
Automatic Testing of Real-Time Graphic
Systems?

Robert Nagy1, Gerardo Schneider2, and Aram Timofeitchik3

1 Dfind Redpatch, Sweden
2 Department of Computer Science and Engineering,

Chalmers | University of Gothenburg, Sweden.
3 DQ Consulting AB, Sweden.

{ronag89@gmail.com, gerardo.schneider@gu.se, aram.timofeitchik@dqc.se}

Abstract. In this paper we deal with the general topic of verification of
real-time graphic systems. In particular we present the Runtime Graphics
Verification Framework (RUGVEF), where we combine techniques from
runtime verification and image analysis to automate testing of graphic
systems. We provide a proof of concept in the form of a case study,
where RUGVEF is evaluated in an industrial setting to verify an on-air
graphics playout system used by the Swedish Broadcasting Corporation.
We report on experimental results from the evaluation, in particular the
discovery of five previously unknown defects not been detected before.

1 Introduction

Traditional testing techniques are insufficient for obtaining satisfactory code cov-
erage levels when it comes to testing real-time graphical systems. The reason for
this is that the visual output is difficult to formally define, as it is both dynamic
and abstract, making programmatic verification difficult to perform [7]. Inherent
properties of real-time graphics, such as non-determinism and time-based execu-
tion, make errors hard to detect and reproduce. Furthermore, dependencies such
as hardware, operating systems, drivers and other external run-time software
also make the task of testing quite difficult, as witnessed by Id Software during
the initial release of their video-game Rage, where the game suffered problems
with texture artifacts [13]. Even though the software itself performed correctly,
the error still occurred when executed on systems with certain graphic cards
and drivers [1]. To this day, a common method for verifying real-time graphics
is through ocular inspections of the software’s visual output. The correctness is
manually checked by comparing the subjectively expected output with the out-
put produced by the system. There are several disadvantages with this approach,
such as that it requires extensive working hours, is repetitive, and makes regres-
sion testing practically inapplicable. Additionally, the subjective definition of

? The length of the paper is 15 pages according to the requirements; the additional
pages conform the appendix which is only for reviewing purpose.

2 R. Nagy and G. Schneider and A. Timofeitchik

correctness induces the possibility that some artifacts might be recognized as er-
rors by some testers, but not by others [12]. Furthermore, some errors might not
be perceptible in the context of specific tests, thereby making ocular inspections
even more prone to human-error.

In this paper, we present a conceptual model for automatic testing real-
time graphics system. This model has the purpose of increasing the probability
of finding defects, making verification more efficient and reliable throughout
the systems development. The proposed solution is formalized as the Runtime
Graphics Verification Framework (RUGVEF), based on techniques from run-
time verification and image analysis, defining practices and artifacts needed to
increase the automation of testing. We implemented and evaluated the frame-
work by using it in the development setting of CasparCG , a real-time graphics
system used by the Swedish Broadcasting Corporation (SVT) for producing most
of their on-air graphics. We also present an optimized implementation of the im-
age quality assessment technique SSIM, which enables real-time analysis of Full
HD video produced by CasparCG . As a result of the application of RUGVEF
to CasparCG we detected 5 previously unknown defects that were not previ-
ously detected with existing testing practices at SVT, and 6 out of 16 known
defect that were injected back into CasparCG could be found. This shows that
RUGVEF can indeed successfully complement existing verification practices by
automating the detection of contextual and temporal errors in graphical sys-
tems. Using the framework allows for earlier detection of defects and enables
more efficient development through automated regression testing. In addition to
this, the framework makes it possible to test the software in combination with
its external environment, such as hardware and drivers.

In summary our contributions are: i) The framework RUGVEF for automat-
ing the testing of real-time graphics systems; ii) The implementation of the
framework into a tool, and its application to an industrial case study (Cas-
parCG), finding 5 previously unknown defects; iii) An optimized implementation
of SSIM, an image quality assessment technique not previously applicable to the
real-time setting of CasparCG .

After starting with some background in next section, we outline our devel-
oped conceptual framework RUGVEF in section 3 . We present our case study
in section 4, of which we show the results in section 5. We discuss related work
in section 6, and finally conclude in the last section.

2 Background

We give here a very short introduction to runtime verification, and provide a
description on some image quality assessment techniques.

Runtime Verification (RV) offers a way for verifying systems as a whole during
their execution [3]. The verification is performed at runtime by monitoring sys-
tem execution paths and states, checking whether any predefined formal logic
rules are being violated. Additionally, RV can be used to verify software in com-
bination with user-based interaction, adding more focus toward user specific

Verification of Real-Time Graphics Systems 3

test-cases, which more likely could uncover end-user experienced defects. How-
ever, care should be taken as RV adds an overhead potentially reducing system
performance. This overhead could also possibly affect the time sensitivity of sys-
tems in such way that they appear to run correctly while the monitor is active,
but not after it has been removed, a common problem when checking for e.g.
data-races in concurrent execution [3].

Image Quality Assessment is used to assess the quality of images or video-
streams based on models simulating the Human Visual System (HVS) [16]. The
quality is defined as the fidelity or similarity between an image and its reference,
and is quantitatively given as the differences between them. Models of the HVS
describe how different type of errors should be weighted based on their percepti-
bility, e.g. errors in luminance4 are more perceptible than errors in chrominance5

[11]. However, there is a trade-off between the accuracy and performance of al-
gorithms that are based on such models.

Binary comparison is a high performance method for calculating image fi-
delity, but does not take human perception into account. This could potentially
cause problems where any binary differences found are identified as errors even
though they might not be visible, possibly indicating false negatives.

Another relatively fast method is the Mean Squared Error (MSE), which cal-
culates the cumulative squared difference between images and their references,
where higher values indicate more errors and lower fidelity. An alternative version
of MSE is the Peak Signal to Noise Ratio (PSNR) which instead calculates the
peak-error (i.e. noise) between images and their references. This metric trans-
forms MSE into a logarithmic decibel scale where higher values indicate fewer
errors and stronger fidelity. The MSE and PSNR algorithms are commonly used
to quantitatively measure the performance and quality of lossy compression al-
gorithms in the domain of video processing [6], where one of the goals is to keep
a constant image quality while minimizing size, a so-called constant rate factor
[9]. This constant rate is achieved, during the encoding process, by dynamically
assessing image quality while optimizing compression rates accordingly.

Structural Similarity Index (SSIM) is an alternative measure that puts more
focus on modeling human perception, but at the cost of heavier computations.
The algorithm provides more interpretable relative percentage measures (0.0-
1.0), in contrast to MSE and PSNR, which present fidelity as abstract values
that must be interpreted. SSIM differs from its predecessors as it calculates
distortions in perceived structural variations instead of perceived errors. This
difference is illustrated in Fig. 1, where (b) has a uniform contrast distortion
over the entire image, resulting in a high perceived error, but low structural
error. Unlike SSIM, MSE considers (b), (c), and (d) to have the same image
fidelity to the reference (a), but this is clearly not the case due to the relatively
large structural distortions in (c) and (d). Tests conducted have shown that SSIM

4 Brightness measure.
5 Color information.

4 R. Nagy and G. Schneider and A. Timofeitchik

(a)

MSE:0 SSIM:1.000

(b)

MSE:306 SSIM:0.928

(c)

MSE:309 SSIM:0.580

(d)

MSE:309 SSIM:0.576

Fig. 1. Image Quality Assessment of distorted images using MSE and SSIM [16].

Fig. 2. The RUGVEF framework, used for automatically monitoring temporal and
contextual properties of the system under test.

provides more consistent results compared to MSE and PSNR [16]. Furthermore,
SSIM is also used in some high end applications as an alternative to PSNR.6

3 The Runtime Graphics Verification Framework

In this section we start by describing the Runtime Graphics Verification Frame-
work (RUGVEF), that combines runtime verification with image quality assess-
ment in order to create a verification process that is capable of verifying graphics
related system properties. We then state the prerequisite for testing such sys-
tems, and finally, we explain how graphical content is analyzed for correctness
using image quality assessment.

3.1 The RUGVEF Conceptual Model

RUGVEF can be used to enable verification of real-time graphics systems during
their execution. Its verification process is composed of two mechanisms: i) check-
ing of execution paths, and ii) verification of graphical output. In conjunction
they are used to evaluate temporal and contextual properties of the system under

6 http://www.videolan.org/developers/x264.html

Verification of Real-Time Graphics Systems 5

test. Note that the verification can also include its external runtime environment,
such as hardware and drivers.

The verification process is realized as a monitor application that runs in par-
allel with the tested system. During this process the system is synchronized with
the monitor through event-based communication, where events sent are used to
identify changes in the systems runtime state, thereby verifying the systems
temporal correctness. State transitions should always occur when the graphical
output changes allowing legal graphical states to be represented by reference
data. These references are in turn used for determining the correctness of state
properties through objective comparisons against graphical output produced by
the system using appropriate image assessment techniques.

To show this concept, we consider an example where we test a simple video
player having three system control actions (play, pause, and stop), which ac-
cording to the specification change from 3 different states: from state Idle to
state Playing with action play, and with pause to state Paused. From Paused
it is possible to go to state Playing with action play and to state Idle with
action stop; and finally from Playing to Idle with action stop. In this formal
definition (the above gives place to a Finite-State Machine — FSM), transitions
are used to describe the consequentiality of valid system occurrences that poten-
tially could affect the graphical output. Thus, as the video player is launched the
monitor application is started and initialized to the video player’s idle state,
specifying during this state that only completely black frames are expected. Any
graphical output produced is throughout the verification intercepted and com-
pared against specified references, where any mismatches detected correspond
to contextual properties being violated. At some instant, when one of the video
player’s controls is used, an event is triggered, signaling to the monitor that the
video player has transitioned to another state. In this case, there is only one
valid option and that is the event signaling the transition from Idle to Playing
state (any other events received would correspond to temporal properties being
violated). As valid transitions occur, the monitor is updated by initializing the
target state, in this case the Playing state, changing references used according
to that state’s specifications. (See Appendix A for more details.)

3.2 Prerequisites

There is a limitation in using comparisons for evaluating graphical output. To
illustrate this consider a moving object being frame-independently rendered at
three different rendering speeds, showing that during the same time period, no
matter what frame rate is used, the object will always be in the same location
at a specific time. The problem is that rendering speeds usually fluctuate, caus-
ing consecutive identical runs to produce different frame-by-frame outputs. For
instance two runs having the same average frame rate but with varying frame-
by-frame results, will make it impossible to predetermine the references that
should be used. For this reason, the rendering during testing must always be
performed in a time-independent fashion. That is, a moving object should al-
ways have moved exactly the same distance between two consecutively rendered
frames, no matter how much time has passed.

6 R. Nagy and G. Schneider and A. Timofeitchik

3.3 Image Quality Assessment for Analyzing Graphical Output

Analysis of graphical output is required in order to determine whether con-
textual properties of real-time graphics systems have been satisfied. RUGVEF
achieves this by continuously comparing the graphical output against predefined
references. We discuss two separate image quality assessment techniques for mea-
suring the similarity of images: one based on absolute correctness, and the other
based on perceptual correctness.

Absolute correctness is assessed using binary comparison, where images are
evaluated pixel by pixel in order to check whether they are identical. This tech-
nique is effective for finding differences between images that are otherwise diffi-
cult or impossible to visually detect, which could for instance occur as a result
of using mathematically flawed algorithms. However, it is not always the case
that non-perceptible dissimilarities are a problem, requiring in such cases that a
small tolerance threshold is introduced in order to ignore acceptable differences.
One example of this could occur when the monitored system generates graphi-
cal output using a GPU 7 based runtime platform, conforming to the IEEE 754
floating point model8, while its reference generator is run on a x86 CPU plat-
form, using an optimized version of the same model9, possibly causing minor
differences in what otherwise should be binarily identical outputs.

Perceptual correctness is estimated through algorithms based on models of
the human visual system, and is used for determining whether images are visually
identical. Such correctness makes graphics analysis applicable to the output of
physical video interfaces which compresses images into lossy color spaces [16, 11],
with small effects on perceived quality [11], but with large binary differences.

We have evaluated the three common image assessment techniques, MSE,
PSNR, and SSIM, which are based on models of the HVS. Although MSE and
PSNR are the most computationally efficient and widely accepted in the field of
image processing, we have found SSIM to be the best alternative. The reason for
this is that MSE and PSNR are prone to false positives and present fidelity as
abstract values that need to be interpreted. As an example, when verifying the
output from a physical video interface we found that an unacceptably high error
threshold was required in order for a perceptually correct video stream to pass
its verification. SSIM on the other hand was found to be more accurate, also
presenting results as concrete similarity measure given as a percentage (0.0-1.0).
Additionally, both MSE and PSNR have recently received critique due to lacking
correspondence with human perception [16]. The main problem with SSIM is
that current implementations are not efficient.

4 Case Study - CasparCG

In order to evaluate the feasibility of our framework, a case study was performed
in an industrial setting where we created, integrated, and evaluated a verification
7 Graphical Processing Unit.
8
http://developer.download.nvidia.com/assets/cuda/files/NVIDIA-CUDA-Floating-Point.pdf

9
http://msdn.microsoft.com/en-us/library/e7s85ffb.aspx

Verification of Real-Time Graphics Systems 7

solution based on RUGVEF . We first describe CasparCG , and we then show how
testing of CasparCG was improved using RUGVEF .

4.1 CasparCG

The development of CasparCG started in 2005 as an in-house project for on-air
graphics and was used live for the first time during the 2006 Swedish elections
[15]. Developing this in-house system enabled SVT to greatly reduce costs by re-
placing expensive commercial solutions with a cheaper alternative. During 2008
the software was released under an open-source license, allowing external con-
tributions to the project. CasparCG 2.0, was released in April 2012 with the
successful deployment in the new studios of the show Aktuellt [14].

During broadcasts CasparCG renders on-air graphics such as bumpers, graphs,
news tickers, and name signs. All graphics are rendered in real-time to different
video layers that are composed using alpha blending into a single video-stream.
The frame rate is regulated by the encoding system used by the broadcasting
facility. (See Appendix B for more details.)

The broad range of features offered by CasparCG allows the replacement
of several dedicated devices during broadcasting (e.g. video servers, character
generators, and encoders), making it a highly critical component as failures could
potentially disrupt several stages within broadcasts. The system is expected to
handle computationally heavy operations during real-time execution, e.g. high
quality deinterlacing10 and scaling of high definition videos. A single program
instance can also be used to feed several video-streams to the same or different
broadcasting facilities, requiring good performance and reliability.

CasparCG is incrementally developed and is mainly tested through code re-
views and ocular inspections. Code reviews are performed continuously through-
out the iterative development, roughly every two weeks and also before any new
version releases. Reviews usually consist of informal walkthroughs where either
the full source code or only recently modified sections are inspected, in order
to uncover possible defects. Ocular inspections are performed during the later
stages of the iterative development, when CasparCG is nearing a planned re-
lease. The inspections consist of testers enumerating different combinations of
system functionalities and visually inspecting that the output produced looks
correct. (See Appendix C for more details.)

Whenever an iteration is nearing feature completion, an alpha build is re-
leased, allowing users to test the newly added functionality while verifying that
all previously existing features still work as expected. Once an iteration becomes
feature complete, a beta build is released that further allows users to test sys-
tem stability and functionality. As defects are reported and fixed, additional beta
builds are released until the iteration is considered stable for its final release. Al-
pha and beta releases are viewed, by the development team, as a cost-effective
way for achieving relatively large code coverage levels, where the assumption is

10 A process where an interlaced frame consisting of two interleaved frames (fields) are
split into two full progressive frames.

8 R. Nagy and G. Schneider and A. Timofeitchik

Fig. 3. The verifier is implemented as an input module, running as a part of CasparCG.

that users try more combinations of features, compared to the in-house testing,
and that the most commonly used features are tested the most.

4.2 Verifying CasparCG with RUGVEF

RUGVEF was integrated into the testing workflow of CasparCG with the aim
of complementing existing practices (particularly ocular inspections), in order
to improve the probability of detecting errors, while maintaining the existing
reliability levels of its testing process. In this section, we present our contribution
to the testing of CasparCG , consisting of two separate verification techniques:
local and remote, allowing the system to be verified alternatively on the same and
different machine. We also present our optimized SSIM implementation, used
for real-time image assessment, and a theoretical argumentation on how our
approach is indeed an optimization in relation to a reference implementation [5].

Local Verification During local verification, the verification process is con-
currently executed as a plugin module inside CasparCG , allowing output to be
intercepted without using middleware or code modifications. Fig. 3 illustrates
that the verifier is running as a regular output module inside CasparCG , directly
intercepting the graphical output (i.e. video) and the messages produced.

The main difficulty of verifying CasparCG is to check its output as it is
dynamically composed of multiple layers. Consider the scenario where a video
stream, initially composed by one layer of graphics, is verified using references.
In this case, the reference used is simply the source of the graphics rendered.
However, at some point, as an additional layer is added, the process requires a
different reference for checking the stream that now is composed of two graph-
ical sources. The difficulty, in this case, is to statically provide references for
each possible scenario where the additional layer has been added on top of the
other (as this can happen at any time). As a solution, we instead analyze the
graphical output through a reference implementation that mimics basic system
functionalities of CasparCG (e.g. blending of multiple layers). Using the original
source files, the reference implementation generates references at runtime which
are expected to be binarily equal to the graphical output of CasparCG . The ref-
erence implementation only needs to be verified once, unless new functionality
is added, as it is not expected to change during CasparCG ’s development.

Another problem of verifying CasparCG lies in defining the logic of the sys-
tem, where each additional layer or command considered would require an ex-

Verification of Real-Time Graphics Systems 9

Fig. 4. The remote verification uses two instances of CasparCG.

ponential increase in the number of predefined states. For example an FSM
representing a system with two layers would only require half the amount of
states compared to an FSM representing the same system with three layers.
In order to avoid such bloated system definitions, we instead define a generic
description of CasparCG where one state machine represents all layers which
are expected to be functionally equal. This allows temporal properties of each
layer to be monitored separately while the reference implementation is used for
checking contextual properties of the complete system. (See Appendix D.)

The process in local verification is computationally demanding, affecting the
system negatively during periods of high load, thus making verification inappli-
cable during stress-testing. Another limitation identified was that not all com-
ponents of the system are verifiable; that it is impossible to check the physical
output produced by CasparCG , which could be negatively affected by external
factors (e.g. hardware or drivers). So, in order to more accurately monitor Cas-
parCG , with minimal overhead and including its physical output, we further
extended our implementation to include remote verification.

Remote Verification During remote verification, the verifier is executed non-
intrusively on a physically different system. Fig. 4 shows this solution, consisting
of two CasparCG instances running on separate machines, where the first in-
stance receives the commands and produces the output, and the second instance
captures the output and forwards it to the RUGVEF verification module. (See

Appendix F for more details.)

The main problem of remote verification is that the video card interface of
CasparCG compresses graphical content, converting it from the internal BGRA
color format to the YUV420 color format, before transmitting it between the
machines. These compressions cause data loss, making binary comparisons in-
applicable, instead requiring that the output is analyzed through other image
assessment techniques that are based on the human visual system. In this im-
plementation, we chose to use SSIM, as it seems to be the best alternative for
determining whether two images are perceptually equal. However, the reference
SSIM implementation [5] is only able to process one frame every few second,
making real-time analysis of CasparCG ’s graphical output impossible (as it is
produced at a minimum rate of 25 frames per second). In what follows we dis-
cuss specific optimizations performed in order to make SSIM applicable to the
RUGVEF verification process of CasparCG .

On the implementation of SSIM The main challenge of improving the im-
plementation of SSIM consisted in achieving the performance that would allow

10 R. Nagy and G. Schneider and A. Timofeitchik

the algorithm to be minimally intrusive while keeping up with data rate of Cas-
parCG . We have formally specified the algorithm behind SSIM in order to iden-
tify the bottlenecks concerning efficiency in current implementations. We have
identified that the main problem was that the time complexity was quadratic
on the HDTV resolution (N), and on the size of windows used in the fidelity
measurements (M). In order to fully utilize modern processor capabilities, we
implemented the algorithm using Single-Instruction-Multiple-Data instructions
(SIMD) [10], allowing us to perform simultaneous operations on vectors of 128
bit values, in this case four 32 bit floating point values using a single instruc-
tion. Also, in order to fully utilize SIMD, we chose to replace the recommended
window size of M = 11 in [16] with M=8, allowing calculations to be evenly
mapped to vector sizes of four elements (i.e. two vectors per row).

Furthermore, we parallelized our implementation by splitting images into
several dynamic partitions, which are executed on a task-based scheduler, en-
abling load-balanced cache-friendly execution on multicore processors [6]. Dy-
namic partitions enable the task-scheduler to more efficiently balance the load
between available processing units [6], by allowing idle processing units to split
and steal sub-partitions from other busy processing units’ work queues. Using
all processors, we are able to achieve a highly scalable implementation.

The final time complexity achieved by our optimized SSIM implementation
is O((N2 (M2+24))/(12p)), allowing SSIM calculations to be performed in real-
time on consumer level hardware at HDTV resolutions, where p is the number
of available processing units. (See Appendix G for more details.)

5 Experimental Results

We present here the errors found while verifying CasparCG using RUGVEF .
We then show which previously known defects (injected back into CasparCG)
we could detect. Finally, we present the improvements in terms of accuracy
and performance of our optimized SSIM implementation w.r.t the reference
implementation.

5.1 Previously Unknown Defects

Using RUGVEF we were able to five previously unknown defects (presented
in the order of their severity, as assessed by the developers), namely: i) Tinted
colors, ii) Arithmetic overflows during alpha blending, iii) Invalid command ex-
ecution, iv) Missing frames during looping, v) Minor pixel errors.

Tinted Colors Using remote verification, we found a defect where a video
transmitted by CasparCG ’s video interface had slightly tinted colors compared
to the original source (i.e. the reference). The error was caused by an incorrect
YUV to BGRA transformation that occurred between CasparCG and the video
interface. Such problems are normally difficult to detect as both the reference
and the actual output looks correct when evaluated separately where differences
only are apparent during direct comparisons. (See Appendix I.)

Verification of Real-Time Graphics Systems 11

(a) (b) (c)

Fig. 5. Pixel rounding defect causing artifact to appear in image (b) which are not
visible in the reference (a).

(a) (b) (c)

Fig. 6. The output (b) is perceptually identical to the reference (a) while still containing
minor pixels errors (c).

Arithmetic Overflows During Alpha Blending Using RUGVEF , we found
that in video streams consisting of multiple layers some small “bad” pixels ap-
pear, due to a pixel rounding defect. This defect caused arithmetic overflows
during blending operations, producing errors as shown in Fig. 5 (b) (seen as blue
pigmentations11). Since these errors only occur in certain cases and possibly af-
fecting very few pixels, detection using ocular inspections is a time-consuming
process requiring rigorous testing during multiple runs.

Invalid Command Execution Using RUGVEF , we found that the software
in certain states accepted invalid commands. For instance it was possible to stop
and pause images while in the Idle state and to pause while in the Paused state.
Executing commands on non-existing layers caused unnecessary layers to be
initialized, consuming resources in the process. Without RUGVEF , this defect
would only have been detected after long consecutive system runs, where the
total memory consumed would be large enough to be noticed. Furthermore, the
execution of these invalid commands produced system responses that indicated
successful executions to clients (instead of producing error messages), probably
affecting both clients and developers in thinking that this behavior was correct.

Missing Frames During Looping Using RUGVEF , we detected that frames
were occasionally skipped when looping videos. The cause of this defect is still

11 In B&W this is seen as the small grey parts in the white central part of the picture.

12 R. Nagy and G. Schneider and A. Timofeitchik

Rev Description Found

N/A Flickering output due to faulty hardware. yes

2717 Red and blue color channels swapped during certain runs. yes

2497 Incorrect buffering of frames for deferred video input. no

2474 Incorrect calculations in multiple video coordinate transformations. no

2410 Frames from video files duplicated due to slow file I/O. yes

2119 Configured RGBA to alpha conversion sometimes not occurring. yes

1783 Missing alpha channel after deinterlacing. yes

1773 Incorrect scaling of deinterlaced frames. no

1702 Video seek not working. no

1654 Video seek not working in certain video file formats. no

1551 Incorrect alpha calculations during different blending modes. no

1342 Flickering video when rendering on multiple channels. yes

1305 De-interlacing artifacts due to buffer overflows. no

1252 Incorrect wipe transition between videos. no

1204 Incorrect interlacing using separate key video. no

1191 Incorrect mixing to empty video. no
Table 1. Previously fixed defects that were injected back into CasparCG in order to
test whether they are detectable using RUGVEF .

unknown and has not been previously detected due to the error being virtu-
ally invisible, unless videos are looped numerous times (since only one frame is
skipped during each loop).
Minor Pixel Errors Using local verification, we detected that minor pixel
deviations occurred to the output of CasparCG that sometimes caused pixel
errors of up to 0.8%. These errors are perceptually invisible and could only
be detected by using the binary image assessment technique. Fig. 6 shows an
example of such a case, where the output in (b) looks identical to the reference
in (a) but where small differences have been detected (c).

5.2 Previously Known Defects

In order to evaluate the efficiency of our conceptual model, we injected several
known defects into CasparCG and tested whether these could be found using
RUGVEF . The injected defects were mined from the subversion log of CasparCG
[2] by inspecting the last 12 months of development, scoping the large amount of
information while still providing enough relevant defects. In table 1, we present
a summary of the gathered defects, where the first column contains the revision
id of the log entry, the second a short description of the defect, and the third
column indicates whether the defects were possible to detect using RUGVEF .

Using RUGVEF we were able to detect 6 out of 16 defects that were injected
back into CasparCG . The defects that could not be found were due to limited
reference implementation, which only partially replicated existing functionalities
of CasparCG . For instance, our reference implementation did not include the
scaling of frames or the wipe transition functionalities which made the defects,
found in revision 1773 and 1252 respectively, impossible to detect as appropriate
references could not be generated.

Verification of Real-Time Graphics Systems 13

(a)

R: 1.000 O: 1.000

(b)

R: 0.719 O: 0.714

(c)

R: 0.875 O: 0.875

(d)

R: 0.699 O: 0.686

Fig. 7. The results of performing SSIM calculation using our optimized implementation
(O) and the reference implementation (R) for an undistorted image (a), noisy image
(b), blurred image (c), and an image with distorted levels (d).

5.3 Performance of the Optimized SSIM Implementation

We performed our speed improvement benchmarks of our optimized SSIM imple-
mentation on a laptop computer having 8 logical processing units, each running
at 2.0 GHz12(which is considerably slower than the target server level computer).
Each benchmark consisted of comparing the optimized SSIM implementation
against the original implementation using the three most common video reso-
lutions, standard definition (SD), high definition (HD), and full high definition
(Full HD), by measuring the average time for calculating SSIM for 25 randomly
generated images. The results of our benchmarks are presented in table 2, show-
ing that our optimized SSIM implementation is up to 106 times faster than the
original implementation. This increase is larger than the theoretically expected
increase of 80 times (calculated using our final time complexity in section 4.2),
since our optimized SSIM implementation performs all calculations in a sin-
gle pass, thereby avoiding the memory bottlenecks which existed in the original
SSIM implementation. Using our implementation, we were able to analyze the
graphical output of CasparCG in real-time for Full HD streams.

Additionally, we also performed an accuracy test by calculating SSIM for
different distortions in images, comparing the results of our optimized SSIM
implementation with the results of the original implementation. In Fig. 7, we
present the values produced by our optimized SSIM implementation “O” and
the values produced by the original implementation “R” for the following four
types of image distortions: undistorted (a), noisy (b), blurred (c), and distorted
levels (d). The result shows that the accuracy of both SSIM implementations is
nearly identical, as the differences between the values are very small.

6 Related Work

The following works address issues related to the testing of graphics: the tool
Sikuli [18], that uses screenshots as references for automating testing of Graphical

12 Intel Core i7-2630QM

14 R. Nagy and G. Schneider and A. Timofeitchik

Implementation 720x576 (SD) 1280x720 (HD) 1920x1080 (Full HD)

Optimized 129 fps 55 fps 25 fps

Reference 1.23 fps 0.55 fps 0.24 fps
Table 2. The optimized SSIM implementation compared against a reference imple-
mentation at different video resolutions.

User Interfaces (GUI s); the tool PETTool [4], which (semi-) automates the
execution of GUI based test-cases through identified common patterns; and a
conceptual framework for regression testing graphical applications [7]. When it
comes to verifying graphical output, the framework in [7] uses a similar approach
to RUGVEF . However, the tool in [7] focuses on testing system features in
isolation, where each test is run separately and targets specific areas of a system
(similarly to unit tests). Furthermore, we have also applied our framework to an
industrial case study, while there are no indications that something similar has
been done in [7], making it difficult to make a detailed comparison.

Finally, the runtime verification tool LARVA [3] was used as inspiration
source for developing the runtime verification part of RUGVEF .

7 Final Discussion

In this paper we have presented RUGVEF , a framework for the automatic test-
ing of real-time graphical systems. RUGVEF combines runtime verification for
checking temporal properties, with image analysis, where reference based im-
age quality assessment techniques are used for checking contextual properties.
The assessment techniques presented were based on two separate notions of
correctness: absolute and perceptual. We also provided a proof of concept, in
the form of a case study, where we implemented and tested RUGVEF in the
industrial setting of CasparCG , an on-air graphics playout system developed
and used by SVT. The implementation included two separate verification tech-
niques, local and remote, used for verifying the system locally on the same ma-
chine with maximal accuracy, and remotely on a different machine, with minimal
runtime intrusiveness. Additionally, remote verification allowed the system to be
tested as a whole, making it possible to detect errors in the runtime environment
(e.g. hardware and drivers). We also created an optimized SSIM implementa-
tion that was used for determining the perceptual difference between images,
enabling real-time analysis of Full HD video output produced by CasparCG .

When verifying CasparCG with RUGVEF we identified 5 previously unde-
tected defects. We also investigated whether previously known defects could be
detected using our tool, showing that 6 out of 16 injected defects could be found.
Lastly, we measured the performance of our optimized SSIM implementation,
demonstrating a performance gain of up 106 times compared to the original
implementation and a negligible loss in accuracy.

The results above show that RUGVEF can indeed successfully complement
existing verification practices by automating the detection of contextual and tem-

Verification of Real-Time Graphics Systems 15

poral errors in graphical systems. That using the framework allows for earlier
detection of defects and enables more efficient development through automated
regression testing. Unlike traditional testing techniques, RUGVEF can also be
used to verify the system post deployment, similarly to traditional runtime ver-
ification, something that previously was impossible. The implementation of the
RUGVEF tool requires CasparCG to run but it should be possible to adapt and
apply implementation to other systems as well.13

References

1. J. Carmack. Quakecon 2011 - John Carmack keynote Q&A, Aug 2011. http:

//www.quakecon.org/2011/08/catch-up-on-quakecon-2011/.
2. CasparCG, 2008. https://casparcg.svn.sourceforge.net/svnroot/casparcg.
3. C. Colombo, G. J. Pace, and G. Schneider. LARVA — safer monitoring of real-time

java programs (tool paper). In SEFM, pages 33–37. IEEE Comp. Soc., 2009.
4. M. Cunha, A. C. R. Paiva, H. S. Ferreira, and R. Abreu. PETTool: A pattern-based

GUI testing tool. In ICSTE’10, volume 1, pages 202–206, 2010.
5. T. Distler. Image quality assessment (IQA) library, 2011. http://tdistler.com/

projects/iqa.
6. K. Farnham. Threading building blocks scheduling and

task stealing: Introduction, Aug 2007. http://software.

intel.com/en-us/blogs/2007/08/13/threading-building-blo%

cks-scheduling-and-task-stealing-introduction/.
7. D. Fell. Testing graphical applications. Embedded Sys. Design, 14(1):86–86, 2001.
8. I. C. U. (ICU). BT.709 : Parameter values for the HDTV standards for produc-

tion and international programme exchange, Apr 2002. http://www.itu.int/rec/
R-REC-BT.709/en.

9. X. Li, Y. Cui, and Y. Xue. Towards an automatic parameter-tuning framework for
cost optimization on video encoding cloud. Int. J. Digit. Multim. Broadc., 2012.

10. Microsoft. Streaming SIMD extensions (SSE), 2012. http://msdn.microsoft.

com/en-us/library/t467de55.aspx.
11. A. M. Murching and J. W. Woods. Adaptive subsampling of color images. In

ICIP’94, volume 3, pages 963–966, Nov 1994.
12. G. J. Myers and C. Sandler. The Art of Software Testing. John Wiley & Sons,

second edition, 2004.
13. M. Sharke. Rage PC launch marred by graphics issues, Oct 2011. http://pc.

gamespy.com/pc/id-tech-5-project/1198334p1.html.
14. S. B. C. (SVT). National news: Aktuellt & Rapport. http://www.casparcg.com/

case/national-news-aktuellt-rapport.
15. S. B. C. (SVT). Swedish election 2006. http://www.casparcg.com/case/

swedish-election-2006.
16. Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli. Image quality assess-

ment: From error visibility to structural similarity. IEEE Trans. on Image Proc.,
13(4):600–612, 2004.

17. M. Wright. The Open Sound Control 1.0 specification, Mar 2002. http:

//opensoundcontrol.org/spec-1_0.

13 The project can be downloaded from
runtime-graphics-verification.googlecode.com.

16 R. Nagy and G. Schneider and A. Timofeitchik

18. T. Yeh, T.-H. Chang, and R. C. Miller. Sikuli: using GUI screenshots for search
and automation. In UIST’09, pages 183–192. ACM, 2009.

Verification of Real-Time Graphics Systems 17

A The RUGVEF Conceptual Model CasparCG

The Runtime Graphics Verification Framework (RUGVEF) can be used to en-
able verification of real-time graphics systems during their execution. Its verifi-
cation process is composed of two mechanisms: i) checking of execution paths,
and ii) verification of graphical output. In conjunction they are used to evaluate
temporal and contextual properties of the system under test.

To illustrate an example of such properties, we consider a simple video player
that displays video files on a screen. This application has three controls through
which users can start, stop, or pause video playback. In this case, a contextual
property might be that actual video file content is always displayed during play-
back or that otherwise only empty frames are produced, and a temporal property
might be that it is only possible to use the pause control during video playback.

The correctness of properties in real-time graphics is determined through
continuous analysis of graphical output (e.g. content displayed by the video
player). Traditionally, this type of analysis is performed intuitively through oc-
ular inspections, where testers themselves observe content displayed in order
to determine whether system properties are satisfied. However, since ocular in-
spections heavily rely on the subjective opinions of testers, the process is very
difficult (or maybe even impossible) to be programmatically replicated. Thus,
in order to automate the verification of graphics related properties, we propose
that correctness is determined through objective comparisons against references
using appropriate image assessment techniques.

However, there is a limitation in using comparisons for evaluating graphical
output. To illustrate this consider the example in Fig. 8-(a), where we show a
moving object being frame-independently at three different rendering speeds,
showing that during the same time period, no matter what frame rate is used,
the object will always be in the same location at a specific time. The problem
is that rendering speeds usually fluctuate, causing consecutive identical runs to
produce different frame-by-frame outputs. For instance in Fig. 8-(b), we show
two runs having the same average frame rate but with varying frame-by-frame
results, making it impossible to predetermine the references that should be used.
For this reason, the rendering during testing must always be performed in a time-
independent fashion. That is, a moving object should always have moved exactly
the same distance between two consecutively rendered frames, no matter how
much time has passed.

The analysis of graphical output through comparisons requires that refer-
ences are provided together with relevant information on when and how they
should be used. To show this, we consider the same video player that was previ-
ously described. This video player has three system control actions (play, pause,
and stop), which according to the specification change from 3 different states:
from state Idle till state Playing with action play, and with pause to state
Paused. From Paused it is possible to go to state Playing with action play and
to state Idle with action stop; finally from Playing to Idle with action stop. In
this formal definition (the above gives place to a Finite-State Machine —FSM),
transitions are used to describe the consequentiality of valid system occurrences

18 R. Nagy and G. Schneider and A. Timofeitchik

(a) (b)

Fig. 8. (a) The frame-independent rendering technique renders a moving object at
different frame rates, but where the displaced distance during identical periods is the
same; (b) Frame-independent rendering produces different results depending on the
time elapsed between each rendered frame.

Fig. 9. An implementation of RUGVEF used for automatically monitoring the simple
video player’s temporal and contextual properties.

that potentially could affect the graphical output. For instance describing that it
is only possible to pause an already playing video. Transitions are labelled with
actions (play, pause, and stop) that, when executed, trigger the transitions.
States (idle, playing, and paused) represent legal output variations possibly
occurring during runtime execution, that is, what we expect to be displayed by
the video player. For instance defining the reference that must be used while in
the idle state in order to check that only empty frames are produced.

We have so far focused on describing the artifacts needed in order to automate
the verification of temporal and contextual properties in real-time graphics. We
have stated that the correctness of such properties is most easily determined
through objective comparisons with references, and that these references must
be provided together with a formal definition of the system to be tested. To put
these artifacts into context, we consider the example illustrated in Fig. 9, showing
an automated verification process that can be used for checking properties of the
same video player mentioned throughout this section.

In this example, the verification process has been realized as a monitor ap-
plication that runs in parallel with the video player. During this process the

Verification of Real-Time Graphics Systems 19

video player is synchronized with the monitor through event-based communi-
cation, where events sent by the video player are used to identify changes to
its runtime state. As previously mentioned, such state transitions should always
occur when the output of the video player changes, requiring in this case that
the controls play, pause, and stop are used as the triggering points for trans-
mitted events. Legal states and transitions must also be known by the monitor
before event-based communication can be used for monitoring the video player’s
activities. In this case, we provide the same states and transitions as defined by
the FSM describe above. Events can thereby be used for representing transitions
between states, making it possible for the monitor to track the video player’s
runtime state and to check its temporal activities. The graphical context during
each state is monitored by intercepting the graphical output and comparing it
against provided references.

Thus, as the video player is launched the monitor application is started
and initialized to the video player’s idle state, specifying during this state that
only completely black frames are expected. Any graphical output produced is
throughout the verification intercepted and compared against specified refer-
ences, where any mismatches detected correspond to contextual properties being
violated. At some instant, when one of the video player’s controls is used, an
event is triggered, signaling to the monitor that the video player has transitioned
to another state. In this case, there is only one valid option and that is the event
signaling the transition from idle to playing state (any other events received
would correspond to temporal properties being violated). As valid transitions
occur, the monitor is updated by initializing the target state, in this case the
playing state, changing references used according to that state’s specifications.

One important issue emerges when the input of a system is handled asyn-
chronously from the graphical output: whenever a command is issued, its effect
is delayed by an undefined amount of discrete output intervals before actually
being observable. The problem with this non-deterministic delay is that it could
affect the event-based communication between a monitor application and the
tested system, causing events to arrive prematurely from what is output, thereby
making the reference data used in the verification process to become out of sync.

A.1 Solving the Synchronization Problem

We suggest two approaches for solving the synchronization problems presented
above. The first is based on tagging the graphical output with unique identifiers,
and the second on using comparisons with already provided references.

Frame Tagging One possible method for solving the synchronization problem is
by tagging the output produced by the monitored system with unique identi-
fiers. The synchronization is achieved by pairing events with specific frames, in
which the triggering commands effect can be observed, and by delaying these
until frames tagged with matching identifiers have been received. For instance in
Fig. 10, we show a wrapper intercepting and delaying an event tagged with the

20 R. Nagy and G. Schneider and A. Timofeitchik

Fig. 10. Synchronization using a wrapper delays events until frames with correct tags
are received.

Fig. 11. Synchronization using a reference.

unique identifier C until the frame carrying the same identifier has been received,
indicating that the change to the output is observable.

The disadvantage of this technique is that it requires the tagging capability of
frames to be implemented. This solution might be too intrusive as it may require
fundamental changes in the software. It may also prove difficult in keeping the
associated metadata correctly tagged while propagating throughout the complete
system’s software and hardware chain, before finally reaching the verifier.

Reference Based Comparisons As an alternative to frame tagging, the synchro-
nization can be performed by only using reference based comparisons. This pro-
cess is illustrated in Fig. 11, and is as follows: when an event is received the
verifier continues comparing the output against provided references, unchanged
in relation to the received event. As a frame mismatch occurs and the com-
parison fails, the reference is updated and a re-comparison is performed. If the
re-comparison succeeds then the synchronization has been successful or other-
wise an error has been detected.

However, an issue emerges when additional events are received while still
in the synchronization process, causing difficulties in deducing which references
to update when a mismatch occurs, requiring that all possible combination of
pending changes are tried before proceeding with the updates.

Verification of Real-Time Graphics Systems 21

Another issue arises whenever changes to the output cannot be observed
(i.e. where changes are outside the scene or totally obscured), causing the re-
synchronization to be prolonged or, in the worst case scenario, to never finish. In
such cases, the solution is to postpone all synchronization until later stages where
mismatches have been detected, but requiring that all possible combinations of
pending changes are tried before updates to references can be performed.

Thus, the main issue with using reference based synchronization is that the
testing of all combinations requires a much higher computational demand. This
could affect the total outcome of the verification negatively, making some defects
to not occur until the verifier has been removed. In order to avoid such compli-
cations, we propose that the verification is instead scoped so that changes to the
output should always be observable and that no additional commands should be
issued, while still in the process of synchronizing references.

In what follows we show how reference based image quality assessment tech-
niques are used to determine the correctness of graphical output of systems.

B CasparCG

These frequencies are regulated through a hardware reference clock connected
to the system, usually consisting of a sync pulse generator that provides a highly
stable and accurate pulse signal. This signal is used globally in the broadcasting
facility in order to ensure that all devices are synchronized.

CasparCG takes advantage of modern multi-core and heterogeneous com-
puter architectures by implementing a pipelined processing design, allowing the
system to run different interdependent processing stages in parallel, and possi-
bly on different processing devices. This design increases the throughput of the
system, but at the cost of increased latency that is proportional to the num-
ber of active pipeline stages. In order to increase the performance reliability of
CasparCG , the system uses buffers for effectively hiding transient performance
drops within its rendering pipeline. This buffering technique further increases
the latency between the input and the output,

C CasparCG

Parts of this process has been automated using two different tools: JMeter, an
application that automatically triggers commands (possibly in a random order)
according to predefined schedules; and Log Repeater, an application that repeats
previous system runs through runtime logs produced by CasparCG . These tools
allow testers to run the software in the background, checking stability during
longer periods of runs. As defects are found, the Log Repeater is used for repro-
ducing errors, debugging the system, and verifying possible fixes.

22 R. Nagy and G. Schneider and A. Timofeitchik

D Local Verification

The runtime state of CasparCG is tracked by connecting to its existing mes-
saging capability, which is implemented according to the Open Sound Con-
trol (OSC) protocol [17]. Transmitted messages consist of two fields where the
first field carries the name and the origin of the message (similarly to hyper-
link addresses), while the second carries its arguments. In the context of Cas-
parCG , the first field corresponds to the system’s capability of handling multi-
ple outputs (i.e. channels), where each output is composed of several graphical
streams (i.e. layers), and where the second field carries any additional informa-
tion, such as the file currently playing. For instance, the event of playing the
file movie.mp4 on layer two, channel one, would result as the transmitted OSC
message 〈channel/1/layer/2/play, movie.mp4〉 where the first part is the ad-
dress (with channel/1/layer/2 the origin, and play the name), and the second
the data (the mp4 file). This allows source files to be determined dynamically
at runtime.

We formally define the logic of CasparCG through Extensible Markup Lan-
guage (XML) scripts (cf. Appendix E, listing 1.1). Events are described as reg-
ular expressions that are mapped to OSC messages and paired with predefined
properties. Properties are used for controlling the behavior of the reference imple-
mentation; each property corresponds to a replicated functionality of CasparCG .

As already mentioned, CasparCG implements a buffered rendering pipeline
in order to increase the performance and the reliability of the system. However,
this architectural design introduced a latency between received commands and
the visible output, causing OSC messages to be transmitted prematurely and
thereby making the reference implementation to become out of sync. As a so-
lution to this problem, we implemented the frame tagging scheme presented in
appendix A.1, describing how synchronization is achieved by pairing frames with
events, in this case OSC messages, using unique identifiers.

E Example XML script for CasparCG

In listing 1.1, the event pause at line 13 is paired with the property suspend="true",
defining that the reference implementation should pause/suspend the playback
on layers corresponding to the address defined by the regular expression channel/0/
layers/[0-9]+/ of received OSC messages with the name pause.

1<?xml version=” 1 .0 ” encoding=” utf−8”?>
2<s ta te−machine s t a r t=” i d l e ”>
3<s t a t e s>
4<s t a t e name=” i d l e ”>
5<t r a n s i t i o n event=” channel /0/ l a y e r /[0−9]+/ play ”
6t a r g e t=” p lay ing ”/>
7</ s t a t e>
8<s t a t e name=” play ing ”>
9<t r a n s i t i o n event=” channel /0/ l a y e r /[0−9]+/ stop ”

Verification of Real-Time Graphics Systems 23

10t a r g e t=” i d l e ” r e s e t=” true ”/>
11<t r a n s i t i o n event=” channel /0/ l a y e r /[0−9]+/ eo f ”
12t a r g e t=”paused” r e s e t=” true ”/>
13<t r a n s i t i o n event=” channel /0/ l a y e r /[0−9]+/ pause ”
14t a r g e t=”paused” suspend=” true ”/>
15</ s t a t e>
16<s t a t e name=”paused”>
17<t r a n s i t i o n event=” channel /0/ l a y e r /[0−9]+/ stop ”
18t a r g e t=” i d l e ” r e s e t=” true ”/>
19<t r a n s i t i o n event=” channel /0/ l a y e r /[0−9]+/ play ”
20t a r g e t=” p lay ing ” suspend=” f a l s e ”/>
21</ s t a t e>
22</ s t a t e s>
23</ s tate−machine>

Listing 1.1. XML script defining the generic state machine of CasparCG .

F Remote Verification

Remote verification requires that OSC messages are transmitted between the
machines. We originally tried to address this by using the TCP network proto-
col. However, the latency introduced by the overhead of this protocol (i.e. buffer-
ing, error correction, and packet acknowledgements) caused a synchronization
problem that made remote verification impossible (i.e. the opposite of the syn-
chronization problem described in section 3.1). Thus, we instead used the UDP
protocol allowing us to attain sufficiently low transmission latencies.

Additionally, the implemented synchronization by frame tagging scheme is
unusable during remote verification. The problem lies in that this synchroniza-
tion method requires tags to always be transmitted together with frames, but
where tags received by the second machine are impossible to forward together
with frames through CasparCG ’s rendering pipeline (to the verification mod-
ule), without making significant architectural changes to CasparCG . Thus, to
be able to synchronize the remote verification with the output of CasparCG , we
have also implemented the reference based synchronization scheme (cf. appendix
A.1).

G On the implementation of SSIM

In this appendix we first describe the basics of SSIM in order to show iden-
tified bottlenecks, followed by showing how these are reduced by mapping the
algorithm to modern processor architectures. We finally present our algorithmic
optimization in the form of a preprocessing step that reduced the amount of
data processed by SSIM, while maintaining sufficient accuracy.

In order to determine fidelity, SSIM decomposes the image similarity mea-
surement into three independent components that the human visual system is
more sensitive to [16]: i) luminance, the mean pixel intensity between images;

24 R. Nagy and G. Schneider and A. Timofeitchik

Fig. 12. The M by M window for the pixel Xi in the N by N image.

ii) contrast, the variance of pixel intensity between images; iii) structure, the
pixel intensity after subtracting the mean intensity and normalizing the vari-
ance between images. These metrics are estimated for each pixel by sampling
neighboring pixels in windows of predetermined sizes, as shown in Fig. 12. The
pixel values inside the windows are weighted according to some form of distri-
bution (e.g. linear or Gaussian distribution), where samples closer to the center
are considered more important.

In order to show the bottlenecks, we provide the following specification of
SSIM.

Specification 1 Let us consider two images represented by two distinct N by
N sequences of pixels, X = {Xi|1, 2, ..., N2} and Y = {Yi|1, 2, ..., N2}, where Xi

and Yi are the values of the ith pixel sample in X and Y . Let xi = {xij |1, 2, ...,M2}
and yi = {yij |1, 2, ...,M2} be windows of M by M sequences centered around the
ith pixel in X and Y , where xij and yij are the values of the jth pixel samples in
xi and yi, and where these windows are evaluated using the weighting function
w. Then SSIM is specified as [16]:

SSIM(X,Y) = N−2
N2∑
i=1

luminance(Xi, Yi)×constrast(Xi, Yi)×structure(Xi, Yi)

(1)
luminance(x, y) = (2µxµy + C1)/(µ2

x + µ2
y + C1) (2)

constrast(x, y) = (2σxσy + C2)/(σ2
x + σ2

y + C2) (3)

Verification of Real-Time Graphics Systems 25

structure(x, y) = (σxy + C3)/(σx + σy + C3) (4)

E[x] = µx =
M2∑
j=1

wjxij (5)

σx =

√√√√M2∑
j=1

wj(xij − µx)2 (6)

σxy =
M2∑
j=1

wj(xij − µx)(yij − µy) (7)

We found that the main bottlenecks of implementing this specification are
equations (5), (6) and (7) each having respectively the time complexity ofO(N2M2),
where N2 = 1920× 1080 for HDTV resolutions [8] and M is the size of the win-
dows that are used in the fidelity measurements.

In order to fully utilize modern processor capabilities, we implemented the
algorithm using Single-Instruction-Multiple-Data instructions (SIMD) [10], al-
lowing us to perform simultaneous operations f on vectors of 128 bit values, in
this case four 32 bit floating point values xj = {x1, x2, x3, x4}, using a single
instruction fSIMD as illustrated by Specification 2. Also, in order to fully utilize
SIMD, we chose to replace the recommended window size of M = 11 in [16] with
M=8, allowing calculations to be evenly mapped to vector sizes of four elements
(i.e. two vectors per row).

Specification 2

fSIMD(x,y) = {f(x1, y1), f(x2, y2), f(x3, y3), f(x4, y4)} (8)

By utilizing SIMD, we are able to reduce the time complexity of equations
(5), (6) and (7) from O(N2M2) to O(N2M2/4).

Additionally, we implemented SSIM using a cache friendly single pass cal-
culation, allowing ?? to be calculated in one pass. This implementation greatly
improved the performance, in comparison with the reference implementation [5],
where entire images had to be processed in multiple passes and thereby requiring
multiple memory loads and stores for each pixel 14.

Furthermore, we parallelized our implementation by splitting images into
several dynamic partitions, which are executed on a task-based scheduler, en-
abling load-balanced cache-friendly execution on multicore processors [6]. This
parallelization is illustrated in Fig. 13, where an image is split into four parti-
tions, mapping execution on all available processing units, and where the result
for each partition is merged into the cumulative SSIM measure. Dynamic par-
titions enables the task-scheduler to more efficiently balance the load between
14 Processing large amounts of data that does not fit into the cache memory requires

the same data to be transferred between the cache and the main memory multiple
times, which is considerably slower than performing the actual calculations.

26 R. Nagy and G. Schneider and A. Timofeitchik

Fig. 13. Images are divided into partitions which are processed on different central
processing units. The results of the partitions are then summed in a critical section
using a low contention spinlock.

available processing units [6], by allowing idle processing units to split and steal
sub-partitions from other busy processing units’ work queues. Using all proces-
sors, we are able to achieve a highly scalable implementation with the total time
complexity of O((N2M2)/(4p)), where p is the number of available processing
units.

Lastly, we further reduced the time complexity of SSIM by discarding chromi-
nance and calculating results based solely on luminance (i.e. instead of calculat-
ing SSIM based on all three, red, green, and blue, color channels), where this
optimization is possible due to the assumption that the HVS is more sensitive
to luminance than chrominance [11]. Using only luminance, time complexity of
the SSIM algorithm is O((N2M2)/(4p3) + 10N2), where O(5N2) is the time
complexity of the luminance transformation specified by the BT.709 standard
for HDTV [8], which we specify below.

Verification of Real-Time Graphics Systems 27

(a) (b) (c)

Fig. 14. Three images are produced when errors are detected, where (a) is the reference,
(b) the actual output, and (c) the highlighted pixel error.

Specification 3 Let x = {xi|1, 2, 3, 4} be a pixel sample where each component
respectively evaluate the 8 bit components red, green, blue, and alpha of the pixel
sample xi. Then the BT.709 luma transformation Y’ is specified as:

Y ′BT.709(x) = 0.2125x1 + 0.7154x2 + 0.0721x3 (9)

In this transformation, a weight is assigned for each component in a vector
x, where each weight represents the relative sensitivity between colors according
to the HSV. For example, the blue component is considered least visible by the
HSV and is, therefore, weighted by the relatively low value of 0.0721. 9 can also
be realized using a four component dot product15 between the pixel sample and
a weighting vector. Using the dedicated dot product SIMD instruction we are
able to reduce the time complexity of 9 from O(5N2) to O(N2). Additionally,
by parallelizing the equation, similarly to the parallelization of SSIM earlier
described, we are able to further reduce the time complexity of the luminance
transformation to O(N2/p), where p is the number of available processing units..

The final time complexity achieved by our optimized SSIM implementation
is O((N2 (M2+24))/(12p)), allowing SSIM calculations to be performed in real-
time on consumer level hardware at HDTV resolutions, which is demonstrated
in section 5.

H Previously Unknown Defects

The results produced by RUGVEF when errors occur are images describing
the errors found. For instance, Fig. 14 illustrates one example of such images
produced when an error was detected.

I Tinted Colors

15 An algebraic operation that by multiplying and summing the corresponding elements
in two vector returns a single value result called the dot/scalar product, a · b =Pn

i=1 aibi.
17 In black and white this is seen as slightly brighter background.

28 R. Nagy and G. Schneider and A. Timofeitchik

(a) (b)

Fig. 15. The tinting error where the output (b) has a yellowish tint17in relation to the
reference in (a).

Using remote verification, we found a defect where a video transmitted by Cas-
parCG ’s video interface had slightly tinted colors compared to the original source
(i.e. the reference). This error is visible in Fig. 15, where the actual output (b)
has slightly different colors than the reference (a). The error was caused by an
incorrect YUV to BGRA transformation that occurred between CasparCG and
the video interface. Such problems are normally difficult to detect as both the
reference and the actual output looks correct when evaluated separately (see
Fig. 15), where differences only are apparent during direct comparisons.

J Invalid Command Execution

Using RUGVEF , we found that the software in certain states accepted invalid
commands. Fig. 16 illustrates these errors as dashed lines in the automaton
describing the expected interactions, showing for instance that it was possible
to incorrectly stop idle or non existing layers.

Verification of Real-Time Graphics Systems 29

Fig. 16. A state machine showing parts of the formal definition used during the ver-
ification of CasparCG, where the invalid transitions detected are shown using dashed
lines.

