consisting of only
one box including the elements agent and name.
Optionally, we can specify a guard g and a time
restriction tr. We also have a deontic operator (O,
P or F ) applied over an action a, and in the case of
obligations and prohibitions it is possible to specify
another contract C as a reparation.

We use C1 to define a more complex contract
where we combine different deontic norms by
means of any of the 4 different refinements.

C2 represents actions under deontic operators:
we can simply write a simple action a in the box,
being the deontic operator applied only over it, or
we can refine this box in order to apply the deontic
operator over a compound action. In this case, the
subboxes (the grammar for C3) cannot define a new
deontic operator, as it has already been defined in
the parent box (affecting all the subboxes).

Example 3: Let us consider a simple contract
specifying that a client has the obligation of
paying a certain amount of money. In Fig. 7 three
possible situations are depicted. The first, shown in
Example31, depicts the payment obligation with a
reparation contract C′

31 (Fig. 7 bottom left), which
could be a penalty over the amount of money.
The second, as shown by Example32, where

AND

pay

C'

Client

Example3

Example3

C''

x<5

OR

Example3

O

O

C'

Client

Option1 Option2

pay_cash pay_card

1

2

3

31

32 32

Fig. 7. Syntax examples

C32 := (ǫ, Example32, ǫ, x < 5, C′
32 AndC

′′
32 , ǫ) is the

composed contract specifying that contract C′
32 and

contract C′′
32 must be satisfied in order to satisfy C32

within 5 time units (Fig. 7 top left), where C′
32 and

contract C′′
32 could be the payment obligation and

the obligation of receiving a ticket, respectively.
Finally, Example33 models the contract C33 :=
(Client, Example33, ǫ, ǫ, O(C

′
33 Or C

′′
33), ǫ), where

we have that C′
33 := (ǫ, Option1, ǫ, ǫ, pay cash, ǫ)

and C′′
33 := (ǫ, Option2, ǫ, ǫ, pay card, ǫ), is a

contract specifying for a client the obligation of
paying by cash or by credit card (Fig. 7, right). 2

The update of variables and clocks is performed
by actions, that is, an action specifies a set of as-
signments and resets over these data. For instance,
in Example 3 the action pay card may include the
modification of the variable balance: balance :=
balance− spent amount.

3.3 Real-Time Restrictions

C-O Diagrams present the capability to treat tem-
poral references. This aspect of a contract is consi-
dered in a diagram via the tr field of a clause. This
field is specified using a time constraint represent-
ing deadlines and timeouts. tr encodes a temporal
restriction specified by means of a conjunction of
inequalities as presented above. To capture these
constraints properly, it is necessary to describe with
accuracy any explicit or implicit time references.
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For instance, it is possible to refer to a specific
time and/or date, “July 10th, 2003, 20:00”. However
this reference can be more subtle “5 days after the
payment”. To capture both kinds of time references,
or any other a user may want to specify we consider
the following three types of restrictions:

• A time restriction specified using absolute
time must be specified by rewriting the terms
in which absolute time references occur. For
that purpose we define a global clock T cap-
turing the time passage starting at the mo-
ment when the contract is enacted. Time refer-
ences are then captured as deadlines involving
clock T and considering the smallest time unit
needed in the contract.

• A time restriction specified using relative time
must be specified by introducing an additional
clock to register the amount of time that has
elapsed since another clause has been satisfied.
We call this clock tname, where name is the
clause used as reference for the specification
of the time restriction. Therefore, we define a
set of additional clocks Cadd = {tname | tname ∈
R+

0 } for all name in N .
• A time restriction specified using clocks de-

fined by the user, Cuser .
As a result, the set of clocks of the timed automaton
would be C = {T } ∪ Cadd ∪ Cuser .

Example 4: For absolute time let us consider a
clause that must be satisfied between the 5th of
November and the 10th of November, and that the
contract containing this clause is enacted the 31st
of October. If we suppose that days is the smallest
time unit used in the contract for the specification
of real-time restrictions, the time restriction of this
clause is written as (T ≥ 5) and (T ≤ 10). In the
case of relative time let us consider a contract with
a clause name1 that must be satisfied between 5
and 10 days after another clause name2 has been
satisfied. In this case we define an additional clock
tname2 and the time restriction of the clause, name1,
is written as (tname2 ≥ 5) and (tname2 ≤ 10). 2

4 C-O Diagrams: SEMANTICS

C-O Diagrams specify concepts, that due to their
high level of abstraction, are difficult to capture
with a timed automata. For instance, it is difficult
to capture the obligation to perform an action and
its reparation, since timed automata cannot make
the difference between branching as an option
and branching due to violation. Therefore, the C-
O Diagrams semantics is defined by means of a
translation into an extended version of a Network

of Timed Automata (NTA). In this section we first
present an extension of timed automata suitable
as a semantic domain for C-O Diagrams, we then
discuss some issues concerning timing constraints,
and we finish by showing the transformation rules
to translate our diagrams into such timed automata.

4.1 NTA extended with normative clauses

Informally, C-O Diagrams are a graphic representa-
tion of norms applied to actions which are enacted
under certain conditions and timing constraints. C-
O Diagrams could be seen as the high level repre-
sentation of timed automata where the normative
concepts of obligation, permission and prohibition
over actions are sets of propositional variables
showing that in certain states these concepts are to
be satisfied or not. In the following, we give a defi-
nition of an extended version of timed automata to
capture the semantics of C-O Diagrams.

Definition 7: (Network of Timed Automaton
extended with Normative Clauses) Let Ai =
(Ni, n0i , nni

, Ei, Ii), i = 1, . . . , k be a family of timed
automata where a new node nni

∈ Ni is added
to define the final node of an automaton.4 A C-O
NTA is a set (A1, ...,Ak,N ), where N is a set of
clause names. A state of a C-O NTA s is a tuple
(n̄, u, v, Cla), where (n̄, u, v) is as defined in Def. 3,
and Cla = (V io, Sat, Per) where V io, Sat and Per

are sets of propositional variables ranged over N .
The set of all states is S and the initial state is
s0 = (n̄0, u, v, Cla0), where Cla0 is empty. 2

We will not expand here on the formal semantics
of such automata, but just mention the intuition
of the new added sets. Intuitively, when using C-
O NTA as a semantic domain for C-O Diagrams,
the clauses names defined in N will correspond to
those names defined in the diagrams. The sets V io,
Sat and Per encodes the clauses that have been
violated, satisfied or permitted at a certain state s
of a C-O NTA. Therefore these sets are empty at the
initial state s0.

The set V io consists of the names of the obliga-
tion and prohibition clauses violated at this state.
On the other hand, the set Sat consists of the
obligation and prohibition clauses satisfied at the
state. That is, if we have a contract where the
root clause is refined via an AND-refinement of
two clauses (agentj, namej, trj , gj , O(Cj), Rj) and
(agentk, namek, trk, gk, F (Ck), Rk) representing an
obligation and a prohibition respectively, the sets

4. An extra parameter is added to the classical automaton
definition to establish which is the final node. This parameter is
used in the transformation rules for compositional purposes.
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c <= nc > n

∞

T1 T2

T

strict

non-strict

before

during
after

j j k k

Fig. 8. Time interval with the lower and upper
bounds, T 1 and T 2.

V io and Sat may consist of any combination of
namej and namek including the empty set.

The set Per encodes the permissions that
have been made effective, that is, the clause
names representing permission that in the se-
quence of the automata have been already exe-
cuted. In case of a contract defined as a permission
(agent, name, tr, g, P (C), ǫ), the set Per may consist
of the clause name, name, or being empty.

4.2 Time restrictions and guards

Before explaining how the full translation of C-O
Diagrams into C-O NTA is done, we discuss some
issues concerning time constraints and guards.

When a clause (agent, name, g, tr, C,R) is trans-
lated into a C-O NTA, the time restriction tr field
specifies the time constraints under which the
clause must be enacted. This time constraint en-
codes a time interval as depicted in Fig. 8. This time
interval is characterized by the lower and upper
bounds T 1 and T 2, which can be either strict or
non-strict.

Definition 8: (Time interval for tr) Let
tr be a time restriction given in a clause
(agent, name, g, tr, C,R) of a C-O Diagram
defined as a conjunction of inequalities
c1 ∼ n1 ∧ c2 ∼ n2 ∧ . . . ∧ cn ∼ nm where ci ∈ C,
ni ∈ Z and ∼∈ {≤, <,=, >,≥} (∀i ∈ {1, . . . ,m}).
The time interval for tr is the interval given by the
inequalities T 1 := (cj ∼1 nj) and T 2 := (ck ∼2 nk),
where T 1 and T 2 are the greatest lower bound and
the lowest upper bound of the time restriction with
∼1∈ {>,≥,=} and ∼2∈ {≤, <,=}, respectively. 2

It is important to take into account the moment
when a clause is activated, i. e., when the clause is
made effective in the automata execution sequence.
If this happens before time T 1 then time elapses till
reaching T 1, in which case the time constraint is
satisfied (up till T 2). If the activation occurs during
the interval then the time constraint is immediately
satisfied. In both cases, once the execution sequence
is activated, the maximum time to accomplish the
clause is bounded by T 2, which implies that any
subclause given by C is constrained by this upper
bound. This fact is captured by the addition of T 2
to all the invariants of the states encoding these

CendCinit

AC

AendAinit

AGeneralStructure

tr´

g trÙ

I T2Ù
initC endCI T2Ù

Fig. 9. C-O NTA general structure of a clause.

subclauses. Finally, if the activation occurs after T 2,
then the clause cannot be made effective since the
interval has been missed (that is, the time constraints
cannot be satisfied).

With respect to the guards (g), it is worth noting
that the variables on which the guards depend on,
may be updated by some other parallel automaton.
Therefore, a clause can be active respecting the
time constraint tr but the guard could be false. In
this case time could elapse till the time interval is
missed, or the guard could eventually become true
due to further updates.

A generic scheme of the C-O NTA corresponding
to a clause is depicted in Fig. 95, where some of the
issues discussed above concerning time restrictions
and guards are visualized. The two first cases, ac-
tivation before or during the interval, are captured
with the transition labeled with g ∧ tr, where the
contract C is enacted with the addition of T 2 to
its invariants. The last situation, when the time
interval is missed, is represented by the transition
labeled with tr′, accounting for the missed deadline
(it is assumed here that the transition does not
satisfy g). We formally define the notion of missed
deadline in what follows.

Definition 9: (Missed interval tr′) Given a C-O
NTA A, and tr, ck, nk and T2 as defined in Def. 8,
we define a missed deadline for transition tr to be
the following time constraint:

tr′ :=

{

(ck ≥ nk) iff T 2 ≡ (ck < nk)

(ck > nk) iff T 2 ≡ (ck ≤ nk)
2

We next introduce the transformation rules
adapting this general structure to the different sit-
uations given by the different types of clauses.

4.3 Transformation Rules

In the previous subsections we have presented our
extension of timed automata suitable to be used

5. In Fig. 9 and all subsequent figures, we use white arrow-
heads to denote urgent edges whereas dark arrowheads depict
non-urgent edges (as defined in Def. 1).
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as a semantic target model for C-O Diagrams. We
have made explicit some considerations about time
restrictions and guards. We present now how C-O
Diagrams are translated into C-O NTA. The transla-
tion is done by induction using several transforma-
tion rules given by the function trf that accepts as
a parameter a C-O Diagram and gives as a result a
C-O NTA.

Definition 10: (Transformation function trf ) The
function trf : C-O Diagrams → C-O NTA transforms
a C-O Diagram (as given by the EBNF grammar in
Def. 6) into a C-O NTA. The function is given by
the rewriting system introduced in Tables 4–6. 2

These tables are divided in two columns. In the
left column we can see the transformation function
for a given clause, and in the right column the
graphical representation of the C-O NTA obtained
for this clause. Note that we do not represent the
sets V io, Sat and Per in the visual representation
given in the tables. This is due for sake of readabil-
ity, but also because the transformation is done re-
cursively and the content of these sets will depend
on the further application of the transformation
function to subclauses of the given clause.

The first table shows the C-O NTAs for six differ-
ent expressions including the empty action, simple
actions and composition of actions via conjunction,
disjunction and sequence refinements. This table is
explained in further detail in the next subsection.
Table 5 shows the C-O NTA obtained from the
transformation applied to the deontic clauses, i.e.,
obligation, prohibition and permission clauses (see
subsection 4.3.2). Finally, subsection 4.3.3 deals with
Table 6, which shows the resulting automata for
the composition of deontic clauses via repetition,
conjunction, disjunction and sequence refinements.

4.3.1 Actions

Table 4 shows the transformation rules for an
empty action, an action and conjunction, disjunc-
tion and sequence of actions given by the EBNF
syntax corresponding to the classes C2 and C3 of
Table 3. The first, rule (1), is the empty action
depicted by two states, init and end, which are not
connected. This empty action is used to capture
cases where no action should be performed. For
instance, a reparation from an obligation or prohi-
bition has not been specified, that is, they cannot be
repaired and therefore if the automata follows such
a path, the system will end in a deadlock. Rule (2) is
for the case of a simple action not under any deontic
modality. The action consist of two states connected
by a transition where the action is performed and
therefore the clause name is added to the satisfac-

tion set to reflect this fact (s1). Furthermore, the
clock tname is reset (r1) allowing other clauses to
reference this clock in their temporal constraints tr.
Rule (2) bis is applied to the case when a name for
the clause is not provided, for instance, in the clause
(agent, name, g, tr, O(a), R) the transformation over
the action defined as trf(a) is then translated as
trf((agent, ǫ, ǫ, ǫ, a, ǫ)).

Three other rules are defined to describe the
transformations given for clauses consisting of con-
junction, disjunction and sequence of actions. The
conjunction of actions, rule (3), is defined via the
Cartesian product6 of all subclauses defined within
the expression, that is, the Cartesian product of all
the resulting C-O NTA. Whereas, a disjunction of
actions, rule (4), is defined as a pairwise disjoint
of actions, that is, the possibility to accomplish
one among different actions. Therefore, we define
this transformation rule by an automata consisting
in two states ORinit and ORend connected to all
the initial and final states of the corresponding
automata of its actions, respectively. Regarding the
sequence of actions, rule (5), the first step taken is
the transformation of each action into its automa-
ton. Afterwards, the first action is appended to the
second one in a succession until the last action.
Thus, initial node of the first action becomes the
initial node for the sequence and the last node of
the last action is connected to the last node created
for the sequence structure in order to modify the
satisfaction set and reset the clause clock.

Example 5: Let us consider a new version of
the coffee machine example, where the coffee ma-
chine could deliver tea and cappuccino in addition
to coffee. Actions “delivers coffee” (Del Coffee),
“delivers tea” (Del Tea) and “delivers cappuccino”
(Del Cap) are composed by an OR-refinement (only
one of them is performed). The automaton obtained
by applying rule (4) is shown in Fig. 10. 2

4.3.2 Deontic clauses

Until now, we have seen how the automata corres-
ponding to different actions (simple or compound)
specified in a C-O Diagram are constructed, and we
have seen that these translations only modify the
content of the satisfaction set. We will see now not
only how this set is modified, but also the violation
and permission sets. We define the transformation
rules specifying how these automata are compound
when we apply a deontic norm (obligation, per-
mission or prohibition) over the actions in the C-O

6. The Cartesian product of automata is defined as any com-
bination of the transitions belonging to each automata [17].
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TABLE 4
Semantic for actions and composition of actions.

Transformation Rules C-O NTA

trf(ǫ) = {({ninit , nend}, ninit, nend, ∅, ∅), ∅}

(1)
nendn init

AEmptyAction

trf((agent, name, ǫ, ǫ, a, ǫ)) =

{(NA, ninit, nend, EA, ∅), {name}}, where:

NA = {ninit, nend} and EA = {ninit
agent.a,r1−−−−−−−→

s1
nend}.

(2)

nendn init

agent.a , r

AAtomicAction

1

s1

trf((agent, ǫ, ǫ, ǫ, a, ǫ)) =

{(NA, ninit, nend, EA, ∅), {name}}, where:

NA = {ninit, nend} and EA = {ninit
agent.a
−−−−−→ nend}.

(2)bis

nendn init

agent.a

AAtomicActionBis

trf((ǫ, name, ǫ, ǫ, C1
3 AndC

2
3 And . . . AndC

n
3 , ǫ)) =

{(NAnd, CPinit, Andend, EAnd, IAnd),NAnd} , where:
NAnd = NCP ∪ {Andend},

EAnd = ECP ∪ {CPend
r1−→us1

Andend},
IAnd = ICP ,

(NCP , CPinit, CPend, ECP , ICP ) =
trf(C1

3 )× trf(C2
3 )× . . .× trf(Cn

3 ) and
NAnd = {{name} ∪ NC1

3

∪ NC2

3

. . . ∪ NCn
3
}

× is the Cartesian product of the automata.
(3)

init end

init end

init end

X

A

A

A

C
1

endAnd

r1

s1

AAnd

X

X

3 C
1
3

C
2
3 C

2
3

C
n
3 C

n
3

C
1
3

C
2
3

C
n
3

trf((ǫ, name, ǫ, ǫ, C1
3 Or C

2
3 Or . . . Or C

n
3 , ǫ)) =

{(NOR, ORinit, ORend, EOR, IOR),NOR} , where:
NOR = NC1

3

∪NC2

3

∪ . . . ∪NCn
3
∪ {ORinit, ORend},

EOR = EC1

3

∪ EC2

3

∪ . . . ∪ ECn
3
∪ {ORinit −→u C1

3init
,

ORinit −→u C2
3init

, . . . , ORinit −→u Cn
3init

}∪

{C1
3end

r1−→us1
ORend, C

2
3end

r1−→us1
ORend, . . . C

n
3end

r1−→us1
ORend},

IOR = IC1

3

∪ IC2

3

∪ . . . ∪ ICn
3

,

trf(C1
3 ) = {(NC1

3

, n0
C1
3

, EC1

3

, IC1

3

),NC1

3

},

trf(C2
3 ) = {(NC2

3

, n0
C2
3

, EC2

3

, IC2

3

),NC2

3

}, . . .

trf(Cn
3 ) = {(NCn

3
, n0Cn

3

, ECn
3
, ICn

3
),NCn

3
} and

NOR = {{name} ∪ NC1

3

∪ NC2

3

. . . ∪ NCn
3
}. (4)

ORinit

C3

1

ORend

AOR
init end

init

init

end

end

A

A

A

r1
s1

r1
s1

r1

s1

C3

1

C3

1

C3
2

C3
2

C3
2

C3
n C3

n

C3
n

trf((ǫ, name, ǫ, ǫ, C1
3 Seq C

2
3 Seq . . . Seq C

n
3 , ǫ)) =

{(NSEQ, C
1
2init

, Seqend, ESEQ, ISEQ),NSEQ}, where:
NSEQ = {Seqend} ∪NC1

3

∪NC2

3

∪ . . . ∪NCn
3

,

ESEQ = EC1

3

∪ EC2

3

∪ . . . ∪ ECn
3
∪ {C1

3end
−→u C2

3init
,

C2
3end

−→u C3
3init

, . . . , Cn−1
3end

−→u Cn
3init

}∪

{Cn
3end

r1−→us1
Seqend},

ISEQ = IC1

3

∪ IC2

3

∪ . . . ∪ ICn
3

,

trf(C1
3 ) = {(NC1

3

, C1
2init

, C1
2end

, EC1

3

, IC1

3

),NC1

3

},

trf(C2
3 ) = {(NC2

3

, C2
2init

, C2
2end

, EC2

3

, IC2

3

),NC2

3

}, . . .

trf(Cn
3 ) = {(NCn

3
, Cn

2init
, Cn

2end
, ECn

3
, ICn

3
),NCn

3
} and

NSEQ = {{name} ∪ NC1

3

∪ NC2

3

. . . ∪NCn
3
}.

(5)

ASEQ

A

A

A

init

init

init

end

end

end

Seq
init

Seq

r1
s1

end

C1
3

C1
3

C1
3

C2
3

C2
3

C2
3

Cn
3

Cn
3

Cn
3

where r1 = {tname if tname ∈ C else ∅} and s1 = add(Sat, name).



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 13

TABLE 5
Semantic for deontic clauses.

Transformation Rules C-O NTA

trf((agent, name, g, tr, O(C2), R)) =

{(NO , Oinit, Oend, EO, IO),NO}, where:
N0 = NC2

∪NR ∪ {Oinit, Oend},

EO = EC2
∪ ER ∪ {Oinit

¬g∧tr′

−→u Oend}∪

{Oinit
g∧tr
−−−→ C2init

, C2end

r1−→us1
Oend}∪

{Oinit
g∧tr′

−−−−→
s2

Rinit, Rend
r1−→us1

Oend},

IO = IR ∪ {I(n) ≡ I(n) ∧ T2,∀n ∈ NC2
},

NO = {{name} ∪ NC2
∪ NR},

trf(C2) = {(NC2
, C2init

, C2end
, EC2

, IC2
),NC2

} and
trf(R) = {(NR, Rinit, Rend, ER, IR),NR}.

(6)

RendRinit

AR

C
end

C
init

AC

OendOinit

AObligation

¬g Ù tr´

g trÙ

g tr´Ù

s2

r1
s1

r1
s1

I T2Ù
initC

endC
I T2Ù

2 2

2 2

2

trf((agent, name, g, tr, F (C2), R)) =

{(NF , Finit, Fend, EF , IF ),NF }, where :
NF = NC2

∪NR ∪ {Finit, Fend},

EF = EC2
∪ ER ∪ {Finit

¬g∧tr′

−→u Fend}∪

{Finit
g∧tr′,r1−−−−−−→

s1
Fend, Finit

g∧tr
−−−→ C2init

}∪

{C2end
−→us2

Rinit, Rend
r1−→us1

Fend},
IF = IR ∪ {I(n) ≡ I(n) ∧ T2, ∀n ∈ NC2

},
NF = {{name} ∪ NC2

∪ NR},
trf(C2) = {(NC2

, C2init
, C2end

, EC2
, IC2

),NC2
} and

trf(R) = {(NR, Rinit, Rend, ER, IR),NR}.
(7) RendRinit

AR

C
end

C
init

AC

Fend

F init

AForbidden

¬g Ù tr´

g trÙ

g tr´,Ù

s
2

r1
s1

s1
r1

I T2Ù
initC endCI T2Ù

2

2

2

2

trf((agent, name, g, tr, P (C2), ǫ)) =

{(NP , Pinit, Pend, EP , IP ),NP }, where:
NP = NC2

∪NR ∪ {Pinit, Pend},

EP = EC2
∪ ER ∪ {Pinit

¬g∧tr′

−→u Pend}∪

{Pinit
g∧tr′

−−−−→ Pend, Pinit
g∧tr
−−−→ C2init

, C2end

r1−→us3
Pend},

IP = IR ∪ {I(n) ≡ I(n) ∧ T2, ∀n ∈ NC2
},

NP = {{name} ∪ NC2
∪ NR},

trf(C2) = {(NC2
, C2init

, C2end
, EC2

, IC2
),NC2

} and
trf(R) = {(NR, Rinit, Rend, ER, IR),NR}.

(8)

C
end

C
init

AC

PendPinit

APermission

¬gÙ tr´

g trÙ

g tr´Ù

s3

r1

I T2Ù
init

C
endCI T2Ù

2

2 2

2 2

where r1 = {tname if tname ∈ C else ∅}, s1 = add(Sat, name) and s2 = add(V io, name).

init end

Orinit

C
init

Orend
init

end

end

Coffe_Machine.Del_Cap

Coffe_Machine.Del_Coffee

AC

AC

AC

AOR 3

Coffe_Machine.Del_Tea

t            := 0
Del_Coffee

t         := 0
Del_Tea

t          := 0
Del_Cap

s ={add(Sat,Delivery)}

r ={t        := 0}
Delivery

1

1

r1
s1

r1
s1

r1
s1

add(Sat,Del_coffee)

add(Sat,Del_Tea)

add(Sat,Del_Cap)

3 C

C C

CC

1

3
2

1

3

1

3

2

3

2

3
n

3

n
3

n

Fig. 10. Example of an OR-refinement of actions

Diagram introduced by the first three lines of Table
3 for the contract class C. We show in Table 5 the
C-O NTA for the transformation of obligation, pro-
hibition and permission. The obligation of an action
or a set of actions, rule (6), refined by the above
rules, is defined by an automaton with two nodes,
Oinit and Oend, and several transitions connecting
these nodes with the nodes of its subclause(s) or
the reparation contract. Three different paths are
defined for an obligation: the regular behavior, the
exceptional behavior when the obligation is not
fulfilled and the skipping of the obligation if the
guard does not hold. Let us examine this with an
example.

Example 6: (Tenant example) Let us assume that
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sign == true

T 1 T 7³ Ù <

Tenant

Payment

O(Pay) e

Fig. 11. Clause example of a tenant.

RendRinit

AR

CendCinit

AC

OendOinit

ATenantExample

(sign==false) Ù (T 7)≥

sign == true

( )

Ù

T 1 T 7³ Ù <

(sign == true)

(T 7)

Ù

≥

add(Vio,Payment)

t        :=0payment

add(Sat,Payment)
T < 7 T < 7

t        :=0payment

add(Sat,Payment)

Tenant(pay)

Fig. 12. Automaton of the tenant example.

when renting an apartment there is an obligation
to pay the rent between the 1st and the 6th day
of each month. We have a boolean condition (the
signature of a renting contract has been done), an
action (to pay the rent), and a temporal restriction
tr with a lower bound (1st day of each Mont)
and an upper bound (7th day of the month). This
example corresponds to the box in Fig. 11, defined
as (tenant, Payment, (sign == true), ((T ≥ 1) ∧
(T < 7)), O(pay), ǫ). 2

The translation of the above into C-O NTA is
depicted in Fig. 12. The automaton shows three
branches from the initial state. The first, at the
top, is the regular execution, that is, the tenant has
signed the contract and between the 1st and the
6th day of the month she pays the rent. The second
representing the exceptional case where the tenant
does not pay in time, that is, it is the 7th day and
she did not pay the rent, then the reparation clause
R is enabled. Note that in this case no reparation
clause has been defined. The third, in the middle of
the figure, corresponds to the situation where the
tenant has not signed the contract.

Similar to the obligation case, the translation of a
prohibition clause, rule (7), results in an automaton
with three branches from the initial state: i) regu-
lar behavior in the middle stating that the guard
holds and the upper bound T 2 of the temporal
restriction has been reached and that the forbidden
behavior has not been executed; ii) the exceptional
behavior at the bottom where the guard holds and
the forbidden behavior has been performed during

RendRinit

AR

C
end

C
init

A
C

OendOinit

AObligation_Deliver_Coffee

(payment== true)

T<60Ù

add(Vio,Del_Coffee)

r1
s1

r1

s1

T<60 T<60

T 60≥ Ù

(payment== true)

T 60Ù ≥(payment== false)

Coff_Machine.Del_Coffee

Coff_Machine.Ref_Money

add(Sat,Ref_Money)
t           := 0Ref_Money

s ={add(Sat,Del_Coffee)}

r ={t            := 0}
Del_Coffee

1

1

22

2

Fig. 13. Example of a Reparation to a violation

the interval specified in tr then the reparation is
enabled; iii) the situation where the guard does not
hold and the the time to perform the forbidden
action has elapsed at the top, i.e., the clock has
reached the upper bound T 2. Finally, rule (8) (Table
5) shows the translation of a permission. Here we
can see three possibilities, the regular behavior
in the middle where the action(s) permitted are
performed, the situation where during the interval
tr the permitted behavior is not executed at the
bottom, and, at the top, where the guard does not
hold and the upper time limit has been reached and
therefore the permitted action(s) are skipped.

The following example shows an extract of an
obligation clause of the coffee machine example of
Fig. 6 where the reparation R1 is specified in case
the obligation is not performed.

Example 7: Let us consider the clause “The cof-
fee machine must deliver coffee after payment in
less than one minute” (Del Coffee). Furthermore, if
together with the obligation of delivering coffee
we consider the reparation clause “The coffee ma-
chine refunds the money if coffee is not delivered”
(Ref Money), we get the following:

(Coffee Machine, Del Coffee, ǫ, (T < 60), O(Del Coffee), R1)

R1 = (Coffee Machinet, Ref Money, ǫ, ǫ, O(Ref Money), ǫ).

The resulting automaton (by rule (6)) is shown in
Fig. 13, where we have that the transition connect-
ing nodes Oinit with Rinit adds the clause name
Del Coffee to the violation set to state that this
clause has been violated, but after been repaired by
the Ref Money action in the transition connecting
Rend with Oend this clause name is added to the
satisfaction set as well. Therefore, we can have two
situations: first, the coffee is delivered and then
the Del Coffee is added to the satisfaction set and,
second, the coffee is not delivered and the name
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of the clause appears in the violation set but the
money is refunded and the name of the clause then
appears in the satisfaction set too. This means that
if a clause appears at the same time in the violation
and in the satisfaction sets it is because the clause
has been repaired allowing us to keep track of the
different situations taken place in the automata. 2

This example allows us to see how different
violation and satisfaction sets are modified in an
obliged clause when a reparation is defined. On
the other hand, in prohibitions we see the opposite
situation, if the actions defined in the prohibition
are executed, then the prohibition is breached and
therefore the clause name is added to the violation
set. But still, if a reparation is defined and success-
fully performed then after its execution the clause
name is added to the satisfaction set. Therefore, if
a prohibited action appears in both sets it means
that it has been repaired. Notice that, in case of
permissions there is no way to breach the contract
since a permission cannot be violated and therefore
it cannot appear in a violation set.

4.3.3 Composition of Clauses

We define now the rules corresponding to the
composition of deontic norms. These automata are
obtained by the transformation rules (9)–(12) (Table
6) corresponding to the fourth line of the class C
and class C1 of the C-O Diagramssyntax shown in
Table 3.

The first rule of this table, rule (9) shows the
transformation for a repetition where a transition
connects the ending node again with the initial one.
The second transformation, rule (10) encodes the
conjunction of several deontic norms via a parallel
structure where the equivalent automaton of each
different subclause is connected with its predeces-
sor and successor automaton via a synchronization
action mi. The third rule (11) encode the disjunc-
tion of deontic norms. This rule shows a similar
structure as the rule (4), but presents a significant
difference since some transitions and invariants are
labeled with g, tr, tr′ and T 2 to encode the guard
and time restriction of the clause. The last rule of
this table, rule (12), shows the sequence refinement
that is similar to the structure shown in rule 5 with
some modifications to take into account guards and
invariants.

Example 8: Let us consider a composition using an
AND-refinement of the clauses “The coffee machine
must deliver coffee after payment in less than one
minute” (Del Coffee), and “The coffee machine must
deliver milk after payment in less than one minute”
(Del Milk). The resulting C-O NTA (applying rule

And
init

And
end

C
1

A
CompositeAND

A C
1´
endC

1´
init

m !
1

m !
1

Oend
O

init

(payment== true)

T<60Ù

t        <60

T 60Ù ≥(payment== false)

Coff_Machine.Del_coffee

add(Sat,Del_Coffee)
t          := 0Del_Coffe

add(Sat,Coffee_With_Milk)

t                   := 0Coffee_With_Milk

Payment t        <60Paymentt        <60Payment t        <60Payment

C2
C

2´
endC

2´

init

m ?
1

m ?
1

Oend
O

init

t        <60

Coff_Machine.Del_Milk

add(Sat,Del_Milk)
t        := 0Del_MilkPayment t        <60Paymentt        <60Payment t        <60Payment

A

1 1

22

Fig. 14. Example of an AND-refinement of obliga-
tions

(10)) is shown in Fig. 14, where T is the clock
used to control the deadline and m1 is the urgent
channel used to synchronize both automata. The
corresponding expression is:

(ǫ, Coffe With Milk, g, tr, C1AndC2, ǫ), with :

g = {(payment == true)}, tr = {tpayment < 60},

C1 = (Coffee Machine, Del Coffee, ǫ, ǫ, O(Del Coffee), ǫ)and

C2 = (Coffee Machinet, Del Milk, ǫ, ǫ, O(Del Milk), ǫ).

2

5 UPPAAL IMPLEMENTATION

The implementation of C-O NTAs in UPPAAL is
quite straightforward. There are only a few imple-
mentation issues that need further explanation:

1) As there is no way in UPPAAL of directly
expressing that an edge without synchroniza-
tion should be taken without delay, that is,
there are no urgent edges, we have to encode
this behavior. For this purpose we consider
the modelling pattern proposed in [18]. The
encoding of urgent edges introduces an extra
automaton, that we call Urgent, with a single
location and a self loop. The self loop syn-
chronizes on an urgent channel that we call
urg edge. An edge can now be made urgent
by performing the complementary action.

2) The performance of actions by agents is im-
plemented in two different ways. Actions that
interact with the physical environment, like
pressing a button, are translated by means of
boolean variables in UPPAAL. We define a
boolean variable called agent action for each
of the actions considered in the contract. These
variables are initialized to false and, when an
action is performed by an agent on one of
the edges, we update the value of the corres-
ponding variable to true. The second type
concerns actions that modify the value of the
variables defined in the diagram. For instance,
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TABLE 6
Semantic for compositions of clauses.

Transformation Rules C-O NTA

trf((ǫ, ǫ, g, tr, Rep(C), ǫ)) =

{(NC , Cinit, Cend, ERep, IC),NC}, where:
ERep = EC ∪ {Cend

g,tr
−→u Cinit} and

trf(C) = {(NC , Cinit, Cend, EC , IC),NC}.
(9)

CendCinit

ARepetition

g , tr

trf((ǫ, name, g, tr, C1AndC2And . . . AndCn, ǫ)) =

{(N ′

C1
, C1′

init, C
1′

end
, E′

C1
, I′

C1
),

(N ′

C1
, C2′

init, C
2′

end
, E′

C2
, I′

C2
) . . .,

(N ′

Cn , C
n′

init, C
n′

end
, E′

Cn , I
′

Cn ),Nand}, where:
∀i ∈ 1 ≤ i ≥ n

N ′

Ci = {Ci′

init , C
i′′

init, C
i′

end
, Ci′′

end
} ∪NCi ,

E′

Ci = {Ci
init

¬g∧tr′

−→u Ci
end

}∪

{Ci′

init

mi−1?
−−−−−→ Ci′′

init, C
i′′

init

mi!−−→ Ciinit
}∪

{Ci′

end

mi−1?
−−−−−→ Ci′′

end
, Ci′′

end

mi!−−→ Ci
end

},
ICi

= {I(n) ≡ I(n) ∧ T2, ∀n ∈ NCi
},

Nand = {{name} ∪ NC1
∪ NC2

. . . ∪ NCn
},

trf(C1) = {(NC1
, C1init

, C1end
, EC1

, IC1
),NC1

},
trf(C2) = {(NC2

, C2init
, C2end

, EC2
, IC2

),NC2
} . . .

trf(Cn) = {(NCn
, Cninit

, Cnend
, ECn

, ICn
),NCn

}.
(10)
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trf((ǫ, name, g, tr, C1OrC2Or . . . Or Cn, ǫ)) =

{(NOR, ORinit, ORend, EOR, IOR),NOR}, where:
NOR = NC1 ∪NC2 ∪ . . . ∪NCn ∪ {ORinit, ORend},

EOR = EC1 ∪ EC2 ∪ . . . ∪ECn∪
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trf((ǫ, name, g, tr, C1 Seq C2 Seq . . . Seq Cn, ǫ)) =

{(NSEQ, Seqinit, Seqend, ESEQ, ISEQ),NSEQ}, where:
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where r1 = {tname if tname ∈ C else ∅} and s1 = add(Sat, name).
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Fig. 15. WST plugin to model C-O Diagrams.

the deposit of a certain amount of money into
a bank account results in an increase of the
balance. In these cases, we define the boolean
variable to state that the action has been per-
formed and in the same transitions the referred
variables are modified.

3) The violation, satisfaction and permission sets
are implemented in UPPAAL by means of
boolean arrays and constant integers with the
names of the clauses of the contract containing
obligations, prohibitions or permissions. We
define an array V for violation, an array S for
satisfaction, and an array P for permission, all
initialized to false. The size of the arrays V

and S are equal to the number of obligations
and prohibitions in the contract, whereas the
size of the array P is equal to the number
of permissions. We also define constant inte-
gers with the name of the clauses containing
obligations and prohibitions, initializing each
one of them to a different value (from 0 to
the size of the arrays V and S minus 1), and
constant integers with the name of the clauses
containing permissions, initializing each one of
them to a different value (from 0 to the size of
the array P minus 1). These constants are used
as indexes in the arrays. When taking a tran-
sition where the target node contains at least
one modified set (an obligation/prohibition is
violated, an obligation/prohibition is satisfied
or a permission is made effective), we update

to true in the proper array the value of the
index corresponding to the clause. In the case
of reparations the index corresponding to the
proper clause in V is set to false.

Example 9:
Let us consider a contract with only one obli-

gation (Clause 1), one prohibition (Clause 2) and
one permission (Clause 3). For the implementation
of the corresponding NTA in UPPAAL we define
a boolean array V and a boolean array S of size
two (one obligation plus one prohibition), and a
boolean array P of size one (only one permission).
The constant integers Clause 1 = 0, Clause 2 = 1
and Clause 3 = 0 are also defined as indexes for
the arrays. In this way, we can properly update
these arrays. For instance, for a transition where the
obligation (Clause 1) is satisfied, we update the ar-
ray S with S[Clause 1] = true, and for a transition
where the permission (Clause 3) is made effective,
we update the array P : P [Clause 3] = true. 2

A prototype of a plugin for WST [19] implement-
ing the above transformation can be seen in Fig. 15.7

6 CASE STUDY: ONLINE AUCTIONING
PROCESS (OAP)
The case study presented in this section is inspired
by the motivating example described in [20]. It
consists of an Online Auctioning Process involving

7. Available at http://dsi.uclm.es/retics/wst. This plugin will
be available in the next release of the tool, aiming to help users
to model the system and perform the automatic translation.

http://dsi.uclm.es/retics/wst
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TABLE 7
Norms of the Online Auctioning Process contract

N# Agent Modality Action Condition Temporal Constraint

1 Seller Permission
Can select an item to auction
(a1)

∅ ∅

2 Seller Prohibition
Auctions a fraudulent item
(a2)

∅ One day after selection (t2)

3 Seller Obligation
Uploads valid information
(a3)

∅ One day after selection (t3)

4 Auction S. Obligation Publishes the auction (a4) ∅ One day after checked (t4)

5 Buyer Permission
Can place bids for the item
(a5)

∅ Seven days after publication (t5)

6 Buyer Obligation
Pays the item by credit card
(a6)

Highest bid (g1) Three days after auction (t6)

7 Buyer Obligation Pays the item by PayPal (a7) Highest bid (g1) Three days after auction (t7)

8 Seller Obligation
Sends the item to the buyer
(a8)

Highest bid (g1) Fourteen days after auction (t8)

9 Auction S. Obligation Refunds the payment (a9) ∅ Seven days after violation of C.8 (t9)

10 Auction S. Permission Can penalize the seller (a10) ∅
Seven days after violation of C.8
(t10)

the interaction between three different agents: the
buyer, the seller, and the auction service.

The online auctioning starts when a seller wants
to auction an item. The seller has one day to upload
valid information about the item he wants to sell
taking into account that the sale of inadequate
items such as counterfeit items or wild animals
is forbidden. Once an item has been checked and
found eligible for auction, the auction service also
has one day to publish the auction of the item.
After that, the buyer can place bids during seven
days. When this period of time is over, if the bid
placed by the buyer is the highest one, the activities
concerning the payment and the shipment of the
item start.

First, the buyer has three days to perform the pay-
ment, which can be done by means of credit card
or PayPal. After the payment has been performed,
the seller has fourteen days to send the item to the
buyer. If the item is not received within this period
of time, the auction service has seven days to refund
the payment to the buyer and can penalize the seller
in some way (for example, not allowing the seller to
auction new items for a period of time). However,
if the on time reception of the item by the buyer is
acknowledged, the auction process is considered to
have finished successfully.

In Table 7 we show a list of the obligations,
permissions and prohibitions that can be inferred
from the description of the process, where the
obligation specified by clause 9 and the permission
specified by clause 10 are a possible reparation for
the violation of clause 8. There are nine clauses
specifying real-time constraints, clauses 2 till 10,
some sharing the same constraint.

Online_Auctioning

Auction_Item Check_Item Auction_Process

-

- -

SEQ

Payment_Shipment

-

Seller

P a1

g1

t1

Fig. 16. Top-level of the Online Auctioning Process

O

-

Check_Item

a3

Inadequate_Item Valid_Information

F a2

Seller Seller

AND

a2

t2

Fig. 17. Decomposition of clause Check Item

P

-

Auction_Process

a5

Publish_Item Place_Bid

O a4

Auction Service Buyer

SEQ

t5t4

Fig. 18. Decomposition of clause Auction Process

A problem with this textual specification is that
the relationship between the different clauses is not
clear, making any kind of analysis difficult. We
use C-O Diagrams to clearly specify the relationship
between the different clauses, but not so formal that
an expert is needed.
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OR

PaypalCredit_Card

Fig. 19. Decomposition of clause Pay-
ment Shipment

6.1 OAP C-O Diagrams

In what follows we model OAP using C-O Diagrams
based on the description provided in Table 7. We
use an to denote the action corresponding to clause
number n in the table; the reparation for Clause 8
is called R1. We also use ti to denote the real-time
constraints of Clause i, furthermore, the condition
of placing the highest bid is denoted as g1.

In Fig. 16 we show the top-level of the C-O
Diagram we specify for the process, called On-
line Auctioning, starting the sequence from the per-
mission specified in clause 1 (Auction Item). We
have grouped the rest of the clauses shown in Table
7 into four more general clauses with a sequence
relationship between them: 1) Check Item decom-
posed via a conjunction of clauses 2 and 3, 2) Auc-
tion Process refined as a sequence of Clause (4 and
5), 3) Payment Shipment other sequence of clauses
where the first clause Payment Item is refined at
the same time with a disjunction of clauses 6 and
7 followed by clause 8 and 4) reparation R 1 of
clause 8 consisting of a conjunction of clauses 9
and 10. These general clauses cover the different
phases that we have been identified in the Online
Auctioning Process bridging the gap between the
informal description and the table. Figures 17–
19 expand on the clauses shown in the top-level
diagram depicted in Fig. 16. Finally, in Fig. 20 we
show the diagram corresponding to reparation R1

(Refund Penalty). It includes the real-time constraint
t9, and it is decomposed into two subclauses by
means of an AND-refinement.

6.2 OAP Timed Automata

For sake of clarity we do not show the textual
representation of the translation of C-O Diagrams
into C-O NTAs, and give their graphical

R1

Refund_Buyer Penalty_Seller

-

AND

Refund_Penalty

O P

Auction ServiceAuction Service

a10a9

t9

Fig. 20. Reparation of clause Send Item

representation instead. The automata are shown in
Fig. 21, obtained by applying the transformation
rules given in subsection 4.3. Every part of these
automata is surrounded by a dashed box and,
at the top of each box, we can see the name of
each automaton preceded by the name of the
equivalent clause, and in some cases, by the the
type of deontic or refinement operator. These
automata consist of three different automata
running in parallel, the main automaton and
two small automata surrounded by highlighted
black dashed squares. Double circles are used to
denote the initial node of each automaton. The
top level of Fig. 16 is represented by a sequence
in ACompositeSEQ Online Auctioning . This is then
refined into a sequence of subclauses CAI , CCI ,
CAP and CPS , which are translated to the automata
APermission Auction Item, ACompositeAND Check Item,
ACompositeSEQ Auction Process, and
ACompositeSEQ Payment Shipment, respectively.
The automaton APermission Auction Item consists
of a permission of auctioning an item. The last
transitions resets the clock tAuction Item and adds
the name of the clause to the permission set stating
that this permission has been effective by, in this
case, the seller.

The automata ACompositeAND Check Item is re-
fined by a composition of the automata obtained
from CII and CV I , that is, AForbidden Inadequate Item

and AObligation V alid Information. The first automa-
ton shows that, if in the period of one day after the
item has been selected an action a2 is performed,
then the prohibition is considered breached and the
name of the clause Inadequate Item is added to
the violation set. Note that, since no reparation is
defined, once the contract is violated, there is no
way to recover the system. On the other hand,
if the action is not taken for this period of time
the prohibition is considered accomplished and is
added to the satisfaction set. The second automaton
runs in parallel with the main automaton and starts
when the transition from the former automata fires
the transition labeled with m1! executed at the same
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Fig. 21. Automata of the Online Auctioning Process.

time with the transition labeled with m1? of this
other automaton. Once this automaton starts, it cap-
tures the obligation of providing valid information,
action a3 performed by the seller, with the same
temporal window stated in the former prohibition.

Note that in the above we do not explicitly write
transitions with the guard ¬g ∧ tr′ as the guard is
always false (idem for the other automata).

For sake of space, we do not explain the rest
of the translation. We finish by mentioning that
the reparation of CSI , i.e., R1, is translated as
AComposite AND R1

. Note that before R1 is enacted
the name of the clause to be repaired, Ship Item,
is added to the violation set, and to the satisfaction

set after being repaired.

6.3 OAP Validation

Using the automata defined above as a source, we
implement the translation to the specific format
supported by UPPAAL. The validation of the con-
tract can be done by means of simulation, where we
check that it behaves as expected. For this purpose
we use the simulator included in the UPPAAL tool
to make the following validations:

• We run the system manually, selecting the
transitions to be executed at each step.

• We let the system run automatically; the tran-
sitions are therefore executed randomly.
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• Whenever the model checker gives a counter-
example, we analyze it by running the simula-
tor with the given trace.

6.4 OAP Verification

We use the verifier to check the following kind of
properties. i) Obligations and prohibitions are re-
spected, or the corresponding penalties are applied
otherwise. We do this by writing safety properties
expressed in UPPAAL via the temporal operators
A[]ϕ (in all paths and in every state the property
ϕ holds), and A <> ϕ (in all paths there is a
state where the property ϕ holds). ii) The contract
allows all permissions to be exercised. We do this
by checking reachability properties, like E <> ϕ

(there exists at least one state where the property
ϕ holds), and E[] ϕ (the property ϕ always holds
for at least one path). iii) The order between the
different clauses follows the order established in the
contract, for instance the property ψ must always
follow (not necessarily right after) property ϕ, for
which we write ϕ −− > ψ (unbounded response).

Note that the counter-examples given by UP-
PAAL are given in terms of the underlying au-
tomata making it difficult for a non-specialized user
to understand them. Though this is a shortcoming,
we believe that the user may still be able to un-
derstand the trace by checking the sequence given
against the specification given in the C-O Diagram.
The query language used for the specification of
properties as explained above is a simplified ver-
sion of TCTL [18] (cf. Section 2.2).

We describe in what follow some of the results
concerning the verification of the properties we
have checked.

• It is possible to reach a state where the item has
been sent to the buyer, i.e. that the obligation
Send Item has been satisfied. In UPPAAL:

E <> (S[Send Item] == true)

This property is satisfied.
• The item is sent to the buyer (Send Item) only

if the payment has been performed before
(Payment Item). In UPPAAL:

A[] S[Send Item] == true

imply S[Payment Item] == true

This property is satisfied.
• The item has been checked (Check Item), if

the auction service takes more than one day to
publish the auction of the item (tCheck Item >

1), the clause Publish Item is violated. In UP-
PAAL:

(S[Check Item] == true and tCheck Item > 1)

−− > V [Publish Item] == true

This property is satisfied.
• There exists a maximal path in which none of

the main obligations and prohibitions of the
contract are violated. In UPPAAL:

E[] (V [Inadequate Item] == false

and V [V alid Information] == false

and V [Publish Item] == false

and V [Payment Item] == false

and V [Send Item] == false)

This property is also satisfied.
We have also used UPPAAL to check that some

undesirable behaviors never happen (that is, we
expect that the properties are not satisfied). We
have checked the following properties:

• The obligation of sending the item to the buyer
(Send Item) should be satisfied if the payment
has not been performed (Payment Item). In
UPPAAL:

A[] S[Send Item] == true imply

S[Payment Item] == false

This property is not satisfied, as expected.
• The obligation of sending the item to the buyer

(Send Item) and the obligation of refunding
the payment to the buyer (Refund Buyer)
should not be satisfied at the same time, as the
refund has to be done only if the item is not
sent. In UPPAAL:

E <> (S[Send Item] == true

and S[Refund Buyer] == true)

This property is not satisfied, as expected.
• It is an undesired behavior that both the obli-

gation of paying the item (Payment Item)
and the obligation of refunding the payment
(Refund Buyer) are always not satisfied at the
same time. In UPPAAL:

A[] (S[Payment Item] == false

or S[Refund Buyer] == false)

This property is not satisfied as expected.
Another interesting property that at first glance

might appear to be satisfiable is that when
the obligation of paying the item is satisfied
(Payment Item), either the obligation of sending
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the item (Send Item) or the obligation of refunding
the payment (Refund Buyer) must be eventually
satisfied. In UPPAAL:

S[Payment Item] == true −− >

(S[Send Item] == true or

S[Refund Buyer] == true)

We run UPPAAL and unexpectedly got that the
property is not satisfied. To understand the rea-
son we run the trace provided by the verifier
leading to the state where the property does not
hold. In this trace we can see that automaton
AObligation Refund Buyer ends in node Rinit. In this
state both, the obligation of sending the item and
the obligation of refunding the payment, have been
violated. The result requires further analysis in
order to understand whether the problem is in
the original specification, in the C-O Diagrams, in
our translation to C-O NTA or in the UPPAAL im-
plementation. After a careful analysis, we propose
two possible explanations describing where the
problem lies. Given the current specification, and
assuming that any non-explicit penalty associated
to a violation implies a breach in the contract (and
thus to be handled by other legal means), we can
assume that the result of our verifier is correct, and
no further changes in the original specification are
needed. However, if we consider that the property
should be satisfied, then the solution should be to
modify the specification adding an explicit penalty
to the obligation of refunding the payment (or by
default a generic clause concerning the violation
of any obligation or prohibition with no explicit
penalty associated). In any case, we have found a
potential breach in the original specification.

7 CASE STUDY: A DAPTIVE CRUISE CON-
TROL (ACC)
This case study deals with the requirements estab-
lished for an engineering process regarding the cor-
rect operation of an Adaptive Cruise Control system.
The system is concerned with the automatic control
of the speed of a car, in some cases taking into
account the distance to the vehicle ahead. Sensors
are used to measure this distance.

The description of the system is as follows. The
system starts working when it is inactive and the
driver presses a button to activate the system. It can
be activated with the current speed or with a previ-
ously stored speed. After being activated the system
should not be deactivated before 10 milliseconds,
so it can perform all the safety checks before allow-
ing deactivation. On the other hand, the system has

Adaptive_Cruise_Control

Activate_System Deact_Validation

-

-

SEQ

Driver

P

a2a1

OR

Stored_SpeedCurrent_Speed

Deact_Forbidden Speed_Val_Process

AND

F

System

a3t1

-

Fig. 22. Top-level of the Adaptive Cruise Control

to validate, within 5 milliseconds, that the speed is
in the permissible range. If the validation fails the
system has 10 milliseconds to notify that the speed
is invalid, ending the activation process. If the
validation does not fail, the system has to continue
validating, within 5 milliseconds, that no vehicle
is within the minimum safety distance. Again, if
the validation fails the system has 10 milliseconds
to notify that the distance is invalid, ending the
activation process, but if the validation does not fail
the system has to finish the activation process. At
this moment there are two possibilities. If no vehicle
is detected ahead, the system just displays within 5
milliseconds the activation speed to be followed.
However, if a vehicle within the minimum safety
distance is detected, the system has 15 milliseconds
to reduce the engine torque and actuate the brakes
in order to adapt the cruise speed to the speed of
the vehicle ahead, and after that the system displays
the speed adopted. Finally, after displaying the
speed, the driver is allowed to deactivate the system
at any moment.

7.1 ACC C-O Diagrams

In the following, we model this ACC contract with
C-O Diagrams based on the specification given in
Table 8. In Fig. 22 we show the top-level C-O
Diagram, called Adaptive Cruise Control, starting the
sequence from the permissions specified in clauses
1 and 2 (Activate System), and composing the ac-
tions of activating the system with current speed or
with a previously stored speed by means of an OR-
refinement. After that, we have an AND-refinement
considering the prohibition of deactivating the sys-
tem as specified in clause 3 (Deact Forbidden) and
a general clause called Speed Val Process whose
decomposition is explained in what follows.

The decomposition of clause Speed Val Process
into subclauses can be seen in Fig. 23, where a
SEQ-refinement is used in the decomposition. We
have on the left-hand side the specification of the
obligation specified in clause 5 (Speed Validation).
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TABLE 8
Norms of the Adaptive Cruise Control contract

N# Agent Modality Action Condition Time

1 Driver Permission
Can active the system with
the current speed (a1)

∅ ∅

2 Driver Permission
Can active the system with a
previously stored speed (a2)

∅ ∅

3 System Prohibition Deactivates the system (a3) ∅ Ten milliseconds after activation (t1)
4 Driver Permission Deactivates the system (a4) ∅ ∅
5 System Obligation Validates the car speed (a5) ∅ Five milliseconds after activation (t2)

6 System Obligation Notifies invalid speed (a6)
Invalid speed
(¬g1)

Ten milliseconds after speed valida-
tion (t3)

7 System Obligation Validates distance (a7)
Valid speed
(g1)

Five milliseconds after speed valida-
tion (t4)

8 System Obligation Notifies invalid distance (a8)
g1 ∧ Invalid
distance (¬g2)

Ten milliseconds after distance vali-
dation (t5)

9 System Obligation Reduces engine torque (a9)
g1 ∧ g2 ∧ Vehi-
cle ahead (g3)

Fifteen milliseconds after distance
validation (t6)

10 System Obligation Actuates brakes (a10)
g1 ∧ g2 ∧ Vehi-
cle ahead (g3)

Fifteen milliseconds after distance
validation (t7)

11 System Obligation Displays speed (a11)
g1 ∧ Valid dis-
tance (g2)

Five milliseconds after setting speed
(t8)
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-

-
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System
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Distance_Val_ProcessNotify_Inv_Speed

a5

O a6

System

t2
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Fig. 23. Decomposition of Speed Val Process

On the right-hand side of the figure we have an OR-
refinement of the obligation specified in clause 6
(Notify Inv Speed), applied if the speed is not valid,
and a general clause called Distance Val Process
which is applied otherwise.

The decomposition of clause Distance Val Process
into subclauses is shown in Fig. 24, consisting
of a SEQ-refinement. We have on the left-hand
side the obligation specified in clause 7 (Dis-
tance Validation), and on the right-hand side we
have an OR-refinement consisting of the obligation
specified in clause 8 (Notify Inv Distance), applied
if the distance is not valid; the general clause
Check Vehicle Ahead is applied otherwise.

Finally, Fig. 25 shows the decomposition of
clause Check Vehicle Ahead, consisting of a SEQ-
refinement. In this case the sequence starts with an
AND-refinement considering the obligation speci-
fied in clause 9 (Reduce Engine), and the obligation
specified in clause 10 (Actuate Brakes). These two
obligations are applied only if a vehicle ahead is
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Fig. 24. Decomposition of Distance Val Process
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Fig. 25. Decomposition of Check Vehicle Ahead

detected. After that, we have the obligation speci-
fied in clause 11 (Display Speed), and at the end of
the sequence we have the permission specified in
clause 4 (Deact Permitted).

7.2 ACC Validation and Verification

Once again, we obtain the network of timed au-
tomata corresponding to this contract by applying
the transformation rules of the C-O Diagrams se-
mantics and we implement these automata in the
UPPAAL tool for the validation and verification of
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Fig. 26. Implementation of the ACC network of timed automata in UPPAAL

the contract, as in the OAP case study. A simplifica-
tion of the automata implemented in UPPAAL can
be seen in Fig. 26, where some nodes and invariants
has been removed for the sake of readability.

As for the OAP case study, we use UPPAAL’s
simulator for validation purposes and its verifier to
formally verify TCTL properties. We describe below
the results of the verification of the properties we
have checked.

• It is possible to reach a state where the system
has been eventually activated and the speed
adopted is displayed, that is, the obligation
Display Speed has been satisfied. In UPPAAL:

E <> S[Display Speed] == true

This property is satisfied.

• After the system has validated the speed
(S[V alidated Speed]) it takes more than five
milliseconds to validate the distance (t4 > 5),
that is that the clause V alidate Distance is
violated. In UPPAAL:

S[V alidate Speed] == trueandt4 > 5−− >

V [V alidate Distance] == true

This property is satisfied.
• There is a maximal path in which none of

the main obligations and prohibitions of the
contract has been been violated. In UPPAAL:

E[] ( V [Deact ACC] == false

and V [V alidate Speed] == false

and V [Notify Inv Speed] == false
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Fig. 27. Modification of the Adaptive Cruise Control

and V [V alidate Distance] == false

and V [Notify Inv Dist] == false

and V [Reduce Engine] == false

and V [Actuate Brakes] == false

and V [Display Speed] == false)

This property is satisfied.
• Finally, we have checked that the contract spec-

ification does not allow a state where both the
permission and the prohibition of deactivating
the system happen at the same time to be
reached. In UPPAAL:

A[] not(P [Deactive ACC] and S[Deact ACC])

This property is not satisfied.
In the case of the last property we need to analyze

the counter-example trace given by UPPAAL in
order to determine where the problem lies (not
only the reason but also at which level: original
specification, C-O Diagrams, etc.). We identified that
the problem was that the permission of deacti-
vating the system could be enacted after all the
activation process, and before the expiration of
the prohibition of deactivation (this was a prob-
lem in the C-O Diagrams). This was solved by
modifying the C-O Diagrams in such a way that
the permission of deactivating the system be only
enacted after the prohibition of deactivating has
expired. The solution is shown in Fig. 27, where the
Deact Permitted clause is now applied only after
the Deact V alidation process has finished (there-
fore the Deact Permitted clause is not a subclause
of this process anymore). We have implemented the
modified C-O Diagrams, and re-verified that all the
properties are then satisfied.

8 RELATED WORK

The use of deontic logic for reasoning about con-
tracts is wide spread in the literature since it was
first proposed in [8]. In [21] Governatori et al. pro-
vide a mechanism to check whether business pro-
cesses are compliant with business contracts, using
the logic FCL (based on deontic logic) to reason

about contracts. In [22] Lomuscio et al. present
an approach using WS-BPEL to specify both all
possible behaviors of each service and the contrac-
tually correct behaviors, translating these specifi-
cations into automata supported by the MCMAS
model checker to verify the behaviors automati-
cally, whereas in [23] they consider a service com-
position in OWL-S and check with MCMAS if the
composition fulfills properties written in a formal
language based on epistemic and deontic logic
(restricted to obligations). None of the above allow
the specification of real-time constraints.

The approach followed by C-O Diagrams is in-
spired by the formal language CL [24]. In CL a
contract is also expressed as a composition of obli-
gations, permissions and prohibitions over actions,
and the way of specifying reparations is as in our
model. However, CL does not support either the
specification of agents nor timing constraints na-
tively, so they have to be encoded in the definition
of the actions. In [25] Solaiman et al. show how rel-
evant parts of contracts can be described by means
of Finite State Machines, which are used to detect
undesirable ambiguities, whereas we check if the
contract satisfies some properties using UPPAAL.
In [26] Desai et al. also automate reasoning about
the correctness of the contract specification, but in
this case representing contracts formally as a set of
commitments.

None of the previous works provide a visual
model for the definition of contracts. However, sev-
eral other works define a meta-model for the spec-
ification of e-contracts for the purpose of their en-
actment or enforcement. In [27] Chiu et al. present
a meta-model for e-contract templates written in
UML, where a template consists of a set of con-
tract clauses of three different types: obligations,
permissions and prohibitions. These clauses are
later mapped into Event Condition Action (ECA)
rules for contract enforcement purposes, but the
templates do not include any kind of reparation or
recovery associated to the clauses. In [28] Krishna et
al. proposed another meta-model based on entity-
relationship diagrams used to generate workflows
supporting e-contract enactment. This meta-model
includes clauses, activities, parties and the possibil-
ity of specifying exceptional behavior, but not real-
time constraints. In [29] Rouached et al. propose
a contract layered model for modelling and moni-
toring e-contracts. It consists of a business entities
layer, a business actions layer, and a business rules
layer. These three layers specify the parties, the
actions and the clauses of the contract respectively,
including the conditions under which these clauses
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are executed. However, real-time restrictions are
not included and the specification of the clauses
follows an operational, not a deontic, approach.
In [30] Heckel and Lohmann propose to visualize
contracts by graph transformation rules over UML
data models; their focus is on testing not formal
verification as we do.

Finally, C-O Diagrams implements many of the
desirable properties, presented in [31], of a good
formal language for normative texts.

9 CONCLUSIONS

In this work we have developed a formal semantics
for C-O Diagrams based on an extension of timed
automata. We have also presented an implementa-
tion for the tool UPPAAL, and have validated and
verified the contract against temporal properties
written in TCTL. We have applied our approach to
two different case studies, where our method has
successfully identified problems in their specifica-
tions.

We are currently working on the development
of an interface to depict C-O Diagrams, and imple-
menting the transformation presented in section 5.
This tool is being integrated as a plugin of the tool
WST [19].

An interesting research direction is to use GF
[32] to relate C-O Diagrams with natural language.
This might be done by means of using controlled
natural languages as an intermediate language and
by encoding C-O Diagrams into GF as has been
recently done for the language CL [33].
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