
Participatory Verification of Railway Infrastructure
by Representing Regulations in RailCNL?

Bjørnar Luteberget1, John J. Camilleri2, Christian Johansen3, and Gerardo Schneider2

1 RailComplete AS, Sandvika, Norway
2 Department of Computer Science and Engineering,

Chalmers University of Technology and University of Gothenburg, Sweden
3 Department of Informatics, University of Oslo, Norway

bjlut@railcomplete.no
{john.j.camilleri|gerardo}@cse.gu.se

cristi@ifi.uio.no

Abstract. Designs of railway infrastructure (tracks, signalling and control sys-
tems, etc.) need to comply with comprehensive sets of regulations describing
safety requirements, engineering conventions, and design heuristics. We have
previously worked on automating the verification of railway designs against such
regulations, and integrated a verification tool based on Datalog reasoning into
the CAD tools of railway engineers. This was used in a pilot project at Norcon-
sult AS (formerly Anacon AS). In order to allow railway engineers with limited
logic programming experience to participate in the verification process, in this
work we introduce a controlled natural language, RailCNL, which is designed
as a middle ground between informal regulations and Datalog code. Phrases in
RailCNL correspond closely to those in the regulation texts, and can be translated
automatically into the input language of the verifier. We demonstrate a prototype
system which, upon detecting regulation violations, traces back from errors in the
design through the CNL to the marked-up original text, allowing domain experts
to examine the correctness of each translation step and better identify sources of
errors. We also describe our design methodology, based on CNL best practices
and previous experience with creating verification front-end languages.

1 Introduction

Automated formal verification techniques have the potential to greatly increase the ef-
ficiency of engineering. However, verification engines are not easy to take up in indus-
trial practice. Even if the verification process is fully automated, integrating the tools
into the users’ workflow and formalizing properties and models requires careful think-
ing and domain expertise. The gap between automated verification and domain expert
users is often caused by the lack of user involvement. The users are usually not experts
in verification techniques, i.e. they do not know how to write properties in the verifier’s
language, nor how to build models for the verifier, nor how to interpret the output of the
? Supported by the Norwegian Research Council project RailCons – Aut. Methods and Tools

for Ensuring Consistency of Railway Designs, and by the Swedish Research Council grant nr.
2012-5746 – Reliable Multilingual Digital Communication: Methods and Applications.

http://www.mn.uio.no/ifi/english/research/projects/railcons

Fig. 1: CAD integrated verification engine, displaying errors and warnings after check-
ing the model extracted from the CAD design against railway regulations on-the-fly.

verifier when violated properties are found. In our case, the users are expert engineers
from the railway domain, designing railway infrastructure.

We want to allow the end users to participate in the verification process. Firstly,
the domain experts need to understand the verification properties that the tool actually
verifies, as well as the model of the system that the tool works with. Secondly, we want
to allow the users to actively participate in maintaining the verification properties, i.e.
to change and adjust them when needed.4 Thirdly, we want that the domain experts are
able to create their own specifications and feed these into the verification engine, e.g.
define specific expert knowledge as verification conditions.5

Involving the user in the design of a system is well-studied in the field of participa-
tory design [19,8]. We use the term participatory verification when talking about meth-
ods for including the end user in the verification process. The goal is to make automated
verification techniques accessible to engineers with little programming experience.

We have previously demonstrated [13,12] an efficient verification and troubleshoot-
ing tool integrated into the CAD-based program used by railway planning engineers.
This tool performs a lightweight type of verification which we call static infrastruc-
ture verification, and the results are updated continuously as the engineer is modifying
the station (see Fig. 1). However, the Prolog-like formal logical specification language
that we used for describing railway rules and regulations is not easy for inexperienced
programmers to write. Ideally, railway engineers should be able to read the logical spec-
ifications to ensure that they correctly represent the engineering domain. Furthermore,
engineers should themselves be able to maintain and extend the rule base with limited
support from verification experts. When we evaluated with railway engineers from Rail-
COMPLETE AS6 our prototype, they raised yet another concern: how could they trace
the violation, which the tool displays graphically, back to the source documents?

4 Authorities typically make small adjustments to regulations several times per year, whereas
engineering best practices can be revised at any time.

5 Such expert knowledge is often seen as proprietary valuable assets of the company.
6 http://railcomplete.no

2

http://railcomplete.no

These observations have led us to develop a controlled natural language (CNL),
which we call RailCNL, meant to be used as an intermediate representation between
natural language texts (i.e. the railway regulations) and Datalog [20] logic programs.
RailCNL aims to be human-friendly enough for our domain experts to work with to
overcome the above challenges, and thus getting them involved in using and improving
the automated verification tool. At the same time, the language is a formal language
which can be automatically translated into Datalog.

In our collaboration with Norwegian railway engineers, we have focused on reg-
ulations in Norwegian language7, but our general approach (Section 2) is language-
independent. In Section 3 we present RailCNL, a user-friendly verification front-end
language for static railway infrastructure analysis. This comes with an automatic trans-
lation into Datalog (Section 3.3), and backwards tracing integrated into the CAD pro-
gram, where marked-up original regulation texts are used together with the CNL text to
explain regulatory violations found in the model (Section 3.4). In Section 4 we extract
a design methodology from our experience with RailCNL,and conclude in Section 5 by
describing the coverage of the defined CNL, and presenting related and future work.

2 Approach to Participatory Verification for Railway Regulations

To promote participatory verification of infrastructure railway designs against regula-
tions, we design a CNL for expressing railway regulations and expert knowledge, inte-
grating it with our previously developed verification engine. Fig. 2 presents the overall
workflow of using the railway CNL integrated with the engineer’s CAD-based environ-
ment and our verification engine. Static infrastructure verification requires:

1. Models: railway infrastructure plans, typically created by arranging the station lay-
out using CAD-based programs, e.g. extensions of Autodesk AutoCAD.

2. Properties: regulations and expert knowledge, extracted from regulatory and best-
practices documents.

The formalization of these into Datalog is described in our previous work [12] which
allows efficient automatic reasoning. Describing verification properties using logical
rules in Datalog is not new (along with other logics like temporal [2] or dynamic log-
ics [5,3]), and we expected that the declarative style of Datalog would make it easy
for railway engineers to read and write such properties. However, a pilot project with
the RailCOMPLETE engineers showed that they were not proficient enough in logic
programming to understand our encodings.

To allow the engineers to participate in the verification process, we develop the
controlled natural language RailCNL for representing properties on a higher level of
abstraction, make them closer to the original text while still retaining the possibility for
automatic translation into Datalog. This approach has the following advantages:

– RailCNL is domain-specific, i.e. tailored both to the types of logical statements
needed by the verification engine, and to the regulations terminology. This allows
concise and readable expressions, increasing naturalness and maintainability.

7 The examples presented in this text are English translations of originally Norwegian content.

3

CNL editor
See Section 5

Properties, CNL
representation

(w/refs to marked-
up original text)

User creates
plans in CAD

program

Model, railML
representation

of infrastructure
See Section 1 Datalog

reasoner

Issues presentation
(warnings, errors)

See Fig. 1

Original text
(w/marked-up

sentences)
See Section 3.4

Side by side tracing through
CNL to original text.

See Fig. 6

Fig. 2: Verification process overview. Models come directly from the CAD program,
which engineers are already familiar with. Properties come from paraphrasing the reg-
ulations using CNL, which in turn are translated into Datalog. The reasoner outputs
issues (warnings and errors) which are presented to the user in the CAD program by
highlighting the objects involved in the violation. Issues are traced back to the original
text (i.e. the regulations) though identifiers on the marked-up sentences.

– The language closely resembles natural language, and can be read by engineers
with the required domain knowledge without learning a programming language.

– A separate textual explanation (such as comments used in programming) is not
needed for presenting violations textually, as the properties are now directly read-
able as natural text. Comments could still be used, e.g. to clarify edge cases or to
clarify semantics, as is done in the original texts.

– Statements in RailCNL can be linked to statements in the original text, so that
reading them side by side reveals to domain experts whether the CNL paraphrasing
of the natural text is valid. If not, they can edit the CNL text.

3 RailCNL: a Front-End Language for Railway Verification

A controlled natural languages (CNL) is a constructed language resembling a natural
language (such as English) but with added restrictions on its grammar and vocabu-
lary. The restrictions are typically aimed at reducing the ambiguity and complexity of
unrestricted natural language. A CNL may or may not also be a formal language, de-
pending on its intended use. Wyner et al. [22] give high-level recommendations on
how to design controlled natural languages ranging from informal to formal, general to
domain-specific, simple to complex. For a recent survery of CNLs, see Kuhn [9].

Grammatical Framework (GF) is a programming language for multilingual gram-
mar applications [16]. A GF program defines a grammar consisting of an abstract syn-
tax and one or more concrete syntaxes. The project also features the resource grammar

4

library (RGL), which is a comprehensive linguistic model of natural languages with a
unified API for forming sentences, and implementations of this API for 32 languages.
The RGL encapsulates the linguistic complexity of the underlying natural languages,
making the effort needed to map an abstract syntax into another natural language min-
imal, often reducing to simply providing the domain-specific vocabulary. This makes
GF a valuable tool for building CNLs (see [11] for details).

3.1 RailCNL Grammar

With RailCNL, we aim to cover the following content (also see Table 1 on page 14):

1. Definitions of railway-domain terms from a set of basic terms given by the object
types present in the CAD program and the railML exchange format.

2. Regulations (from infrastructure manager technical regulations8) which give obli-
gations or recommendations on the design of the railway infrastructure.

3. Expert knowledge given in textual form apart from official regulations, used to
gather and formalize engineering practice.

An English version of RailCNL’s core grammar is presented in Fig. 3. The full
grammar is defined in GF (see [11]), which has some advantages over classical BNF
parsers: (i) separation of abstract syntax and concrete syntax; (ii) resource grammar
library for natural languages, allowing us to compose sentences in natural language
while abstracting away from morphological details; (iii) modularity and extensibility,
which we need for evolving a domain-specific language alongside its application; and
(iv) tool support for managing text (editors, predictive parsing, visualization).

3.2 RailCNL Modules and Examples

RailCNL has a modular design (see Fig. 4) where domain-specific constructs are sepa-
rated from generic ones. However, CNL modules are not always trivially composable,
and care must be taken to retain naturalness while avoiding ambiguity when increasing
the complexity of the language. We give a summary of such trade-offs in Section 4. We
describe below the main modules and constructs of RailCNL, with examples of CNL
text and the corresponding abstract syntax tree (AST) obtained from the GF parser (see
[11] for more examples).

Top-Level Statement Types Most normative sentences in railway regulations are clas-
sified into one of the following types, or their negation:

– Constraint: logical constraints on the railway infrastructure model. These sen-
tences can be used by the Datalog reasoner to infer new statements.

– Obligation: design requirements on the railway infrastructure. The CAD model is
checked for compliance, and violations are presented as errors to the user.

– Recommendation: design heuristics for railway infrastructure. The CAD model is
checked for compliance, but violations are presented as warnings or for information
only, which can be dismissed from the view.

8 Norwegian infrastructure manager Bane NOR’s regulations: https://trv.jbv.no/

5

https://trv.jbv.no/

〈Statement〉 ::= 〈OntologyAssertion〉
| 〈OntologyRestriction〉
| 〈DistanceRestriction〉
| 〈PathRestriction〉
| 〈PlacementRestriction〉
| (...) // Partial grammar
〈OntologyAssertion〉 ::= 〈Subject〉

〈Condition〉
〈OntologyRestriction〉 ::= 〈Subject〉

〈Modality〉 〈Condition〉
〈DistanceRestriction〉 ::=

‘the distance from’ 〈Subject〉 ‘to’
〈GoalObject〉 〈Modality〉 〈Restriction〉

〈PathRestriction〉 ::= 〈PathQuantifier〉
‘from’ 〈Subject〉 ‘to’ 〈GoalObject〉
〈Modality〉 〈PathCondition〉

〈PlacementRestriction〉 ::= 〈Subject〉
〈Modality〉 ‘be placed in’ 〈Area〉

〈Modality〉 ::= ‘must’ | ‘shall not’
| ‘should’ | ‘should not’
〈PathQuantifier〉 ::= ‘all paths’
| ‘no paths’ | (...)
〈PathCondition〉 ::= ‘pass’

〈DirectionalObject〉
〈GoalObject〉 ::= 〈DirectionalObject〉
| ‘the first’ 〈DirectionalObject〉
〈DirectionalObject〉 ::= 〈SearchSubject〉
| ‘a facing switch’
| ‘a trailing switch’
| 〈SearchSubject〉 〈RelativeDirection〉

〈RelativeDirection〉 ::= ‘same dir.’
| ‘opposite dir.’
〈SearchSubject〉 ::= ‘a’ 〈Subject〉
| ‘another’
〈Area〉 ::= 〈BaseArea〉
| 〈BaseArea〉 ‘which has’
〈PropertyRestriction〉

| 〈Area〉 ‘or’ 〈Area〉
| 〈Area〉 ‘and’ 〈Area〉
〈BaseArea〉 ::= ‘tunnel’ | ‘bridge’
| ‘local release area’ | 〈Identifier〉
〈Subject〉 ::= ‘a’ 〈Class〉
| ‘a’ 〈Class〉 ‘which’ 〈Condition〉
〈Condition〉 ::= ‘is a’ 〈ClassRestriction〉
| ‘has’ 〈PropertyRestriction〉
| ‘is a’ 〈ClassRestriction〉 ‘which has’
〈PropertyRestriction〉

〈PropertyRestriction〉 ::= 〈Property〉
〈ValueRestriction〉

| (...) // and/or
〈ClassRestriction〉 ::= 〈Class〉
| (...) // and/or
〈ValueRestriction〉 ::= 〈Value〉
| ‘not equal to’ 〈Value〉
| ‘less than’ 〈Value〉
| (...) // ≤, >, ≥
| (...) // and/or
〈Value〉 ::= 〈Identifier〉 | 〈Number〉 〈Unit〉
〈Property〉 ::= 〈Identifier〉
〈Class〉 ::= 〈Identifier〉

Fig. 3: English version of RailCNL’s core grammar in BNF. Some linguistic complexity
such as subject-verb agreement is ignored here; the actual grammar is fully specified as
GF code, which is ideally suited for handling such cases.

Top-level statement types:
assertions, restrictions

Generic ontology
language Graph language:

paths, distances Areas

Railway classes
and properties

based on railML

Railway layout
constraints

Generic
Domain-specific

Module
Dependency

Fig. 4: Modules of the RailCNL (boxes) and their dependencies (arrows). The generic
modules could be reused when building CNLs for verification in other domains. The
specific modules are, however, tailored to railway regulations.

6

Example 1 (Parse tree for an obligation statement.)

CNL: A vertical segment must have length greater than 20.0m.
AST:

Statements: assertion,
obligation, recommendation

Ontology language

Graph language:
paths, distances Areas

Railway classes
and properties

based on railML

Railway layout
constraints

Interlocking
regulations

Generic
Domain-specific

Module
Dependency

Fig. 3: Modules of the RailCNL (boxes) and their dependencies (arrows). The generic
modules could be reused when building CNLs for verification in other domains. The
specific modules are, however, tailored to railway regulations.

Top-Level Statement Types Most normative sentences in railway regulations are clas-
sified into one of the following types, or their negation:

– Constraint: logical constraints on the railway infrastructure model. These sen-
tences can be used by the Datalog reasoner to infer new statements.

– Obligation: design requirements on the railway infrastructure. The CAD model is
checked for compliance, and violations are presented as errors to the user.

– Recommendation: design heuristics for railway infrastructure. The CAD model is
checked for compliance, but violations are presented as warnings or for information
only, and can be dismissed from the view.

We give here an example of a restriction which is an obligation on a property of a
segment of railway tracks.

Example 1 (Parse tree for an obligation statement.)

CNL: A vertical segment must have length greater than 20.0m.
AST: OntologyRestriction Obligation

(SubjectClass (StringClassAdjective "vertical"
(StringClass "segment")))

(ConditionPropertyRestriction (MkPropertyRestriction
(StringProperty "length")
(Gt (MkValue (StringTerm "20.0m")))))

Generic Ontology Module Statements about classes of objects and their properties
form a natural basis for knowledge representation. We allow arbitrary string tokens to
represent class names, property names and values, and compose these in various ways.

– Class names: are arbitrary words, optionally prefixed with another arbitrary word.
The reason for allowing this is to give the CNL the power to define new words.

6

Generic Ontology Module Statements about classes of objects and their properties
form a natural basis for knowledge representation. We allow arbitrary string tokens to
represent class names, property names and values, and compose these in various ways.

– Class names: are arbitrary words, optionally prefixed with another arbitrary word.
The reason for allowing this is to give the CNL the power to define new words.

– Properties and values: can be arbitrary string tokens. These can be joined by “and”
or “or” both on the level of values and of properties.

– Restrictions: Equality is a common case of restriction for which we simply choose
the wording “to be”. Other restriction types such as greater than, less than, etc.,
are worded more verbosely. Example: A main signal should have height which is
greater than 1.5m and less than 5.0m.

– Relations: the basic ontology module contains multiplicity restrictions on relations.
In the layout module presented below, we will see how relations are used when
writing statements which are concerned with more than one object simultaneously.
Example: A distant signal should have one or more associated signals.

Layout Module For writing statements about the topology of the railway track, e.g.
about paths as illustrated in Fig. 5c, we use the following language constructs:

– Goal object: modifies the Subject type defined in the ontology module to add
conditions which make sense in a railway graph search, such as the object’s ori-
entation (same direction or opposite direction) the search’s direction (forwards or
backwards) or the termination properties of the search.

– Path condition: argument to the search constructors which specifies what restric-
tions are placed on the paths from source to goal object.

– Path restrictions: the combination of the source object, goal object and path con-
ditions. Example: All paths from a station border to the first facing switch must
pass an entry signal. (See Fig. 5a)

– Distance restrictions: See Fig. 5b and Example 2.

Example 2 (Parse tree for a railway layout statement.)

CNL: Distance from an entry signal to first facing switch must be greater than 200.0 m.
AST:

Station
boundary

Entry
signal

Facing
switch

(a) Every path from a station boundary to the
first facing switch must pass an entry signal.

200 m

Entry
signal

Facing
switch

(b) The distance from the entry signal to the first
facing switch must be at least 200m.

Path 1

Path 2

Switch A

Switch B

(c) Switches give rise to branching paths, defin-
ing a graph of railway tracks.

Tunnel

Bridge

(d) Area containment can mean either a planar
region or an interval defined on a track.

Fig. 4

Example 3 (Parse tree for a railway layout statement.)

CNL: The distance from an entry signal to the first facing switch must be greater
than 200.0 m.
AST: DistanceRestriction Obligation

(SubjectClass (StringClassAdjective "entry"
(StringClass "signal")))

(FirstFound FacingSwitch)
(Gt (MkValue (StringTerm "200.0m")))

Area Module The area modules modifies subjects to express whether they are inside
a planar area, such as a station areas, tunnels or bridges, or belongs to a linear segment
of a track, such as being located in a curve or on an incline.

– Subject constructor: the Subject is extended to add a prepositional phrase con-
taining area information, such as being inside of a tunnel or on a bridge.

– Placement restriction: extends OntologyRestriction to allow restrictions
on object being inside areas. Example: A signal should not be placed in tunnel or
bridge. (See Figure 4d)

3.2 Translating RailCNL into Datalog

To make use of RailCNL in the verification tool, we transform the CNL AST into Dat-
alog rules. Each top-level constructor in the CNL definition has a translation function
into the Datalog AST.

8

7

Station
boundary

Entry
signal

Facing
switch

All paths

(a) Path restrictions are constructed from a sub-
ject, a goal, a quantifier and a condition.

200 m

Entry
signal

Facing
switch

(b) Distance restrictions are constructed from a
subject, a goal, and a value restriction.

Path 1

Path 2

Switch A

Switch B

(c) Switches give rise to branching paths, defin-
ing a graph of railway tracks.

Tunnel

Bridge

(d) Area containment can refer to either a planar
region or an interval on a track.

Fig. 5: Conditions on railway geographical layout as supported by RailCNL.

Area Module The area module modifies subjects to express whether they are inside a
planar area, such as station areas, tunnels or bridges, or belongs to a linear segment of
a track, such as being located in a curve or on an incline (see Fig. 5d).

3.3 Translating RailCNL into Datalog

To make use of RailCNL in the verification tool, ASTs obtained by parsing CNL phrases
with the GF runtime are transformed into Datalog rules (a description of how this is
implemented can be found in Section 4.3). Each top-level constructor in the CNL defi-
nition has a translation function into the Datalog AST.

Predicate Conventions. We employ the following predicate conventions:
– Class membership as classname(object).
– Object properties as propertyname(object , value).
– Relation between objects as relationname(object , otherobject).

Explicit Variables. The Subject of the sentences of the Ontology module defines an
arbitrary individual whose definition does not depend on other information. To translate
it, we create a new variable denoting the arbitrary individual. The subject makes the
starting point for the translation, as other parts of the sentence refer back to the subject.

Ontology Restrictions. For ontology restrictions, such as obligations (“must”) and
recommendations (“should”), the Datalog rule head contains a predicate which captures
any violations of the text. This is achieved by first defining the restrictions themselves
(r1_found in Example 3 below) and then declaring a rule which uses the negation of
these restrictions (!r1_found) in order to yield a counter-example.

8

Example 3 (Datalog translation of an ontology restriction.)

CNL: A signal must have height 4.0m or 4.5m.
AST:

– Object properties as propertyname(object , value).
– Relation between objects as relationname(object , otherobject).

Explicit Variables The Subject of the sentences of the Ontology module defines an ar-
bitrary individual whose definition does not depend on other information. To translate
it into Datalog, it is sufficient to create a single variable, denoting the arbitrary individ-
ual. The subject makes the starting for the translation into Datalog, as other parts of the
sentence refer back to the subject.

Ontology Restrictions For ontology restriction, such as obligations (“must”) and rec-
ommendations (“should”), the Datalog rule head contains a predicate which stores any
violations of the text.

Example 4 (Datalog translation of an ontology restriction.)

CNL: A signal must have height 4.0m or 4.5m.
AST: OntologyRestriction Obligation

(SubjectClass
(StringClassNoAdjective (StringClass "signal")))

(ConditionPropertyRestriction (MkPropertyRestriction
(StringProperty "height")
(OrRestr (Eq (MkValue (StringTerm "4.0m")))

(Eq (MkValue (StringTerm "4.5m"))))))

Datalog:

Predicate Conventions We employ the following predicate conventions:

– Class membership as classname(object).
– Object properties as propertyname(object , value).
– Relation between objects as relationname(object , otherobject).

Explicit Variables The Subject of the sentences of the Ontology module defines an ar-
bitrary individual whose definition does not depend on other information. To translate
it into Datalog, it is sufficient to invent a single variable, denoting the arbitrary individ-
ual. The subject makes the starting for the translation into Datalog, as other parts of the
sentence refer back to the subject.

Ontology Restrictions For ontology restriction, such as obligations (“must”) and rec-
ommendations (“should”), the Datalog rule head contains a predicate which stores any
violations of the text.

Example 4 (Datalog translation of an ontology restriction.)

CNL: A signal must have height 4.0m or 4.5m.
AST: OntologyRestriction Obligation

(SubjectClass (StringClassNoAdjective
(StringClass "signal")))

(ConditionPropertyRestriction (MkPropertyRestriction
(StringProperty "height")

(OrRestr
(Eq (MkValue (StringTerm "4.0m")))
(Eq (MkValue (StringTerm "4.5m"))))))

Datalog: r1_found(Subj0) :- signal(Subj0), height(Subj0, 4.0).
r1_found(Subj0) :- signal(Subj0), height(Subj0, 4.5).
r1_obl(Subj0) :- signal(Subj0), !r1_found(Subj0).

Disjunctive Normal Form As Datalog does not (necessarily) have an or operator, nor
negation over complex terms, these must be factored out into separate rules and auxil-
iary predicates. This transformation can be performed by considering the result of the
transformation of a sentence to be a set of rules, and the result of the partial translation
(such as adding a class or property constraint to a rule) to be a set of conjunctions which
are prefixes of the final rules.

Vocabulary Matching The Norwegian regulations are written in Norwegian and use
other terms for class names, properties and relations than the railML representation
does. After identifying the class names from the CNL, they will be looked up in a
Norwegian/railML dictionary. For example, Norwegian “akselteller” is mapped into
the railML class “trainDetector” with the “axlecounting” property.

9

Disjunctive Normal Form As Datalog does not (necessarily) have an or operator, nor
negation over complex terms, these must be factored out into separate rules and auxil-
iary predicates. This transformation can be performed by considering the result of the
transformation of a sentence to be a set of rules, and the result of the partial translation
(such as adding a class or property constraint to a rule) to be a set of conjunctions which
are prefixes of the final rules.

Vocabulary Matching The Norwegian regulations are written in Norwegian and use
other terms for class names, properties and relations than the railML representation
does. After identifying the class names from the CNL, they will be looked up in a
Norwegian/railML dictionary. For example, Norwegian “akselteller” is mapped into
the railML class “trainDetector” with the “axlecounting” property.

4 Design Methodology for a Verification Front-End Language

Our methodology is based on CNL and Grammatical Framework best practices. Ranta
et al. [17] describe the construction of a controlled natural language with a focus on

9

Datalog:

Predicate Conventions We employ the following predicate conventions:

– Class membership as classname(object).
– Object properties as propertyname(object , value).
– Relation between objects as relationname(object , otherobject).

Explicit Variables The Subject of the sentences of the Ontology module defines an ar-
bitrary individual whose definition does not depend on other information. To translate
it into Datalog, it is sufficient to invent a single variable, denoting the arbitrary individ-
ual. The subject makes the starting for the translation into Datalog, as other parts of the
sentence refer back to the subject.

Ontology Restrictions For ontology restriction, such as obligations (“must”) and rec-
ommendations (“should”), the Datalog rule head contains a predicate which stores any
violations of the text.

Example 4 (Datalog translation of an ontology restriction.)

CNL: A signal must have height 4.0m or 4.5m.
AST: OntologyRestriction Obligation

(SubjectClass (StringClassNoAdjective
(StringClass "signal")))

(ConditionPropertyRestriction (MkPropertyRestriction
(StringProperty "height")

(OrRestr
(Eq (MkValue (StringTerm "4.0m")))
(Eq (MkValue (StringTerm "4.5m"))))))

Datalog: r1_found(Subj0) :- signal(Subj0), height(Subj0, 4.0).
r1_found(Subj0) :- signal(Subj0), height(Subj0, 4.5).
r1_obl(Subj0) :- signal(Subj0), !r1_found(Subj0).

Disjunctive Normal Form As Datalog does not (necessarily) have an or operator, nor
negation over complex terms, these must be factored out into separate rules and auxil-
iary predicates. This transformation can be performed by considering the result of the
transformation of a sentence to be a set of rules, and the result of the partial translation
(such as adding a class or property constraint to a rule) to be a set of conjunctions which
are prefixes of the final rules.

Vocabulary Matching The Norwegian regulations are written in Norwegian and use
other terms for class names, properties and relations than the railML representation
does. After identifying the class names from the CNL, they will be looked up in a
Norwegian/railML dictionary. For example, Norwegian “akselteller” is mapped into
the railML class “trainDetector” with the “axlecounting” property.

9

Disjunctive Normal Form. As Datalog does not (necessarily) have an or operator,
nor negation over complex terms, these must be factored out into separate rules and aux-
iliary predicates. This transformation can be performed by considering the result of the
translation of a sentence to be a set of rules (such as the two definitions of r1_found
in Example 3), and the result of the partial translation (such as adding a class or property
constraint to a rule) to be a set of conjunctions which are prefixes of the final rules.

Vocabulary Matching. The Norwegian regulations are written in Norwegian and
use other terms for class names, properties and relations than the railML representation
does. After identifying the class names from the CNL, they will be looked up in a
Norwegian/railML dictionary. For example, Norwegian “akselteller” is mapped into
the railML class “trainDetector” with the “axlecounting” property.

3.4 Tool Integration

Verification tool usually output a counter-example when the requirements are violated
by the model. It is often difficult to understand from the counter-example which of
the (possibly several) requirements have been violated, and why. We use the notion of
tracing to trace such errors from the verification output all the way to the original text
regulations. Fig. 6 shows our prototype tool (running as a plug-in for the AutoCAD
program used by Norwegian railway engineers) presenting a problem in the CAD view,
and how it is traced back through the Datalog code, the AST, and the CNL code, to the
original regulations text. We mark-up sentences of the original text with an identifier,
and create a separate document containing the formalized representation using Rail-
CNL, using the identifiers as references back into the original text (Fig. 7). When the
verification program finds a violation among the regulations, it outputs the identifier of
the rule which has been violated, enabling the tracing.

4 Design Methodology for a Verification Front-End Language

Our methodology is based on CNL and GF best practices; in particular, Ranta et al.
[18] describe the construction of a CNL by creating an abstract syntax corresponding
to a semantic model, mapping it into natural language, and also how to avoid or handle

9

CAD program
showing issues
in layout plan

CNL debug view
paraphrased text
and translations

ID: detector_1

RailCNL: The distance from an axle counter to another must be larger than 21.0m.

AST: DistanceRestriction Obligation (SubjectClass (StringClassNoAdjective (StringClassMasculine
"axle_counter"))) (AnyFound (AnyDirectionObject SubjectOtherImplied)) (Gt (MkValue (StringTerm "21.0m")))

Datalog: detector_1_start(Subj0, End, Dist) :- trainDetector(Subj0), next(Subj0, End, Dist), Dist < 21.0.

Original text
highlighting source
of paraphrased text

Placement and length
This section gives generalized rules for placement and length for train detection systems and its
relationship to other infrastructure components. Detailed requirements are given in appendices.

General
a) No detection sections shall be shorter than 21 meters.
b) No dead zone shall be longer than 3 meters.

Fig. 6: Tracing of requirements backwards from CAD program through CNL to marked-
up original texts. From a regulation violation presented as a warning or error, the user
can browse to the corresponding regulatory text, shown side by side with the CNL text.

ambiguity in parsing and translating. In a later report, Ranta et al. [17] give explicit best
practices, such as: (i) using a modular structure separating generic and domain-specific
parts of the grammar, (ii) letting the AST model the semantics of the text, as opposed
to the logic of the underlying formalism, and (iii) trade-offs in modelling language
restrictions purely in context-free grammar versus using dependent types. We expand
on these best practices in the context of creating intermediate languages for writing
diverse natural text in a form which is translatable into formal verification properties.

The main activities for defining a verification front-end language using GF are:

1. Define an abstract syntax which is able to represent statements of relevant texts.
We suggest two sub-activities to help manage the difficulty and complexity of mod-
elling domain-specific, yet diverse and informally structured, texts:
(a) Logic-driven design where basic (often non-domain-specific) constructs which

are known from the verification logic are added in a “bottom-up” fashion.
(b) Text-driven design where highly domain-specific constructs are added to the

language to model specific examples in original texts in a “top-down” fashion.
2. Write a concrete syntax, mapping the abstract syntax into one or more natural

languages, using Grammatical Framework and its resource grammar library.
3. Create a translation from the abstract syntax to the target logic formalism, i.e. the

verification properties expressed in the input language of the solver.

In practice, the above activities may have subtle cross-dependencies, for example
the need for reducing ambiguity by encoding more restrictions in the types, the usage

10

Original text
marked up with

labels

==General==
a) <label id="detector_1">No detection section
shall be shorter than 21 meters. </label>
b) No dead zones shall be longer than 3 meters.

CNL properties
with references

to labels

<rule class="static-infrastructure-datalog"
textref="detector_1">

<RailCNL>
The distance from an axle counter to another
must be greater than 21.0m.

</RailCNL>
</rule>

Fig. 6: Excerpt of original text marked-up with sentence identifiers, and properties rep-
resented in CNL with references to original text.

Related Work Johannisson [8] describes a CNL targeting the Object Constraint Lan-
guage (OCL) for use in reasoning about Java program correctness in the KeY system.
The language features dynamic vocabulary based on input UML diagrams where vocab-
ulary updates are achieved by re-compiling the grammar using the GF compiler when
needed. Angelov et al. [1] present a conflict detection framework where Grammatical
Framework is used to map the contract language CL into a CNL. Statement modalities,
such as obligation, permission and prohibition, are applied to complex actions. The
structure of the CNL is modelled after the CL language. Camilleri et al. [5] take a CNL
approach to manipulating contract-oriented diagrams using a visual diagram editor, a
CNL with text editor support, and a spreadsheet representation as interfaces to a com-
mon model, which can be translated into timed automata for reasoning about system
properties. Calafato et al. [4] describe queries for tax fraud detection, where a GF CNL
is translated into database queries and stream filters for letting tax fraud professionals
iterate quickly on designing filters for tax investigation.

Other efforts to define domain specific languages for railway verification have typi-
cally focused on the implementation of control systems, such as Vu et al. [20], also con-
sidering the verification as a separate activity from design and implementation. James
et al. [7] show how to integrate UML modelling of the railway domain with graphi-
cal modelling and specification and verification languages, but also keep the focus on
verifying the control system of a fixed design.

Future Work A formal CNL with well-chosen linearizations can be very natural, and
often perfectly readable for a non-programmer with the required domain knowledge.
However, writing in a formal CNL can potentially be as difficult as writing in a pro-
gramming language. A solution to this problem is the use of special-purpose editors
which guide the user towards structuring their text according to the underlying formal
grammar. Different approaches to CNL editors have been explored (see e.g. [5,11,14]),
but in our opinion there is much to gain from further development in this area.

We are continuing our collaboration with Norwegian railway engineers to evaluate
the usability of our prototype tools, and increase the text coverage and extend the lan-

14

Fig. 7: Excerpt of original text marked-up with sentence identifiers, and properties rep-
resented in CNL with references to original text.

of restricted keywords, and the need for structure on larger scales than a single sentence.
Section 4.2 addresses each of these concerns.

4.1 Abstract Syntax

Attempting to formally model a body of informal specifications in its entirety may be
neither feasible nor desirable, for a variety of reasons:

1. The text might have some amount of non-normative content intended only to give
readers a better understanding of the subject matter.

2. Parts of the normative content might not be suitable for modelling in the target
verification tool.

3. The available body of text might be large and complex, and covering all parts of it
could require diverse domain knowledge from various disciplines.

Therefore, starting from arbitrary sentences in the natural text and trying to cover them
with the CNL will often prove to be a daunting task. Our approach to handling this
difficulty is to split the process of designing the abstract syntax into two parts.

We start with a logic-driven design, where we define basic concepts in a bottom-
up fashion, such as classifying the statement types (constraints, restrictions, etc.) and
describing sets of objects based on their class and their properties. Even when deciding
on the basic logic of the language, it might still be wise to abstract away from the details
of the underlying verification logic.

Next follows a text-driven design phase, where we look for text samples that can be
captured in the CNL, and make adjustments and additions to the grammar to cover them.
This phase might eventually lead to finding new basic building blocks, such as adding
the graph module to RailCNL for describing railway layout, or adding relations to the
ontology module. However, it is easy to get carried away and construct a highly nested
language which has too much freedom and therefore becomes difficult to parse. Until
the need for more generality is proven, each newly added construct is kept specific.

11

Alternating between the logic-driven and the text-driven phases can be useful for
handling complexity and discovering the middle ground between informal specifica-
tions and verification logic. A consequence of this compromise is that the language will
seldom be able to cover the exact wordings used in the original texts. We accept this
consequence and aim instead to provide a user-friendly comparison of original text and
CNL text for traceability (see Section 3.4).

4.2 Concrete Syntax

The abstract syntax is mapped into a natural language using the GF resource grammar li-
brary (RGL), which is well-covered in the GF documentation and literature (e.g. [18,17]).
Each category of the abstract syntax is mapped into a linearization type, often a record
data structure. For example, the Subject category of RailCNL is assigned the com-
plex noun (CN) record type, and Statement is assigned to utterance (Utt).

A major motivation for formal CNLs is that they can be unambiguously parsed
as long as the language is restricted enough. Languages written using GF are often
restricted to a pre-compiled vocabulary, to be able to identify structure and handle mor-
phological variation. For our verification application, however, we need users to be able
to define new terms dynamically, e.g. class names, and afterwards write statements using
both built-in and user-defined terms. But allowing arbitrary string tokens can introduce
ambiguity, i.e. the parser returning many parse trees for a single statement. We mitigate
this problem through several means:

Type-level Restrictions The railway term “main signal” is the common way to refer to
a signal which is of type main. Instead of using a recursively defined constructor for
this term (e.g. Adjective : String -> Class -> Class), we can restrict the
number of adjectives to one or two. This restriction is encoded in the type system
by separating the adjective-prefixed class name from the non-prefixed one:

StringClassAdjective : String -> BaseClass -> Class
StringClassNoAdjective : BaseClass -> Class

Reserved Keywords Using arbitrary names as building blocks of our language resem-
bles the use of identifiers as variables in programming languages. Programming
languages have restricted keywords which cannot be used as variable names. Simi-
larly, we use the GF parser callbacks system to remove parses which contain func-
tion words (such as “which”, “has”, “is”, “must”, “be”, etc.) as arbitrary names.
These are very unlikely to be needed as class or property names.

Weighted Constructors The GF parser has support for probabilistic grammars, which
work by assigning weights (probabilities) to the constructors of the abstract syntax.
By assigning a low weight to any constructor which uses the String category, we
ensure that built-in syntax is always prioritized over arbitrary tokens.

Syntactic Guides As in programming languages, special symbols and punctuation can
be used as guides for the parser if we are willing to compromise on naturalness.
Alternatively, we can increase the verbosity of the syntax, to reduce the likelihood
of causing ambiguity when embedded in a longer statement.

12

4.3 Translation into the Target Logic Formalism

If the abstract syntax is made to faithfully model the logic of the verification system,
then the translation into the logic formalism can be made by implementing another GF
concrete syntax for the target language. However, target logics are often too low-level
to represent regulations directly. GF incorporates dependent type features which could
allow for a more concise representation of this translation, but this practice has not yet
matured to a state in which it can be said to be a recommended practice (see [17]).
For RailCNL we have instead written a separate program (in C#, as it is a part of the
verification CAD plugin) which translates from the abstract syntax of the CNL into
Datalog. Section 3.3 describes the main techniques used.

5 Evaluation and Conclusions

RailCNL formalizes, in a human-readable manner, relevant parts of the technical regu-
lations and expert knowledge used in an on-the-fly verification engine integrated within
railway construction design software. This type of verification is limited to static in-
frastructure analysis, leaving the more heavy-weight analysis, e.g. the implementation
of control systems or interlocking specifications, to specialized analysis software such
as the products of Prover AB (Sweden) or Systerel (France).

RailCNL is our approach to participatory verification, where the end users (railway
engineers, in our case) get full access to the verification properties. This allows them to
actively participate in the verification by maintaining the rule base and managing their
own properties (often based on experience and best practice).

We have collaborated with railway engineers associated with RailCOMPLETE dur-
ing the design of the language and the writing of the verification properties. Their feed-
back on limitations in the coverage of the language and suggestions for simplification
will continue to drive the design forwards.

We surveyed the Norwegian railway regulations and counted how much of the rele-
vant regulations our basic RailCNL covers (see results in Table 1, and [11] for method-
ology and examples). The survey is limited to parts of the regulations covering railway
track and signalling, as these are the disciplines that the RailCOMPLETE software de-
velopment is currently focusing on.

RailCNL is impemented using the Grammatical Framework and its resource gram-
mar library (RGL). While we have used Norwegian for representing regulations, Rail-
CNL could be easily extended with other languages supported by the RGL. This would
allow the system to be used for other authorities’ regulations written in other languages.
As long as most of the abstract syntax is re-used, the translation into Datalog should also
be readily adaptable.

Related Work Johannisson [7] describes a CNL targeting the Object Constraint Lan-
guage (OCL) for use in reasoning about Java program correctness in the KeY system
[3]. The language features dynamic vocabulary based on input UML diagrams where
vocabulary updates are achieved by re-compiling the grammar using the GF compiler
when needed. Angelov et al. [1] present a conflict detection framework where GF is

13

Eng. discipline Chapter title Phrases Normative Relevant Covered Coverage
Track Planning: general technical 140 74 74 70 95%
Track Planning: geometry 278 157 152 119 78%
Signalling Planning: detectors 144 106 35 21 60%
Signalling Planning: interlocking 376 265 130 81 62%
Total 938 602 391 291 74%

Table 1: Coverage evaluation for a subset of Norwegian regulations. Phrases of the
original text which could be classified as normative (i.e. applying some restriction on
design) were evaluated for relevance to static infrastructure verification. The coverage
is the percentage of relevant phrases expressible in RailCNL.

used to map the contract language CL [15] into a CNL. Statement modalities, such as
obligation, permission and prohibition, are applied to complex actions. The structure of
the CNL is modelled after the CL language. Camilleri et al. [4] take a CNL approach
to manipulating contract-oriented diagrams using a visual diagram editor, a CNL with
text editor support, and a spreadsheet representation as interfaces to a common model,
which can be translated into timed automata for reasoning about system properties.

Other efforts to define domain specific languages for railway verification have typ-
ically focused on the implementation of control systems, such as Vu et al. [21], while
also considering the verification to be an activity which is separate from design and
implementation. James et al. [6] show how to integrate UML modelling of the rail-
way domain with graphical modelling and specification and verification languages, also
keeping the focus on verifying the control system implementation of a fixed design.

Future Work In working with railway engineers, we discovered language features
which could be added to increase the coverage of RailCNL:

1. A notion of scopes and exceptions, so that more complex conditional restrictions
can be expressed more naturally.

2. Mathematical formulas as a sub-language.
3. Vague or soft requirements represented not for direct use in verification, but for

requiring manual checks at some points.

A formal CNL with well-chosen linearizations can be very natural, and often per-
fectly readable for a non-programmer with the required domain knowledge. However,
writing in a formal CNL can potentially be as difficult as writing in a programming
language. A solution to this problem is the use of special-purpose editors which guide
the user towards structuring their text according to the underlying formal grammar. Dif-
ferent approaches to CNL editors have been explored (see e.g. [4,10,14]). We plan to
investigate these further and integrate one such editor for RailCNL in the RailCOM-
PLETE CAD environment, and carry out a usability study on its efficacy.

We are continuing our collaboration with Norwegian railway engineers to evaluate
the usability of our prototype tools, increase the text coverage and extend the language
to handle other railway engineering disciplines such as catenary lines and ground works.

14

Acknowledgements: We thank Martin Steffen and Aarne Ranta for numerous useful
interactions, and Claus Feyling (CEO of RailCOMPLETE AS) for allowing us to use
the time of his engineers for testing our results and other railway specific interactions.

References

1. K. Angelov, J. J. Camilleri, and G. Schneider. A framework for conflict analysis of normative
texts written in controlled natural language. JLAP, 82(5):216–240, 2013.

2. C. Baier and J.-P. Katoen. Principles of Model Checking. MIT Press, 2008.
3. B. Beckert, R. Hähnle, and P. H. Schmitt, editors. Verification of Object-Oriented Software:

The KeY Approach. Springer, 2007.
4. J. J. Camilleri, G. Paganelli, and G. Schneider. A CNL for contract-oriented diagrams. In

CNL 2014, volume 8625 of LNCS, pages 135–146. Springer, 2014.
5. D. Harel, J. Tiuryn, and D. Kozen. Dynamic Logic. MIT Press, 2000.
6. P. James and M. Roggenbach. Encapsulating formal methods within domain specific lan-

guages: A solution for verifying railway scheme plans. Mathematics in Computer Science,
8(1):11–38, 2014.

7. K. Johannisson. Natural language specifications. In Beckert et al. [3], pages 317–333.
8. F. Kensing and J. Blomberg. Participatory design: Issues and concerns. Computer Supported

Cooperative Work (CSCW), 7(3):167–185, 1998.
9. T. Kuhn. A survey and classification of controlled natural languages. Computational Lin-

guistics, 40(1):121–170, March 2014.
10. P. Ljunglöf. Editing syntax trees on the surface. In NoDaLiDa 2011, pages 138–145, 2011.
11. B. Luteberget, J. J. Camilleri, C. Johansen, and G. Schneider. Participatory Verification of

Railway Infrastructure Regulations using RailCNL (long version). Technical report 465,
University of Oslo, 2017.

12. B. Luteberget and C. Johansen. Efficient verification of railway infrastructure designs against
standard regulations. Formal Methods in System Design, 2017.

13. B. Luteberget, C. Johansen, and M. Steffen. Rule-based consistency checking of railway
infrastructure designs. In IFM 2016, volume 9681 of LNCS, pages 491–507. Springer, 2016.

14. M. Moreno and B. Bringert. Interactive multilingual web applications with grammatical
framework. In Advances in NLP, volume 5221 of LNCS, pages 336–347. Springer, 2008.

15. C. Prisacariu and G. Schneider. A Dynamic Deontic Logic for Complex Contracts. The
Journal of Logic and Algebraic Programming (JLAP), 81(4):458–490, 2012.

16. A. Ranta. Grammatical Framework. J. Functional Programming, 14(2):145–189, 2004.
17. A. Ranta, J. Camilleri, G. Détrez, R. Enache, and T. Hallgren. Grammar tool manual

and best practices. Technical report, MOLTO Deliverable D2.3, MOLTO Consortium,
Göteborg, 2012. http://www.molto-project.eu/biblio/deliverable/
grammar-tools-and-best-practices.

18. A. Ranta, R. Enache, and G. Détrez. Controlled language for everyday use: The MOLTO
phrasebook. In CNL 2012, volume 7175 of LNCS, pages 115–136. Springer-Verlag, 2012.

19. H. Sharp, Y. Rogers, and J. Preece. Interaction design: beyond human-computer interaction.
John Wiley, 2007.

20. J. D. Ullman. Principles of Database and Knowledge-Base Systems. CSPP, New York, 1988.
21. L. H. Vu, A. E. Haxthausen, and J. Peleska. A domain-specific language for railway inter-

locking systems. In FORMS/FORMAT 2014, pages 200–209. TU Braunschweig, 2014.
22. A. Z. Wyner, K. Angelov, G. Barzdins, D. Damljanovic, B. Davis, N. E. Fuchs, S. Höfler,

K. Jones, K. Kaljurand, and T. Kuhn. On controlled natural languages: Properties and
prospects. In CNL 2009, volume 5972 of LNCS, pages 281–289. Springer, 2009.

15

http://www.molto-project.eu/biblio/deliverable/grammar-tools-and-best-practices
http://www.molto-project.eu/biblio/deliverable/grammar-tools-and-best-practices

	Participatory Verification of Railway Infrastructure by Representing Regulations in RailCNL
	Introduction
	Approach to Participatory Verification for Railway Regulations
	RailCNL: a Front-End Language for Railway Verification
	RailCNL Grammar
	RailCNL Modules and Examples
	Top-Level Statement Types
	Generic Ontology Module
	Layout Module
	Area Module

	Translating RailCNL into Datalog
	Tool Integration

	Design Methodology for a Verification Front-End Language
	Abstract Syntax
	Concrete Syntax
	Translation into the Target Logic Formalism

	Evaluation and Conclusions
	Related Work
	Future Work

