
A Model for Visual Specification of e-Contracts

Enrique Martı́nez, Gregorio Dı́az, M. Emilia Cambronero
Department of Computer Science

University of Castilla - La Mancha
Albacete, Spain

{emartinez, gregorio, emicp}@dsi.uclm.es

Gerardo Schneider
Department of Applied IT

University of Gothenburg, Sweden
Department of Informatics
University of Oslo, Norway

gersch@chalmers.se

Abstract—In a web service composition, an electronic con-
tract (e-contract) regulates how the services participating in the
composition should behave, including the restrictions that these
services must fulfill, such as real-time constraints. In this work
we present a visual model that allows us to specify e-contracts
in a user friendly way, including conditional behavior and real-
time constraints. A case study is presented to illustrate how this
visual model defines e-contracts and a preliminary evaluation
of the model is also done.

Keywords-contracts; deontic specifications; visual models;

I. I NTRODUCTION

Most of the research efforts spent on the theory of
electronic contracts in service-oriented architectures have
been oriented to the formal definition of a public service
interface with which other services can interact [5]. How-
ever, services e-contracts not only refer to the interfaces
provided by these services, they also refer to a certain
number of clauses that must be satisfied by several parties.
These clauses regulate how participants should behave,
what are the penalties in case of misbehavior, and under
which conditions such clauses must be enacted (e.g. time
restrictions such as deadlines). When a clause is violated,
the contract is breached. However, if the clause defines a
reparation (secondary clauses that come into force when the
main clause is not satisfied), and this reparation is fulfilled,
then the clause is eventually fulfilled [1].

Recently some works about specifying services e-
contracts in a formal manner have been released [2], [4], [7],
[18]. These approaches consist of formal languages which
are hard to study and manipulate by untrained final users of
this technology, as business process developers.

The goal of this work is to introduce a new approach for
the specification of e-contracts in a user friendly way. E-
contracts may be complex, consisting of composite clauses
making reference to other clauses in the same or in another
contract. Furthermore, we consider contracts with timed
restrictions and conditions under which the contract clauses
must be applied. Hence, our approach is based on a visual
model, since it is well-known that the use of visual models
makes easier the perception of knowledge, and in this way,
the intuitive understanding, reading and maintenance of
complex problems [8], [9]. This approach can be useful not

name

agent

Figure 1. Box structure

only in service-oriented architectures but also in component-
based systems, requirements acquisition, software product
lines, etc.

The contribution of this work is twofold. First, we define
a visual model to deal with the acquisition and elicitation of
requirement and restrictions. This visual model allows us to
specify the notions of obligation, permission and prohibition
[14] as elements of a hierarchical diagram. In this way, these
elements are clauses that can be refined hierarchically and
can include (real-time) constraints and a reparation that must
be performed when the main norm is not fulfilled. Second,
a preliminary evaluation of the model is presented, based on
user-based tests and the principles defined in [16].

The rest of the work is structured as follows: Section
II describes the visual model we have developed, showing
in Section III a case study where this model is applied.
In Section IV we present the results of the preliminary
evaluation and Section V is concerned with related work.
Finally, in Section VI, we present the conclusions and future
work.

II. V ISUAL MODEL

In our visual model we define a hierarchical tree diagram
used to specify the contract clauses. We call this diagram
Contract-Oriented Diagramor C-O Diagramfor short.

In Figure 1 we show the basic element of ourC-O
Diagram. It corresponds to a contract clause and we call
it box. This box consists of four fields, allowing us to
specify normative aspects or simple norms (P), reparations
(R), conditions (g) and time restrictions (tr ). Each box has
a name and an agent. Thenameis useful both to describe
the clause and to reference the box from other clauses, so it
must be unique. Theagent indicates who is the performer
of the action.

On the left-hand side of the box we specify the conditions
and restrictions. Theguard g specifies the conditions under
which the contract clause must be taken into account. The



Clause Clause

SubClause1 SubClause1SubClause2 SubClause2

Figure 2. AND/OR refinements

Clause

SubClause1 SubClause2

Seq-refinement

Clause

SubClause1 SubClause2

Figure 3. SEQ refinement and repetition inC-O Diagram

time restriction tr specifies the time frame in which the
contract clause must be satisfied.

The propositional contentP, on the center, is the main
field of the box, and it is used to specify normative aspects
(obligations, permissions and prohibitions) that are applied
over actions, and/or the actions themselves.

The last field of these boxes, on the right-hand side, is the
reparation R. This reparation, if specified by the contract
clause, is another contract that must be satisfied in case the
main norm is not satisfied, considering the clause eventually
satisfied if this reparation is satisfied.

These basic elements of aC-O Diagramcan be refined
by using AND/OR refinements, as shown in Figure 2, in the
same way that we refine goals into subgoals in goal model
diagrams [21]. It is also possible to use another refinement to
specify a temporal relationship of sequence (SEQ) between
the subclauses, as shown in the left part of Figure 3. The
aim of these refinements is to capture the hierarchical clause
structure followed by most contracts. AnAND-refinement
means that all the subclauses must be satisfied in order
to satisfied the parent clause. AnOR-refinement means
that it is only necessary to satisfy one of the subclauses
in order to satisfy the parent clause, so as soon as one of its
subclauses is fulfilled, we conclude that the parent clause is
fulfilled as well. A SEQ-refinement means that the norm
specified in the target box (SubClause2in Figure 3) must
be fulfilled after satisfying the norm specified in the source
box (SubClause1in Figure 3). In this way, we can build
a hierarchical tree with the clauses defined by the contract,
where the leaf clauses correspond to the atomic clauses, that
is, to the clauses that cannot be divided into subclauses.

Finally, there is another structure that can be used to
model repetition, apart from the refinements previously
defined. This structure is represented as an arrow going
from a subclause to one of its ancestor clauses (or to itself),
meaning the repetitive application of all the subclauses of
the target clause after satisfying the source subclause. For
example, in the right part of Figure 3, we have anOR-
refinementwith an arrow going fromSubClause1to Clause.
It means that after satisfyingSubClause1we applyClause
again, but not after satisfyingSubClause2.

In the next paragraphs we describe each one of the fields

of a box in more detail.
Propositional Content P: This is the main field of

a box. It allows us to specify theobligations, permissions
and prohibitions, as defined in deontic logic [15], that the
contract must be satisfied. In this work, we follow anought-
to-doapproach [22], i.e., these normative aspects are applied
over actionsperformed by the participants in the contract.

Although we will see later that it is possible to specify
compound actions, we only consider the specification of
atomic actionsin the P field of the leaf clauses of our
diagrams. These actions are denoted by lower case Latin
letters (“a”,“ b”,“ c”, . . . ). We use a dash (“-”) to denote that
there is no action specified in the no leaf clauses.

The composition of actions can be achieved by means
of the different kinds of refinement. In this way, an AND-
refinement can be used to modelconcurrency“&” between
actions, an OR-refinement can be used to model achoice
“+” between actions, and a SEQ-refinement can be used
to modelsequence“;” of actions. In Figure 4 we can see
an example about how to model these compound actions
through refinements, given two atomic actionsa andb.

The deontic norms(obligations, permissions and prohibi-
tions) that are applied over these actions can be specified in
any clause of ourC-O Diagrams, affecting all the actions
in the leaf clauses that are subclauses of this clause. If it is
the case that the clause where we specify the deontic norm
is a leaf clause, the norm only affects the atomic action we
have in this clause. We use an upper case “O” to denote an
obligation, an upper case “P” to denote a permission, and an
upper case “F” to denote a prohibition (forbidden). These
letters are written in the top left corner of fieldP.

The composition of deontic norms is also achieved by
means of the different refinements we have inC-O Dia-
grams. Thus, an AND-refinement corresponds to thecon-
junction operator “∧” between norms, an OR-refinement
corresponds to thechoiceoperator “+” between norms, and
a SEQ-refinement corresponds to thesequenceoperator “;”
between norms. For example, we can imagine having a leaf
clause specifying the obligation of performing an action
a, written asO(a), and another leaf clause specifying the
obligation of performing an actionb, written asO(b). These
two norms can be combined in the three different ways
mentioned before through the different kinds of refinement
(Figure 5).

However, the specification of obligations, permissions and
prohibitions in our diagrams must fulfill the following rules:

1. At least one deontic norm must be specified in each
one of the branches of our hierarchical tree of clauses,
i.e., we cannot have an action without a deontic norm
applied over it.

2. No more than one deontic norm can appear in each
one of the branches of our hierarchical tree of clauses,
i.e., we cannot have deontic norms applied over other
deontic norms.



-

aa bb a b

Seq-refinement

- -

a & ba + b a ; b

Figure 4. Compound actions inC-O Diagrams

-

aa bb a b

Seq-refinement

- -

O O(a) (b)ÙO O(a) (b)+ O O(a) ; (b)

O OO O O O

Figure 5. Composition of deontic norms inC-O Diagrams

AND OR

Figure 6. Reparations inC-O Diagrams

3. The deontic norms we take into account to check
restrictions1. and2. can be shared by several branches,
i.e., when we have a deontic norm applied over a
compound action, this norm is part of several branches
of our diagram.

The repetitionof both, actions and deontic norms, can be
achieved by means of the repetition structure we define inC-
O Diagrams. The meaning of this structure is similar to the
Kleene’s staroperator “∗” [10] applied over the elements of
the target clause of the arrow, but it is richer in the sense that
the repetition can be conditioned to the satisfaction of the
source clause of the arrow and not other alternative clause.

Reparation R: This field of a box can state anew
contract that must be satisfied when the main fieldP is not
satisfied (aprohibition is violated or anobligation is not
fulfilled, there is not reparation forpermission). This new
contract can be just a new norm, but it can also be a new
hierarchical tree of clauses, including their own reparations.
In this way, we are able to specify nested reparations in our
C-O Diagrams.

The fieldR is only allowed in the clauses of our diagrams
where we specify a deontic norm of obligation or prohibition
in field P, being forbidden in the other clauses. E.g., we
can imagine a main contractC stating that we have the
obligation of performing an atomic actiona and the pro-
hibition of performing an atomic actionb. However, if we
do not perform the obligatory actiona, we can compensate
it by fulfilling another contract calledC1, consisting of
performing an actionc or an actiond, and if we perform the
forbidden actionb, we can compensate it just by performing
an actione. This situation can be modeled in our diagrams
as shown in Figure 6.

At this point we can see clearly the difference between
having a composition of obligations over atomic actions and
having an obligation over a compound action. While the
former allows us to specify a different reparation for each
one of the atomic actions we are obliged to do, the latter
only allows us to specify one reparation for the compound
action that is under the obligation operator. For the first case,
we can consider the diagrams we have in Figure 5, where
it is possible to specify a different reparation in each one of
the leaf clauses of the diagrams. For the second case, we can
imagine having the diagrams shown in Figure 7, where we
can only specify reparations in the no leaf clauses where we
have the obligations, affecting these reparations the whole
composition of actions.

This difference is a bit trickier if we consider prohibitions
or permissions, because it not only concerns to the specifi-
cation of reparations [17]. For example, given two atomic
actionsa and b, the meaning of prohibiting the sequence
of these two actions, written asF (a.b), is different from
the meaning of prohibiting actiona, and next prohibiting
actionb, written asF (a).F (b). In the first case, the sequence
of actions starting witha and continuing with any action
different from b is allowed, while in the second case any
sequence of actions starting witha is forbidden. Similar
distinctions exist when we consider permissions instead of
prohibitions.

Guard g: This field of a box is aboolean expression
that evaluates some information provided by the clause
specification, telling us under which conditions the clause
must be taken into account. E.g., in a car insurance contract
we can have a clause that is only applied to people under the
age of 21. In that case, we must include in the box modeling
this clause a guard likeage< 21.

Basically, a guard is a set of expressions that evaluate to a
boolean (true or false) combined by means of conjunctions
(and), disjunctions (or), and negations (not). These expres-
sions can include constant values, variables, and equalityand
inequality operators (==,! =,<,>, . . . ).

When the guard condition corresponding to a subclause of



-

aa bb a b

Seq-refinement

- -

O(a b)&O(a b)+ O(a ; b)

OO O

Figure 7. Obligations over compound actions

an AND/SEQ refinement evaluates tofalse, the subclause
is trivially satisfied, so we only must check the subclauses
with a true guard (or without guard). However, when the
guard condition corresponding to a subclause of anOR-
refinement evaluates tofalse, we cannot satisfy that sub-
clause in order to satisfy the parent clause, so it is necessary
to satisfy one of the other subclauses with atrue guard (or
without guard). E.g., in a payment system we can have the
obligation of paying by cash or by credit card, but the second
option is conditioned to be of legal age, so in case it is not
satisfied we have only the possibility of paying by cash.

Time restriction tr: Each clause can have associated a
time restriction, e.g., deadlines, timeouts, etc. These real-
time aspects are expressed in the boxes of our diagram
by means ofintervals within the field tr . These intervals
indicate the period of time in which the clauses must be
satisfied.

The time restrictions can be specified in two different
ways within the boxes: we can specify thedatesbinding the
beginning and the end of the time frame corresponding to the
clause (absolute time), or we can specify a deadline saying
the number oftime unitsthat can elapse before the clause is
satisfy from the moment at which another clause is satisfied
or from the moment at which the contract comes into effect
(relative time). For example, in the case of absolute time, we
can model a contract stating that a clause must be satisfied
in thefirst five days of October (interval [10/1 00:00, 10/5
23:59]), whereas in the case of relative time a contract can
state that a clause must be satisfied not later thanfive days
after satisfying another clause C(interval [C, 5days]).

When we have a time restriction specified in a clause
that is refined into subclauses, this restriction affects all the
subclauses, i.e., all the subclauses necessary to satisfy the
parent clause must be satisfied in the time frame specified in
this parent clause. Otherwise, the parent clause is considered
unfulfilled.

III. C ASE STUDY: A SOFTWARE PROVISION SYSTEM

In this case study we present a contract regulated compo-
sition of services between a client and a software provider.
The case study is inspired by the one published in [13],
but with some modifications in the composition and the
contract specification, including the definition of real-time
constraints. The parties involved in this contract are the
client, the software provider, and thetesting agency.

The scenario we are considering in this case is the
following: everything starts when theclient asks thesoftware

provider to develop a new software. Thesoftware provider
develops the different components needed to implement this
new software. Thesoftware providerinforms twice theclient
about the progress of the software development. If theclient
wants any changes in the software, he can request them after
the first update. Any changes suggested after the second
update are considered a violation. Theclient can recover
from this violation by paying a penalty to thesoftware
provider or by withdrawing the suggested changes. Every
update is followed by a payment from theclient to the
software provider. If the software providerdoes not send
the updates to theclient at the schedule time (three months
for the first update andnine months for the second update),
it is also considered a violation of the contract that can be
repaired by paying a penalty charge to theclient.

Once all the software components are implemented, the
software providerintegrates these components and sends the
final product to thetesting agencyfor testing. Then this
testing agencysends testing reports to the other parties. If
the tests fail, the components are revised by thesoftware
provider and then tested again. Finally, if the tests succeed,
thesoftware providerdelivers the final product to theclient.

In Table I we show a list of the obligations, permissions
and prohibitions we can deduce from the scenario described
above. We can see here that there are two clauses specifying
real-time constraints,Clause 1andClause 4. If we consider
the moment when theclient asks thesoftware providerto
develop a new software as the moment when the contract
comes into effect (denoted as0), the timesoftware provider
has to updateclient for the first time after being asked to
develop the new software is three months (denoted as3M)
according toClause 1. Moreover, from the above scenario
we can deduce that there is a second time constraint, that the
time software providerhas to updateclient for the second
time after updating him for the first time is nine months
(denoted as9M) according toClause 4. We can also see in
Table I thatClause 9andClause 10are conditioned to the
result of the tests, so we consider a boolean variable we call
TestsOk specifying if the tests have succeeded.

The main problem we have with this textual specification
of the contract is that it is no clear the relationship existing
between the different clauses, which makes difficult any
kind of analysis of the contract. Therefore, we aim at a
specification language that clearly defines the relationship
between the different clauses, allowing the analysis of the
contract, but not so formal that an expert is needed.C-O
Diagramssatisfies the above requirements. In what follows



Clause Agent Modality Action Reparation

1 Software provider Obligation

Updates client before three
months (first update).

Pays penalty, eventually updating
client (Obligation).

2 Client Obligation

Sends the first payment tosoftware
provider.

∅

3 Client Permission

Requests changes tosoftware
provider after first update.

∅

4 Software provider Obligation

Updatesclient beforenine months
after first update (second update).

Pays penalty, eventually updating
client (Obligation).

5 Client Obligation

Sends the second payment tosoft-
ware provider.

∅

6 Client Prohibition

Requests changes tosoftware
provider after second update.

Pays penalty or withdraws changes
(Obligation).

7 Software provider Obligation

Sends the integrated components to
testing agency.

∅

8 Testing agency Obligation

Sends testing reports toclient and
software provider.

∅

9 Software provider Obligation

If tests fail, revises components,
repeating after that the testing pro-
cess.

∅

10 Software provider Obligation

If tests succeed, delivers the final
product toclient.

∅

Table I
NORMS OF THESoftware Provision SystemCONTRACT

Software_Provision_System

First_Update Second_Update Correct_Software

-

- - -

SEQ

Figure 8. Top-level of theC-O Diagramfor theSoftware Provision System

we explain how to model the contract with these diagrams,
taking into account the information provided in Table I. We
usean to denote the action performed by clause numbern

and rm to denote the reparation defined for clause number
m.

In Figure 8 we show the top-level of theC-O Diagram
we specify for the contract, where we have grouped the
clauses in Table I into three more general clauses with a
sequence relationship between them:First Update(Clause
1, Clause 2 and Clause 3), SecondUpdate (Clause 4,
Clause 5and Clause 6), andCorrect Software(Clause 7,
Clause 8, Clause 9 and Clause 10). These three clauses
cover the three different phases we can distinguish in the
contract.

The decomposition of clauseFirst Updateinto subclauses
can be seen in Figure 9. In this case, we first have the spec-
ification of the obligation contained inClause 1, including
the deadline (three months from the beginning) and the

P

-

Client_First_Behavior

a3

First_Payment First_Changes

-

First_Update

0

Sends_Update1

O a2

O a1
O r1

3M

Software provider

Client Client

SEQ

AND

Figure 9. Decomposition of clauseFirst Update

reparation, and after that we have the specification ofClause
2 and Clause 3, both affecting the behavior of theclient
and with an∧ relation between them, composing the parent
clauseClient First Behavior.

The decomposition of clauseSecondUpdate into sub-
clauses can be seen in Figure 10 and it is very similar to the
previous one. We first have the specification of the obligation
contained inClause 4, including the deadline (nine months
from the fulfillment of Clause 1, abridged asC1) and the
reparation, and after that we have the specification ofClause
5 and Clause 6, both affecting the behavior of theclient
and with an∧ relation between them, composing the parent
clauseClient SecondBehavior. The main difference is that
the client is not allowed to request any change, so instead



F

-

Client_Second_Behavior

a6

Second_Payment Second_Changes

-

Second_Update

C1

Software provider

O a5

O a4
O r4

9M

r6b

O

r6a

Pays_Penalty Withdraws_Changes

Sends_Update2

ClientClient

-

AND

SEQ

OR

Figure 10. Decomposition of clauseSecondUpdate

of a permission we have now a prohibition inClause 6.
This prohibition specifies two possible reparations, so we
use r6a to represent the payment of a penalty andr6b to
represent the withdrawal of the changes by theclient. We
write this complex reparation in the same diagram instead
of referencing another diagram just to save space.

Finally, the clauseCorrect Software is decomposed as
shown in Figure 11. We first have the obligation contained in
Clause 7, about sending the software to thetesting agency.
After that we have the obligation contained inClause 8,
about sending the reports to thesoftware providerand to the
client. These two actions can be performed concurrently, so
we call a8a the action of sending the testing reports to the
software provideranda8b the action of sending these reports
to theclient. Last, we have the specification ofClause 9and
Clause 10, both affecting thesoftware providerand with
a + relation between them, composing the parent clause
TestsResult. We notice that the selection of one subclause
or the other is related to the result of the tests, so we use
the variableTestsOk to model that situation. Each time we
applyClause 9(software providerrevises the components),
we repeat the sequence of software testisng, going back to
the application ofClause 7. If Clause 10 is applied, the
software providerdelivers the final product to theclient and
the contract finishes.

IV. EVALUATION OF THE MODEL

In this section we present an evaluation of the visual
model described above, divided into a qualitative and a
quantitative evaluation. For the former evaluation we discuss
how the model fits some of the most important principles for
designing effective visual notations defined in [16]. First, the
principle of semiotic clarityis accomplished by the model,
as there is only one graphical structure corresponding to
each semantic concept and vice versa. Second, the principle
of perceptual discriminabilityis taken into account to differ-
entiate between refinements, having each kind of refinement

Error Rate (%) Time (sec)
Textual Visual Textual Visual

Basic 1.8% 1.8% 26 26
Composition 22.0 % 21.3% 53 45

Temporal 12.1% 9.2% 42 37
Reparation 54.5% 33.6% 98 83

Table II
RESULTS OBTAINED FOR THE VISUAL AND TEXTUAL NOTATIONS

a clearly distinct shape and using the text with the name
of the refinement to complement the graphics (principle of
dual coding). We also have that the number of different
graphical symbols in the model is under the upper limit
of six categories for graphics complexity, so the principle
of graphic economyis accomplished. Finally, the principle
of complexity managementis covered by the modularization
of the diagrams, as we have done in the case study. As we
have seen in the previous section, modules are combined by
having the same box appearing in several diagrams (principle
of cognitive integration).

The quantitative evaluation of the model is done by means
of user-based tests. Our purpose with these tests is to com-
pare C-O Diagramswith textual notations for e-contracts,
so in the tests we use a textual version of the diagrams very
similar to CL language [18], as it is closely related to the
approach followed byC-O Diagrams, but adding agents and
time aspects that are not currently supported byCL. We
have designed two tests to compare the understandability
of both, textual and visual representation, where we have
that the same semantic concept is represented by aC-O
Diagram in one test and by the textual language in the other
test, asking the same questions in both cases. These tests
have been done by 20 students of our university who have
previously attended two lectures about e-contracts andC-O
Diagrams, and we have obtained the results shown in Table
II. In the table we show the average error rate and time taken
by students in both cases, for textual representation and
for visual representation. The results are divided into four
rows depending on the kind of contracts that the questions
correspond to: contracts with only a basic deontic norm, con-
tracts with a composition of deontic norms, contracts with
temporal restrictions, and contracts including reparations.
As we can see, in the simplest case there is no difference
between textual and visual representation, but in all the other
cases we obtain better results for visual representation than
for textual representation.

We also have defined another test to rank the subjective
opinion of the users based on theSystem Usability Scale
(SUS)[3]. It is a simple, ten-item scale giving a global view
of subjective assessments of usability. In our case, we use
this text not only to asses the usability ofC-O Diagrams,
but also to compare these diagrams with the textual notation.
SUS scores have a range of 0 to 100, where 0 corresponds
to the worst evaluation of usability and 100 corresponds to
the best one. We have obtained an average score of77.83in



-

Test_Result

Software_Revision

-

Correct_Software

Oa9

Test_Reports

O

¬Tests_Ok Tests_Ok
O a10

Software_Delivery

Software_Integration

O a7

Provider_Reports

a8a

Client_Reports

a8b

Software provider Testing agency

Software provider Software provider

-

AND OR

SEQ

Figure 11. Decomposition of clauseCorrect Software

this scale for our model. This is a score that clearly shows
the user’s preference to use the visual model instead of the
textual notation.

All these tests can be accessed via the Moodle course“C-
O Diagrams” in http://moodle.retics.uclm.info/. Anyone can
access this course login as a guest. The tests are available
at theSocial Activitiesbox, through the preview option.

V. RELATED WORK

To the best of our knowledge, there is not any other visual
model specially created for the definition of e-contracts.
However, several works in the literature define a meta-
model for the specification of e-contracts whose purpose
is the enactment or the enforcement of this e-contract.
For instance, in [6] Chiu et al. present a meta-model for
e-contract templates written in UML, where a template
consists of a set of contract clauses of three different types:
obligations, permissions and prohibitions. These clausesare
later mapped into event-condition-action (ECA) rules for
contract enforcement purposes, but the templates do not
include any kind of reparation or recovery associated to the
clauses, and the way of specifying the different possible rela-
tionships between clauses is not clear. In [11] Krishna et al.
propose another meta-model of e-contracts based on entity-
relationship diagrams that they use to generate workflows
supporting e-contract enactment. This meta-model includes
clauses, activities, parties and the possibility of specifying
exceptional behavior, but this approach is not based on the
deontic notions of obligation, permission and prohibition,
and says nothing about including real-time aspects natively.
Another approach can be found in [20], where Rouached
et al. propose a contract layered model for modeling and
monitoring e-contracts. This model consists of a business
entities layer, a business actions layer, and a business rules
layer. These three layers specify the parties, the actions
and the clauses of the contract respectively, including the
conditions under which these clauses are executed. However,
real-time restrictions are not included and the specification
of the clauses follows an operational approach, not a deontic
approach.

The approach followed inC-O Diagramsfor the specifi-
cation of e-contracts is close related to the formal language
CL [18]. In this language a contract is also expressed as
a composition of obligations, permissions and prohibitions
over actions, and the way of specifying reparations is the
same that in our visual model. The main difference withC-
O Diagrams is that CL does not support the specification
of agents nor timing constraints natively, so they have to be
encoded in the definition of the actions. Also, inCL there
is no sequence operator to combine the different clauses,
so the notion of sequence has to be expressed always
by means of specifying the application of a clause after
performing a certain action (denoted as[α]C, whereα is
a compound action andC is a general contract clause), like
in propositional dynamic logic. Refer to [15] for a general
description of deontic logic.

In [14] Marjanovic and Milosevic also defend a deontic
approach for formal modeling of e-contracts, paying special
attention to the modeling of time aspects. They distinguish
between three different kinds of time in e-contracts: absolute
time, relative time and repetitive time. The two first kinds
are supported byC-O Diagrams, but repetitive time is not in-
cluded yet in our model. Nevertheless, with the combination
of the other two kinds of time and the repetition structure, we
can achieve some repetitive time behaviors in our model. In
[13] Lomuscio et al. present an approach to verify contract-
regulated service compositions. They use the orchestration
language WS-BPEL to specify all the possible behaviors of
each service and the contractually correct behaviors. After
that, they translate these specifications into timed automata
supported by the MCMAS model checker to verify the
behaviors automatically. In this work we have that the scope
of the e-contracts is limited to web services compositions,
specifying the e-contract corresponding to each one of the
services separately. The specification of real-time constraints
is not allowed because they are not supported by MCMAS
and the deontic norms are restricted to only obligations.

VI. CONCLUSIONS ANDFUTURE WORK

In this paper we have presentedC-O Diagrams, a new
visual formalism for electronic contracts. Though we have



shown the applicability of such diagrams on a case study
taken from SOA, their usefulness go beyond services. They
can be used for negotiation via email, contracting on the
Internet, performing an Electronic Data Interchange Agree-
ment (EDI), just to mention a few. Indeed,C-O Diagrams
may also be used as an intermediate (formal) language for
other applications. We are currently working on their use
in the context of requirements engineering (to formalize
requirements), product software families (as an extension
of feature diagrams), and as a visual representation ofCL
contracts.

We are also working on a formal semantics based on
automata, making it possible to formally analyzeC-O
Diagrams using for instance UPPAAL [12]. Besides the
application ofC-O Diagramsto the mentioned domains, we
intend to explore how we can automatically obtain diagrams
from a controlled (structured) English, by using for instance
the Grammatical Framework (GF) [19]. We also envisage
the possibility of specifying a different diagram for each one
of the parties involved in an e-contract instead of having a
global C-O Diagram with multiple agents. This composi-
tional approach can be useful if we define a composition
operator, specifying when two of these newC-O Diagrams
can be composed and the result of the composition.

ACKNOWLEDGMENT

Partially supported by the Spanish government (cofi-
nanced by FEDER founds) with the project TIN2009-14312-
C02-02, the JCCLM regional project PEII09-0232-7745,
and the Nordunet3 project “COSoDIS”. The first author is
supported by the European Social Fund and the JCCLM.

REFERENCES

[1] A. Boulmakoul and M. Sall. Integrated Contract Manage-
ment. Technical Report HPL-2002-183, Hewlett-Packard,
2002.

[2] M. Bravetti and G. Zavattaro. Towards a unifying theory for
choreography conformance and contract compliance.Pro-
ceedings of the Sixth International Symposium on Software
Composition, pages 34–50, 2007.

[3] J. Brooke. SUS - A “quick and dirty” usability scale.
Usability Evaluation in Industry, pages 189–194, 1996.

[4] M. G. Buscemi and U. Montanari. Cc-Pi: A Constraint-Based
Language for Contracts with Service Level Agreements.Pro-
ceedings of Second International Workshop on Formal Lan-
guages and Analysis of Contract-Oriented Software, pages
1–8, 2008.

[5] S. Carpineti, G. Castagna, C. Laneve, and L. Padovani. A
formal account of contracts for Web services.Proceedings of
Third International Workshop on Web Services and Formal
Methods, pages 148–162, 2006.

[6] D. Chiu, S. Cheung, and S. Till. A Three-Layer Architecture
for E-Contract Enforcement in an E-Service Environment.
Proceedings of the 36th Hawaii International Conference on
System Sciences (HICSS-36), pages 74–83, 2003.

[7] H. Davulcu, M. Kifer, and I. V. Ramakrishnan. CTR–S: A
Logic for Specifying Contracts in Semantic Web Services.
Proceedings of the Thirteenth international World Wide Web
conference, pages 144–153, 2004.

[8] E. M. Haber, Y. E. Ioannidis, and M. Livny. Foundations of
Visual Metaphors for Schema Display.Journal of Intelligent
Information Systems, 3(3–4):263–298, 1994.

[9] D. Harel. On Visual Formalisms.Communications of the
ACM, 31(5):514–530, 1988.

[10] S. C. Kleene. Representation of events in nerve nets andfinite
automata.Automata Studies, pages 3–41, 1956.

[11] P.R. Krishna, K. Karlapalem, and A.R. Dani. From Contract
to E-Contracts: Modeling and Enactment.Information Tech-
nology and Management, 6(4):363–387, 2005.

[12] K. G. Larsen, Z. Pettersson, and Y. Wang. UPPAAL in a
Nutshell. STTT: International Journal on Software Tools for
Technlogy Transfer, 1(1–2):134–152, 1997.

[13] A. Lomuscio, H. Qu, and M. Solanki. Towards verifying
contract regulated service composition.Proceedings of IEEE
International Conference on Web Services (ICWS 2008),
pages 254–261, 2008.

[14] O. Marjanovic and Z. Milosevic. Towards formal model-
ing of e-Contracts.Proceedings of 5th IEEE International
Enterprise Distributed Object Computing Conference, pages
59–68, 2001.

[15] P. McNamara. Deontic Logic. InGabbay, D.M., Woods,
J., eds.: Handbook of the History of Logic, volume 7, pages
197–289. North-Holland Publishing, 2006.

[16] D. L. Moody. The “Physics” of Notations: Toward a Sci-
entific Basis for Constructing Visual Notations in Software
Engineering. IEEE Transactions on Software Engineering,
35(6):756–779, 2009.

[17] G.J. Pace and G. Schneider. Challenges in the specification
of full contracts.Proceedings of 7th International Conference
on integrated Formal Methods, pages 292–306, 2009.

[18] C. Prisacariu and G. Schneider. A formal language for
electronic contracts.Proceedings of 9th IFIP International
Conference on Formal Methods for Open Object-Based Dis-
tributed Systems, pages 174–189, 2007.

[19] A. Ranta. Gramatical Framework.Journal of Functional
Programming, 14(2):145–189, 2004.

[20] M. Rouached, O. Perrin, and C. Godart. A Contract Layered
Architecture for Regulating Cross-Organisational Business
Processes.Proceedings of Third International Conference on
Business Process Management, pages 410–415, 2005.

[21] A. van Lamsweerde, A. Dardenne, and S. Fickas. Goal-
directed requirements acquisition.Selected Papers of the
Sixth International Workshop on Software Specification and
Design. Science of Computer Programming, 20(1–2):3–50,
1993.

[22] G. H. V. Wright. Deontic logic: A personal overview.Ratio
Juris, 12(1):26–38, 1999.


