Memory Usage Estimation for
Java Smart Cards

GERARDO SCHNEIDER

IRISA/INR
CASTLES: Conception 0

Logicie

A - RENNES, FRANCE

’Analyses Statiques et de Tests pour le

Embarqué Sécurisé

NWPT’04 - Uppsala, 06 October 2004 I

| Overview

Introduction and motivation
Objective - Our approach
Our solution

© o o @

Final discussion

. 4
el

Introduction and Motivation

— 4
il

| Smart cards

Plastic substrate

@
Smart card chip

» Small communicating devices with restricted
resources

» EXxecute stand-alone applications specifically

written for the hardware 1t runs on I

| New generation of Java smart cards

» High-level language for programming applets
(JavaCard Language)

» Multi-application: various applets may be
downloaded and interact in the same card

» Post-issuance: applets may be loaded on the
card after issued by the manufacturer

Size (banking - high-tech cards): EEPROM (16K -
200K), ROM (16K - 64K), RAM (1K - 4K)

Applications: mobile phones, e-purse, e-identity,

medical file management, etc I

| Security. Issues

Downloaded applets may attack by leaking or
modifying confidential information, causing
malfunctioning, etc

- 4
el

| Security. Issues

Downloaded applets may attack by leaking or
modifying confidential information, causing
malfunctioning, etc

The *Sandbox” model relies on that applets are:
o Compiled to bytecode for a virtual machine

» Not given direct address to hardware
resources

Subject to a static analysis: bytecode

verification (check applets are well-typed) I

| Security. Issues (cont.)

Extension of the bytecode verifier are needed to
guarantee (among others)

» Information flow (I.e. an applet does not
“leak” confidential information)

» Reactiveness (bounding the running time of
the applet between two interactions with the

environment)
» Avallability of services

|

institut de recherche en informatigue
el systémes aléatoires

| Security. Issues (cont.)

Extension of the bytecode verifier are needed to
guarantee (among others)

» Information flow (I.e. an applet does not
“leak” confidential information)

» Reactiveness (bounding the running time of
the applet between two interactions with the

environment)

» Avalilablility of services (resource-awareness
analysis - Memory)

institut de recherche en informatigue
el systémes aléatoires

| How to program in small devices?

Quoted from “Java Card Technology for Smart
Cards - Sun Series” [Chen,2000; Chapter 13]

» “...neither persistent nor transient objects
should be created willy-nilly.”

#» “You should also limit nested method
Invocations...”

» “..applets should not use recursive calls.”

» “An applet should always check that an
object is created only once.”

institut de recherche en informatique
el sysiémes aléatoires

| The problem

» Nothing Iin the standards prevents a(n)
(intentionally) badly written applet to allocate
all persistent memory on a card!

» State-of-the-art tools do not detect whether a
given applet will make the card run out of
memory

Example:
public class Exanpl e

whil e(arg > 0)
_ new Exanpl e();

Objectives - Our Approach

— 4
il

| Objective

An analyser for estimating memory usage on
Java smart cards, which

» Statically analyses the bytecode

» Does not assume any structure on the
bytecode

°

Comprises intra- and Inter-procedural
analysis

S as precise as possible

9o
» |s compositional
-.!

—Ias low complexity (on-card analyser) I

| Objective (Cont.)

The technigue used should allow us to:
o Develop a certified analyser
» Extract a correct analyser

Moreover, we want the formalism to be compati-
ble with previous work (certified Data Flow Anal-
yser developed at IRISA)

institut de recherche en informatique
el systémes aléatoires

| How to obtain a certified analyser?

» Formalise the operational semantics of the
anguage in a Proof Assistant (CoqQ)

» Define the abstract domains (lattices)
» Prove well-foundedness of the lattices

Code the algorithm into Coq (as a
constraint-based algorithm)

» Prove the correctness of the algorithm w.r.t.
(an abstraction of) the operational semantics

» Extract a program (proof-as-program

paradigm) using Coqg’s extraction mechanism I

| How to obtain a certified analyser?

» Formalise the operational semantics of the
anguage In a Proof Assistant (Coq)

» Define the abstract domains (lattices)
» Prove well-foundedness of the lattices

» Code the algorithm into Coqg (as a
constraint-based algorithm)

o Prove the correctness of the algorithm w.r.t.
(an abstraction of) the operational semantics

o Extract a program (proof-as-program

paradigm) using Codg’s extraction mechanism I

I

Our Solution

The JavaCard bytecode language

o Stack manipulation: push, pop, dup, dup2,
swap, numop,

o Local variables manipulation: load, store;
o Jump instructions: if, goto;

o Heap manipulation: new, putfield,
getfield,

Array instructions: arraystore, arrayload;
o Method calls and return: invokevirtual,

invokedefinite, invokeinterface, return

| Algorithm - Outline

» Detection of potential intra-method loops
(Loop)
» Propagation of Loop Inter-procedurally

» Detection of (mutually) recursive methods
and methods reachable from those (Rec)

» |dentification of dynamic instantiation of
classes (I')

— 4
= IRISA

| What is.new about 1t?

Audience: But we know how to detect cycles In
(assembly-like) programs!! (Compiler...)

.- 4
el

| What is.new about 1t?

Audience: But we know how to detect cycles In
(assembly-like) programs!! (Compiler...)

Answer: Yes.

.- 4
el

| What is.new about 1t?

Audience: But we know how to detect cycles In
(assembly-like) programs!! (Compiler...)

Answer: Yes.
Audience: What is the challenge, then?

W 4
e | RIS A

| What is.new about 1t?

Audience: But we know how to detect cycles in
(assembly-like) programs!! (Compiler...)

Answer: Yes.
Audience: What is the challenge, then?

Answer: To write a constraint-based algorithm
suitable to be formalised in Cog and to
extract a certified analyser

. 4
- RISA

| What is.new about 1t?

Audience: But we know how to detect cycles in
(assembly-like) programs!! (Compiler...)

Answer: Yes.
Audience: What is the challenge, then?

Answer: To write a constraint-based algorithm
suitable to be formalised in Cog and to
extract a certified analyser

Presented as a set of rules defining one (or more)

constraint(s) for each bytecode instruction I

| Algorithm - Constraints

The constraints are of the form:

(m,pc) : Instr Cond
F(A(m, pc)) & A(m/, pc')

Instr IS the current instruction

Cond IS a set of conditions (predicate)
F'Is a monotonic function

» A Is the context being generated

» (m/,pc’) is the next instruction I

I Detecting loops (Loop)

(m, pc) : goto pc’

Fy(Loop(m, pc)) T Loop(m, pc')

(m, pc) : if t op goto pc’

Fy(Loop(m, pc)) E Loop(m, pc')
F3(Loop(m, pc)) T Loop(m, pc + 1)

(m, pc) : invokevirtual m/

Loop(m, pc) € Loop(m, pc + 1)

(m, pc) : return (m, pc) : Instr
1L C Loop(m,END,,) Loop(m, pc) E Loop(m, pc + 1) I

I Detecting recursive methods (Rec)

(m, pc) : invokevirtual m/’

F(Rec(m, pc),m’') C Rec(m', 1)
Rec(m, pc) C Rec(m, pc + 1)

(m, pc) : return

Rec(m, pc) C Rec(m, END,,)

(m, pc) : Instr

Rec(m, pc) E Rec(m, pc + 1)

o 4
e aielahdil

I Thealgorithm - T’

(m, pc) :new(cl) Cycle(m, pc)

['(m, pc) U{<! >(npe)} ET'(m, pec +1)

(m, pc) :new(cl) —Clycle(m, pc)
['(m, pc) U{(m,pc)} C I'(m,pc+1)

(m, pc) : Instr
I'(m, pc) E I'(m, pc + 1)

- 4
-'IB,ISAH

| Algorithm - How does 1t work?

The abstract domains (lattices) chosen and
the “form” of the constraints guarantees the
existence of a least fix-point

» The well-foundedness of the lattices
guarantees termination

o A constraint solver computes the least
fix-point

institut de recherche en informatique
el systémes aléatoires

Final Discussion

| Achlevements

o \We have written a constraint-based
algorithm for detecting possible memory
overflow due to dynamic instantiation of
classes inside cycles

Already done.:

» Handwritten proof of
» Termination

» Soundness and completeness w.r.t. to an
abstraction of the operational semantics

institut de recherche en informatique
el sysiémes aléatoires

| Features of our algorithm

+ Written in a “good” way to be fed into Coq
(certification)

+ Modular; Loop and Rec reusable
+ Compositional
+ Static analysis

Low computational complexity
— Over-approximation:

» |t detects (all the) syntactic cycles
An instruction in a method (not in a cycle)
called more than once Is counted once I

institut de recherche en informatis
el sysiémes aléatoires

que

| Current Work

Currently adapting the algorithm slightly in order
to reuse (in CoQ):

» Lattice library

» Auxiliary lemmas

» Fix-point and constraint solver
» Proof strategies

= |RISA 4

| Current Work

Currently adapting the algorithm slightly in order
to reuse (in CoQ):

» Lattice library

» Auxiliary lemmas

» Fix-point and constraint solver
» Proof strategies

Current approach: \We considered a maximal
semantics (total runs of the program)

New approach: \We have to consider a partial se-
manfics (prefixes of runs of the program)_l

| Future Work

Still to be done:

» A more precise analysis: Exact amount of
memory used If N0 new occurs in a cycle

» ‘“Implement” the algorithm we have
presented in Cog and extract the analyser

» Compare performance of both approaches:
complexity Vs simplicity of proofs

Besides this work:

» Other techniques for resource-bounded

analysis and other security properties I

Thank you very much!

o 4
e aielahdil

| Rules.for_Loop

(m, pc) : goto pc’ pc’ < pe

Fi(Loop(m, pc)) C Loop(m, pc’)

m, pc) : goto pc pc’ > pe
g ’ /

F5(Loop(m, pc)) C Loop(m, pc')

(m,pc) : if t op goto pc’ pc’ < pc

F1(Loop(m, pc)) E Loop(m, pc)
F3(Loop(m, pc)) E Loop(m, pc + 1)

(m,pc) : if t op goto pc’ pc’ > pc

Fs(Loop(m, pc)) E Loop(m, pc’)
= risa F3(Loop(m, pc)) E Loop(m,pc + 1) _I

| Rules for Loop (cont.)

(m, pc) : invokevirtual m/’

Loop(m, pc) T Loop(m, pc + 1)

(m, pc) : return

1 C Loop(m,END,,)

(m, pc) : Instr

Loop(m, pc) T Loop(m, pc + 1)

o 4
e

| Definition.of the functions

y

Lipe U{Yes,.} if{pc,pc'} C Ly pe

Fl(Lm,pc) — < _
Lm.pe U{pc, pc'} otherwise
\

’

Lm7 c \ Y c’ If {pC,pC/} g Lm, &
FQ(Lm,pc) — < g N . ’
\ (Lmpe \Y) U {pc,pc'} otherwise
.
Lpne \ Yo if {pc,pc+1} C L,

(Lmpe \Y) U {pc,pc+ 1} otherwise
\

def
Where Y., = {Yes,. | pc < pc'} I

I Rules for. Rec

(m, pc) : invokevirtual m’ m =m’

Rec(m, pc) U {m, Yes} C Rec(m’, 1)

Rec(m, pc) C Rec(m, pc + 1)

(m, pc) : invokevirtual m’ m #m/
F(Rec(m,pc),m') C Rec(m’,1)
Rec(m, pc) C Rec(m, pc + 1)

(m, pc) : return

Rec(m, pc) C Rec(m, END,,)

(m, pc) : Instr I
" IRISA Rec(m, pc) E Rec(m, pc +1)

| Definition.of F°

y

Ryppe U {m, Yes} if {m'} € R pe
Rm,pc U {m} If {m/} g Rm,pc

\

o 4
il

I Example of Loop

20 ... {30, 50, 31, 41, 40, 70, 20, Y70}

30 if goto 50 {30, 50,31, 41, 40, 70, 20, Y70}
L {30, 31, 50, 41, 40, 51, 70, 20, Y70}

40 if goto 90 {30, 31,50, 41, 40, 51, 70, 20, Y70}
L {30, 31, 41, 40, 50, 51, 70, 20, Y70}

50 if goto 90 {30, 31,41, 40, 50, 51, 70, 20, Y70}
L {30, 31, 41, 40, 50, 51, 70, 20, Y70}

70 goto 20 {30, 31, 41, 40, 50, 51, 70, 20, Y70}

9 ... {30, 31, 40, 90, 41, 50, 51, 70, 20}
(b)

institut de recherche en informatique
el systémes aléatoires

I Example of Loop

30 if goto 50
31 goto 49 {30, 31}

40 goto 60 {30, 50, 31, 49, 40}

49 if goto 60 {30, 31,49}
50 goto 40 {30, 50, 31, 49}

60 ... 130, 31, 49, 60, 40}

(a)

e 4
e atial

	Overview
		extcolor {RoyalBlue}{Introduction and Motivation}
	Smart cards
	New generation of Java smart cards
	Security Issues
	Security Issues (cont.)
	How to program in small devices?
	The problem
		extcolor {RoyalBlue}{Objectives - Our Approach}
	Objective
	Objective (Cont.)
	How to obtain a certified analyser?
		extcolor {RoyalBlue}{Our Solution}
	The JavaCard bytecode language
	Algorithm - Outline
	What is new about it?
	Algorithm - Constraints
	Detecting loops (Loop)
	Detecting recursive methods (Rec)
	The algorithm - $Gamma $
	Algorithm - How does it work?
		extcolor {RoyalBlue}{Final Discussion}
	Achievements
	Features of our algorithm
	Current Work
	Future Work
		extcolor {RoyalBlue}{Thank you very much!}
	Rules for Loop
	Rules for Loop ~(cont.)
	Definition of the functions
	Rules for Rec
	Definition of F
	Example of Loop
	Example of Loop

