A Note on Scope and Infinite
Behaviour in CCS-like Calculi

GERARDO SCHNEIDER

UPPSALA UNIVERSITY
DEPARTMENT OF INFORMATION TECHNOLOGY

UPPSALA, SWEDEN

A Note on Scope and Infinite Behaviour in CCS-like Calculi

Joint work with Pablo Giambiagi and Frank Valencia

| Motivation: Scoping

» Consider p.X.P with
P=al (ab| X)\a

B

A Note on Scope and Infinite Behaviour in CCS-like Calculi

| Motivation: Scoping

» Consider p.X.P with
P=al (ab| X)\a

» Question: Will action b ever be executed?

B

A Note on Scope and Infinite Behaviour in CCS-like Calculi

| Motivation: Scoping

» Consider p.X.P with
P=al (ab| X)\a

» Question: Will action b ever be executed?
» Answer: It depends... (1?)

— Static vs Dynamic Scoping

B

A Note on Scope and Infinite Behaviour in CCS-like Calculi

| Motivation: Infiniteness

o Parametric vs. Constant definitions

1. CCS-like calculus, with A 1o P
def

2. CCS-like calculus, with A(zq,...,z,) = P

B

A Note on Scope and Infinite Behaviour in CCS-like Calculi

| Motivation: Infiniteness

o Parametric vs. Constant definitions

1. CCS-like calculus, with A 1o P
def

2. CCS-like calculus, with A(zq,...,z,) = P
» Can we encode (2) into (1)?

B

A Note on Scope and Infinite Behaviour in CCS-like Calculi

| Motivation: Infiniteness

o Parametric vs. Constant definitions

1. CCS-like calculus, with A 1o P
def

2. CCS-like calculus, with A(zq,...,z,) = P

» Can we encode (2) into (1)?
» Do we need relabelling?

B

A Note on Scope and Infinite Behaviour in CCS-like Calculi

| Motivation: Infiniteness

o Parametric vs. Constant definitions

1. CCS-like calculus, with A 1o P
def

2. CCS-like calculus, with A(zq,...,z,) = P

» Can we encode (2) into (1)?
» Do we need relabelling?

» What happens with other forms of
iIntroducing infinite behaviour? For instance,

Replication

A Note on Scope and Infinite Behaviour in CCS-like Calculi

Motivation and Contributions

These are important issues when comparing
CCS variants

Static vs Dynamic Scoping?
» Parametric vs. Constant definitions?
» Recursion vs Replication

VERSITET

A Note on Scope and Infinite Behaviour in CCS-like Calculi

Motivation and Contributions

These are important issues when comparing
CCS variants

Static vs Dynamic Scoping?
» Parametric vs. Constant definitions?
» Recursion vs Replication
We will show that these issues affect
» EXpressiveness

» Analysis of certain properties I

A Note on Scope and Infinite Behaviour in CCS-like Calculi

| Overview of the presentation

» The finite core
» Static vs Dynamic scoping
» Infinite behaviour

» EXpressiveness

9

Concluding Remarks

e 4
Sl
2
UNIVERSITET

A Note on Scope and Infinite Behaviour in CCS-like Calculi

| Overview of the presentation

» The finite core
» Static vs Dynamic scoping
» Infinite behaviour

» EXpressiveness

9

Concluding Remarks

e 4
Sl
2
UNIVERSITET

A Note on Scope and Infinite Behaviour in CCS-like Calculi

I The Finite Core: Syntax

» Given:
s A setofnames, N (a,b,z,vy...)
s A setof co-names, N = {a|ac N}

s A setof actions, Act =N U N U {7}
(o, 5)

B

A Note on Scope and Infinite Behaviour in CCS-like Calculi

| The Finite Core: Syntax

» Given:
s A setofnames, N (a,b,z,vy...)

s A setof co-names, N = {a|ac N}

s A setof actions, Act =N U N U {7}
(o,)

Processes specifying finite behaviour:

P:=% o.P|P\a|P| P

el

A Note on Scope and Infinite Behaviour in CCS-like Calculi

| The Finite Core: Semantics

P P
SUM ——ifjel RES — fo & {a,a)
> g @i P — P; P\a — P'\a
o' / o /
PAR, — == PAR, — 2%
PllQ-—P|Q PllQ—P|Q

rLp oo
PlQ—P|q

B

A Note on Scope and Infinite Behaviour in CCS-like Calculi

| Overview of the presentation

» The finite core
Static vs Dynamic scoping
» Infinite behaviour

» EXpressiveness

9

Concluding Remarks

e 4
Sl
2
UNIVERSITET

A Note on Scope and Infinite Behaviour in CCS-like Calculi

| Scoping. Example

» Consider pX.P with
P=al| (a.b] X)\a

B

A Note on Scope and Infinite Behaviour in CCS-like Calculi

| Scoping. Example

» Consider pX.P with
P=all (@bl X)\a
Consider the following rule:

PluX.P/X] - P/
uX.P -2 pf

REC

(without name a-conversion)

B

A Note on Scope and Infinite Behaviour in CCS-like Calculi

| Scoping. Example

» Consider pX.P with
P=al| (a.b] X)\a

Then, PluX.P/X]
= a|| @b || pX.P)\a

B

A Note on Scope and Infinite Behaviour in CCS-like Calculi

| Scoping. Example

» Consider pX.P with
P=al| (a.b] X)\a

Then, PluX.P/X]
= a|| @b | pX.P)\a
=all (@b || pX.(a] (@b || X)\a))\a

B

A Note on Scope and Infinite Behaviour in CCS-like Calculi

| Scoping. Example

» Consider pX.P with
P=al| (a.b] X)\a

Then, PluX.P/X]
= a|| @b | pX.P)\a
=all (@b || pX.(a] (@b || X)\a))\a

B

A Note on Scope and Infinite Behaviour in CCS-like Calculi

| Scoping. Example

» Consider pX.P with
P=al (@b X)\a

Then, PluX.P/X]
= a|| @b | pX.P)\a
=all (@b || pX.(a] (@b || X)\a))\a

Then b may be executed!

ey
RGO
'' 1$§
UPPSALA UNIVERSITET

A Note on Scope and Infinite Behaviour in CCS-like Calculi

| Scoping. Example 2

» Consider again puX.P with
P=al (ab| X)\a

|

A Note on Scope and Infinite Behaviour in CCS-like Calculi

| Scoping. Example 2

» Consider again puX.P with
P=al (ab| X)\a
Consider now the following rule:

PluX.P/X] -2 P/
uX.P - pf

REC

(applying name a-conversion when necessary)

|

A Note on Scope and Infinite Behaviour in CCS-like Calculi

| Scoping. Example 2

» Consider again puX.P with
P=al (ab| X)\a

Then, PluX.P/X]
= all (a.b || pX.P)\a

|

A Note on Scope and Infinite Behaviour in CCS-like Calculi

| Scoping. Example 2

» Consider again puX.P with
P=al (ab| X)\a

Then, PluX.P/X]
=all (a.b || pX.P)\a

|

A Note on Scope and Infinite Behaviour in CCS-like Calculi

| Scoping. Example 2

» Consider again puX.P with
P=al (ab| X)\a

Then, PluX.P/X]
=all (b || pX.P)\c

|

A Note on Scope and Infinite Behaviour in CCS-like Calculi

| Scoping. Example 2

» Consider again puX.P with
P=al (ab| X)\a

Then, PluX.P/X]
= a|| (@b || uX.P)\c
=all (ebl pX.(a | (a.b] X)\a))\c

|

A Note on Scope and Infinite Behaviour in CCS-like Calculi

| Scoping. Example 2

» Consider again puX.P with
P=al (ab| X)\a

Then, PluX.P/X]
= a|| (@b || uX.P)\c
=all (ebl pX.(a | (a.b] X)\a))\c

|

A Note on Scope and Infinite Behaviour in CCS-like Calculi

| Scoping. Example 2

» Consider again puX.P with
P=al (ab| X)\a

Then, PluX.P/X]
= a|| (@b || uX.P)\c
=all (ebl pX.(a | (a.b] X)\a))\c

Then b will never be executed!

ey
RGO
'' 1$§
UPPSALA UNIVERSITET

A Note on Scope and Infinite Behaviour in CCS-like Calculi

| Static vs Dynamic Scoping

» Name a-conversion to avoid name capture
— static scoping

» Otherwise, = dynamic scoping

Dynamic scoping: the occurrence of a name may
get dynamically (i.e. during execution) captured
under the scope of some restriction

VERSITET

A Note on Scope and Infinite Behaviour in CCS-like Calculi

| Overview of the presentation

» The finite core
» Static vs Dynamic scoping
» Infinite behaviour

» EXpressiveness

9

Concluding Remarks

e 4
Sl
2
UNIVERSITET

A Note on Scope and Infinite Behaviour in CCS-like Calculi

| |nfinite.Behaviour

There are at least four manners of introducing
Infinite behaviour

|

A Note on Scope and Infinite Behaviour in CCS-like Calculi

| |nfinite.Behaviour

There are at least four manners of introducing
Infinite behaviour

» CCSy: Infinite behavior given by a finite set
of constant (i.e., parameterless) definitions

of the form A < P. The calculus is
essentially CCS (Milner’s book’1989) without
relabelling nor infinite summations.

|

A Note on Scope and Infinite Behaviour in CCS-like Calculi

| |nfinite.Behaviour

There are at least four manners of introducing
Infinite behaviour

» CCS.- A¥ p

» CCSy: Like CCSy but using parametric

definitions of the form A(x1,...,x,) “p

The calculus iIs the variant iIn Milner’s book
on the w-calculus

STERD 4
ERSITET

A Note on Scope and Infinite Behaviour in CCS-like Calculi

| |nfinite.Behaviour

There are at least four manners of introducing
Infinite behaviour

» CCS.- A¥ p
def

» CCSy: A(xy,...,xp) = P

» CCS;: Infinite behavior given by replication of
the form ! P. This variant Is presented, e.g. In
a paper by Busi, Gabbrielli and Zavattaro.

|

A Note on Scope and Infinite Behaviour in CCS-like Calculi

| |nfinite.Behaviour

There are at least four manners of introducing
Infinite behaviour

» CCS.- A¥ p
def

» CCSy: A(xy,...,xp) = P
9 CCS| P

» CCS,: Infinite behavior given by recursive
expressions of the form ¢ X.P. However, we
adopt static scoping of channel names.

e 4
Sl
2
UNIVERSITET

A Note on Scope and Infinite Behaviour in CCS-like Calculi

| |nfinite.Behaviour

There are at least four manners of introducing
Infinite behaviour

» CCS.- A¥ p
def

» CCSy: A(xy,...,xp) = P
9 CCSv P
» CCS,: nX.P

|

A Note on Scope and Infinite Behaviour in CCS-like Calculi

I Parametric Definitions: CCS,

Syntax:

P:=...| Aly1,...,yn)

where A(z1,...,20) < Pa, fan(Ps) C {z1,... 20}

B

A Note on Scope and Infinite Behaviour in CCS-like Calculi

| Parametric Definitions: CCS,

Syntax:

P:=...| Aly1,...,yn)

where A(z1,...,20) < Pa, fan(Ps) C {z1,... 20}

Semantics:

PA[yh"'ayn L1y ydn LP/
CALL / | it A(zr, ... 2n) S Py

AWrs- - yn) — P’

(name a-conversion when necessary) _I

SEake)
ALA

UPPSA

A Note on Scope and Infinite Behaviour in CCS-like Calculi

| Constant Definitions: CCSy

Syntax:

where A & Py

|

A Note on Scope and Infinite Behaviour in CCS-like Calculi

| Constant Definitions: CCSy

Syntax:

where A & Py

Semantics:
v /
Py P def

CONS if A = P,
A2 p

|

A Note on Scope and Infinite Behaviour in CCS-like Calculi

| Constant Definitions: CCSy

Syntax:

where A & Py

Semantics (alternative):
PluX.P/X]| = P

uX.P—= P
(without name a-conversion)

R 4
e
e .

UNIVERSITET

A Note on Scope and Infinite Behaviour in CCS-like Calculi

REC

I Recursion Expressions: CCS,,

Syntax:

P:=...|X|uXP

|

A Note on Scope and Infinite Behaviour in CCS-like Calculi

I Recursion Expressions: CCS,

Syntax:

P:=...|X|uXP
Semantics:

PluX.P/X]| = P
uX.P— P
(name «-conversion when necessary)

REC

|

A Note on Scope and Infinite Behaviour in CCS-like Calculi

I Replication: CCS;

Syntax:

A Note on Scope and Infinite Behaviour in CCS-like Calculi

I Replication: CCS;

Syntax:

Semantics:

P|IP- P
P2, p

REP

|

A Note on Scope and Infinite Behaviour in CCS-like Calculi

| Overview of the presentation

» The finite core
» Static vs Dynamic scoping
» Infinite behaviour

» EXpressiveness

9

Concluding Remarks

R 4
e
e .

UNIVERSITET

A Note on Scope and Infinite Behaviour in CCS-like Calculi

I Expressiveness and Classifi cation Criteria

» Bisimilarity —

N

A Note on Scope and Infinite Behaviour in CCS-like Calculi

I Expressiveness and Classifi cation Criteria

o Bisimilarity

o CCS, Is as expressive as CCS, Iff for every
P € Proc,, there exists () € Proc,. such that

P~ Q)

N

(T3
4 A Note on Scope and Infinite Behaviour in CCS-like Calculi

I Expressiveness and Classifi cation Criteria

o Bisimilarity

o CCS, Is as expressive as CCS, Iff for every
P € Proc,, there exists () € Proc,. such that

P~ Q)
» Divergence

N

e
4 A Note on Scope and Infinite Behaviour in CCS-like Calculi
NIVERSITET

I Expressiveness and Classifi cation Criteria

o Bisimilarity

o CCS, Is as expressive as CCS, Iff for every
P € Proc,, there exists () € Proc,. such that
P~ Q)

» Divergence
P is divergent iff P(—)“, i.e., there exists
an infinite sequence P =Py — P, —

&

e
-&,‘“ -
= > A Note on Scope and Infinite Behaviour in CCS-like Calculi
UPPSALA UNIVERSITET

I Expressiveness and Classifi cation Criteria

o Bisimilarity

o CCS, Is as expressive as CCS, Iff for every
P € Proc,, there exists () € Proc,. such that

P~ Q)

» Divergence

We will study:

1. The relative expressiveness w.r.t. weak
bisimilarity

2 The decidabllity of divergence I

é‘
3
‘h
”g A Note on Scope and Infinite Behaviour in CCS-like Calculi
UNIVERSITET

I Expressiveness Results

Encodings: (weak) bisimulation preserving
mappings |-|: Proc, — Proc,

|

A Note on Scope and Infinite Behaviour in CCS-like Calculi

| Expressiveness Results

Encodings: (weak) bisimulation preserving
mappings |-|: Proc, — Proc,

Encoding CCS;, into CCSi

Encoding CCSy Into CCS,,

Encoding CCS,, into CCS,

Encoding CCS; into CCS,,

e o o o

|

A Note on Scope and Infinite Behaviour in CCS-like Calculi

I Expressiveness Results

Encodings: (weak) bisimulation preserving
mappings |-|: Proc, — Proc,

Encoding CCS;, into CCSi

Encoding CCSy Into CCS,,

Encoding CCS,, into CCS,

Encoding CCS; into CCS,,

e o o o

|

A Note on Scope and Infinite Behaviour in CCS-like Calculi

I Encoding CCS,, into CCSy

|-] : Proc, — Proc

|

A Note on Scope and Infinite Behaviour in CCS-like Calculi

| Encoding CCS;, into CCSy

|-] : Proc, — Proc

ldea:

» Assume a definition of the form A(z) <P,

» Generate as many constants A, as
occurrences of A(y) in Py

|

A Note on Scope and Infinite Behaviour in CCS-like Calculi

| Encoding CCS;, into CCSy

|-] : Proc, — Proc

ldea:

» Assume a definition of the form A(z) <P,

» Generate as many constants A, as
occurrences of A(y) in Py

Problem: Potentially infinitely many definitions!

|

A Note on Scope and Infinite Behaviour in CCS-like Calculi

I Encoding CCS;, into CCSy

|-] : Proc, — Proc

ldea:

» Assume a definition of the form A(z) <P,

» Generate as many constants A, as
occurrences of A(y) in Py

Problem: Potentially infinitely many definitions!

- Due to name «-conversion a possible infinite
number of fresh names can be generated

B

e
g A Note on Scope and Infinite Behaviour in CCS-like Calculi
ALA UNIVERSITET

I Encoding CCS,, into CCSi: Example

Let A(x) = (2.2.0 || 7.0 || A(2))\z

B

A Note on Scope and Infinite Behaviour in CCS-like Calculi

I Encoding CCS,, into CCSi: Example

Let A(x) = (2.2.0 || 7.0 || A(2))\z

1. A, Y (22,0 | 7.0 || A)\z

B

A Note on Scope and Infinite Behaviour in CCS-like Calculi

I Encoding CCS,, into CCSi: Example

Let A(x) = (2.2.0 || 7.0 || A(2))\z

1. A, = (2z.2.0 | 7.0 A,)\z

2. A, = (2.2.0 [z.0 | A,)\z

B

A Note on Scope and Infinite Behaviour in CCS-like Calculi

I Encoding CCS,, into CCSi: Example

Let A(x) = (2.2.0 || 7.0 || A(2))\z

1. A, = (z.2.0|Z.0 || A)\z
2. A, = (2.2.0] z.0 | A,)\z

B

A Note on Scope and Infinite Behaviour in CCS-like Calculi

I Encoding CCS,, into CCSi: Example

Let A(x) = (2.2.0 || 7.0 || A(2))\z

1. A, = (2z.2.0 | 7.0 A,)\z

2. A, Y (21.2.0 | 2.0 || A,)\=

B

A Note on Scope and Infinite Behaviour in CCS-like Calculi

I Encoding CCS,, into CCSi: Example

Let A(x) = (2.2.0 || 7.0 || A(2))\z

1. A, = (2z.2.0 | 7.0 A,)\z

2. A, Y (21.2.0 | 2.0 || A,)\=

3. A, € (2.21.0 | 7.0 || A)\z

B

A Note on Scope and Infinite Behaviour in CCS-like Calculi

| Encoding CCS,, into CCSi: Example

Let A(z) & (2.2.0 | 7.0 || A(2))\z

1. A, € (2.2.0 | 7.0 || A)\2

2. A, Y (21.2.0 | 2.0 || A,)\=

3. A, € (2.21.0 | 7.0 || A)\z

Remark: The generation of fresh names could

continue forever!

A Note on Scope and Infinite Behaviour in CCS-like Calculi

| Encoding CCS;, into CCSy

Theorem: For any P € CCS,, with a finite set of
definitions, one can effectively construct the
associated set of definitions of | P].

|

A Note on Scope and Infinite Behaviour in CCS-like Calculi

| Encoding CCS;, into CCSy

Theorem: For any P € CCS,, with a finite set of
definitions, one can effectively construct the
associated set of definitions of | P].

Theorem: Given a process P € CCS;,, P ~ | P].

|

A Note on Scope and Infinite Behaviour in CCS-like Calculi

I Encoding CCS;, into CCSy

Theorem: For any P € CCS,, with a finite set of
definitions, one can effectively construct the
associated set of definitions of | P].

Theorem: Given a process P € CCS;,, P ~ | P].

Corollary: Injective relabellings are redundant in
CCS.

e 4
Sl
2
UNIVERSITET

A Note on Scope and Infinite Behaviour in CCS-like Calculi

Encoding CCS,, into CCS,

|-] : Proc,, — Proc

ldea:

[Xi] = 7;.0
1X.P] = (2.1P] | T0)\e,

|

A Note on Scope and Infinite Behaviour in CCS-like Calculi

Encoding CCS,, into CCS;: Example

Let be the following CCS,, process:

P=upuX.(a.X)

B

A Note on Scope and Infinite Behaviour in CCS-like Calculi

Encoding CCS,, into CCS;: Example

Let be the following CCS,, process:

P=upuX.(a.X)
Then the corresponding encoding Is:

|P| = (lz.a.z || 2)\z

B

A Note on Scope and Infinite Behaviour in CCS-like Calculi

Encoding CCS,, into CCS;: Example

Let be the following CCS,, process:

P =puX.(a.X)
Then the corresponding encoding Is:
|P| = (lz.a.z || 2)\z
They are clearly not strongly bisimilar:

uX.a.X im uX.a.X iu uX.a.X ...

1z.a.z || 2)\z = (lz.a.2 || a.z)\z = (1z.0.7 | x)\ajl

A Note on Scope and Infinite Behaviour in CCS-like Calculi

Encoding CCS,, into CCS,

Theorem: For P € Proc,, P ~ [P]. Moreover, P
diverges iff | P| diverges.

|

A Note on Scope and Infinite Behaviour in CCS-like Calculi

| Overview of the presentation

» The finite core
» Static vs Dynamic scoping
» Infinite behaviour

» EXpressiveness

9

Concluding Remarks

e 4
Sl
2
UNIVERSITET

A Note on Scope and Infinite Behaviour in CCS-like Calculi

| Conclusions

CCS, ~ CCSi CCS, =~ CCS,
Divergence: Undecidable | Divergence: Decidable

|

A Note on Scope and Infinite Behaviour in CCS-like Calculi

| Conclusions

CCS, ~ CCSi CCS, =~ CCS,
Divergence: Undecidable | Divergence: Decidable

» Injective relabellings are redundant in CCS

» Interpretation of Rule REC leads to
Important differences

» CCS exhibits dynamic name scope and it

does not preserve a-conversion

R A Note on Scope and Infinite Behaviour in CCS-like Calculi
UPPSALA UNIVERSITET

| Related \Work

The CCS variant in Milner’s book 7-calculus
uses parametric definitions with static scope

» Edinburgh Concurrency Workbench tool
(CWB) uses dynamic scoping for parametric
definitions

» ECCS advocates the static scoping of names
#» CHOCS uses dynamic name scoping in the

context of higher-order CCS

A Note on Scope and Infinite Behaviour in CCS-like Calculi

Auxiliary Slides

“ A Note on Scope and Infinite Behaviour in CCS-like Calculi
UPPSALA UNIVERSITET

I Bisimilarity

A relation S C Proc x Proc IS a (strong)
simulation if for all (P, Q) € &:

p % p
S
@

|

A Note on Scope and Infinite Behaviour in CCS-like Calculi

I Bisimilarity

A relation & C Proc x Proc is a (strong)
simulation if for all (P, Q) € &:

p 2 p
S S
Q) — Q

|

A Note on Scope and Infinite Behaviour in CCS-like Calculi

I Bisimilarity

A relation & € Proc x Proc 1s a (strong)
simulation if for all (P, Q) € &:

P - P

S S

Q0 — Q
S 1s a (strong) bisimulation if both & and its
converse are (strong) simulations: P ~ Q).

|

A Note on Scope and Infinite Behaviour in CCS-like Calculi

| Bisimilarity

A relation S C Proc x Proc 1s a weak simulation If
forall (P, Q) € S:

P = P

S S

Q = Q
S Is a weak bisimulation if both & and its
converse are weak simulations: P~ ().

- —— (wheres=aj.as....)is (—)* 25 ()L (=) 2 ()
A
e

A Note on Scope and Infinite Behaviour in CCS-like Calculi

| Encoding CCS;, into CCSy

|-] : Proc, — Proc

ldea:

» For each P € CCSy, let P € CCS, replacing
in P each occurrence of B(y) with B,

» For each definition A(z) € Py, generate a
constant definition A, aef 73?4

|

= A Note on Scope and Infinite Behaviour in CCS-like Calculi
PPSALA UNIVERSITET

	Motivation: Scoping
	Motivation: Infiniteness
	Motivation and Contributions
	Overview of the presentation
	The Finite Core: Syntax
	The Finite Core: Semantics
	Overview of the presentation
	Scoping: Example
	Scoping: Example 2
	Static vs Dynamic Scoping
	Overview of the presentation
	Infinite Behaviour
	Parametric Definitions: $ccsp $
	Constant Definitions: $ccsd $
	Recursion Expressions: $ccss $
	Replication: $ccsr $
	Overview of the presentation
	{large Expressiveness and Classification Criteria}
	Expressiveness Results
	Encoding $ccsp $ into $ccsd $
	Encoding $ccsp $ into $ccsd $: {large Example}
	Encoding $ccsp $ into $ccsd $
	Encoding $ccss $ into $ccsr $
	Encoding $ccss $ into $ccsr $: {large Example}
	Encoding $ccss $ into $ccsr $
	Overview of the presentation
	Conclusions
	Related Work
		extcolor {RoyalBlue}{Auxiliary Slides}
	Bisimilarity
	Encoding $ccsp $ into $ccsd $

