SPeeDI – a Verification Tool for Polygonal Hybrid Systems

GERARDO SCHNEIDER

Joint work with

EUGENE ASARIN, GORDON PACE AND SERGIO YOVINE

VÉRIMAG, GRENOBLE

Introduction

- Verification of Hybrid Systems
- Reachability problem
 - For 3 and higher dimensional systems: undecidable in general
 - For many 2 dimensional systems: decidable

Introduction

- Verification of Hybrid Systems
- Reachability problem
 - For 3 and higher dimensional systems: undecidable in general
 - For many 2 dimensional systems: decidable

• In this work we implement our reachability algorithm for a general class of non-deterministic 2-dim systems: SPDIs

Introduction

• Representation: Hybrid Automata

Polygonal Differential Inclusion Systems (SPDIs)

- A partition of the plane into convex polygonal regions (states)
- Dynamic for each state

$$\frac{dX}{dt} \in \angle_{\mathbf{a}}^{\mathbf{b}} \text{ if } X \in R_i$$

That is, X moves in a direction between a and b

Polygonal Differential Inclusion Systems (SPDIs)

- A partition of the plane into convex polygonal regions (states)
- Dynamic for each state

$$\frac{dX}{dt} \in \angle_{\mathbf{a}}^{\mathbf{b}} \text{ if } X \in R_i$$

That is, X moves in a direction between a and b

SPDIs are Hybrid Automata

SPDIs are Hybrid Automata

SPDIs are Hybrid Automata

The Reachability Problem for SPDIs

The Reachability Problem for SPDIs

Reachability problem: Is there a trajectory from x_0 to x_f ?

The Reachability Algorithm

HSCC'2000

Planar Topology + Abstraction + Acceleration + a little bit of Linear Algebra

Our algorithm

Implementation: SPeeDI

- We have implemented the reachability algorithm for SPDIs: SPeeDI
- 5000 lines of Haskell

Implementation: SPeeDI

- We have implemented the reachability algorithm for SPDIs: SPeeDI
- 5000 lines of Haskell

1	1	*	*	-#	-#	-#	-#	•
1	1	/	-	4	*	*	1	+
1	1	+	/	₹-	,	t	*	*
1	1	ţ	+	,	*	*	1	+
1	1	+	•		1	*	/	/
1	1	•	-	+	*	*	1	,
1	1	1	1	1	1	1	1	,

Input file

Points:	Vectors:	Regions:
0. 0.0, 0.0	v31,0.18333333333	*
*	*	*
335.0, -35	5.0 v8. 1,0	33 ? 41 ! 42 ! 34 ? 33, v9, v9
345.0, -25	5.0 v9. 1,1	34! 42! 43? 35? 34, v22, v22
355.0, -15	5.0 v12. 1, 1.5	35 ? 36 ? 0 ! 44 ! 43 ! 35, v8, v8
365.0, -5.	0 v201, 0.001	44! 45! 0? 44, v12, v12
375.0, 5.0	v22. 1,-0.001	0 ? 45 ? 46 ! 38 ! 37 ! 0, v3, v20
385.0, 15.	0 v251,0.7	38 ? 46 ? 47 ! 39 ! 38, v25, v20
395.0, 25.	0 v28. 1, 0.001	*
*	*	*

Is the blue interval on edge 58-59 reachable from the red one on edge 0-44?

Session log

reachable example.spdi [1,2] [0,10] 0-44 58-59

Generating and trying signatures from edge 0-44 to 58-59

Starting interval: [1.0,2.0]

Finishing interval: [0.0,10.0]

(0-44,45-44) (45-53,45-46,37-38,...,36-35,44-43,44-52)*

(53-52,53-61,54-62,54-55,46-47) (38-39,...,46-47)* (39-47,

...,67-59,58-59) <REACHABLE>

Conclusions

Implementation of the reachability algorithm for SPDIs: SPeeDI is based on a "geometric" method

- Restricted to 2 dimensional systems
- + It is an exact decision algorithm
- + It takes advantage of *abstraction* and *acceleration* techniques
- + It performs better than HyTech for SPDIs

Perspectives

- Extensions beyond reachability: liveness, etc
- Application of the technique for more complex dynamics
- Extension to higher dimensional systems
- SPDI as an approximation of non-linear systems

Thank you!

Comparison with HyTech

Example:

Fixpoint: $I^* = (\frac{200}{9}; 200)$

Reachability question: Is $\frac{201}{9}$ reachable from [3, 4]?

Comparison with HyTech

Final Point	HyTech	SPeeDI	Reachable
199	overflow	0.05 sec	Yes
200	overflow	0.05 sec	No
210	overflow	0.05 sec	No
5	0.04 sec	0.05 sec	No
<u>200</u> 9	0.10 sec	0.05 sec	Yes
$\frac{201}{9}$	overflow	0.03 sec	Yes
<u>199</u> 9	0.07 sec	0.04 sec	Yes
$\frac{1}{2}$	0.06 sec	0.05 sec	No

Comparison with HyTech

Simulation of reachability for $x_f = \frac{201}{9}$

