
Reachability Analysis of GSPDIs: Theory, Optimization,
and Implementation

Hallstein A. Hansen
Buskerud University College, Norway

University of Oslo, Norway
Hallstein.Asheim.Hansen@hibu.no

Gerardo Schneider
University of Gothenburg, Sweden

University of Oslo, Norway
gersch@chalmers.se

ABSTRACT
Analysis of systems containing both discrete and continuous
dynamics, hybrid systems, is a difficult issue. Most prob-
lems have been shown to be undecidable in general, and
decidability holds only for few classes where the dynamics
are restricted and/or the dimension is low. In this paper
we present some theoretical results concerning the decid-
ability of the reachability problem for a class of planar hy-
brid systems called Generalized Polygonal Hybrid Systems
(GSPDI). These new results provide means to optimize a
previous reachability algorithm, making the implementation
feasible. We also discuss the implementation of the algo-
rithm into the tool GSPeeDI.

Categories and Subject Descriptors
I.6.4 [Simulation and Modeling]: Model Validation and
Analysis

General Terms
Verification of hybrid systems

Keywords
Hybrid systems, reachability, differential inclusions

1. INTRODUCTION
Hybrid systems combine dynamic and discrete behaviors,

and mathematical models can be defined for systems aris-
ing from real scenarios (e.g., a chemical plant) as well as
for artificial constructions (e.g., by hybridizing a complex
differential equation into connected piece-wise smaller equa-
tions). These systems are generally hard to analyze: most
important verification problems are undecidable for non-
trivial classes of hybrid systems. In this paper we deal with
a class of planar hybrid systems whose dynamics is given by
differential inclusions: generalized polygonal hybrid systems
(GSPDIs). Informally, a GSPDI consists of a partition of the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’10 March 22-26, 2010, Sierre, Switzerland.
Copyright 2010 ACM 978-1-60558-638-0/10/03 ...$10.00.

Pa

e

b
X0

Xf

Figure 1: Example GSPDI, and trajectory

plane where each region (convex polygon) has associated a
pair of vectors determining a constant differential inclusion
restricting the dynamics of trajectories. An example of a
GSPDI and of a typical trajectory is given in Fig. 1. A com-
plicating factor in the reachability analysis of GSPDIs is the
presence of regions where the trajectory is allowed to enter
and leave the region through the same edge (boundary of a
region), to slide along, or bounce off a given edge. In Fig. 1
the dynamics of region P allow the trajectory to slide and
bounce off the edge e. A region where no trajectory can en-
ter and leave through the same edge is said to be good, and
a GSPDI where all the regions are good is called an SPDI
(the SPDI satisfies the goodness assumption).

The reachability problems for SPDIs and GSPDIs have
been shown to be decidable in [1], and [5] respectively. In
the latter, there is a need to take special considerations in
order to treat simple cycles containing bounces, to analyze
the sliding on edges, and to prove termination. Moreover, in
order to simplify some proofs many assumptions are made
and left implicit.

In this paper we further investigate the theoretical results
concerning reachability analysis of GSPDIs, which serve as
basis to important optimizations making the implementa-
tion of the algorithm feasible. In particular, the contribu-
tions of this paper are: (i) A proof showing that the spe-
cial treatment of simple cycles containing bounces can be
avoided, and other theoretical results; (ii) The application
of such results in order to optimize the reachability algo-
rithm; (iii) All the assumptions are made explicit, making
the implementation feasible.

The paper is organized as follows. In the next section
we recall GSPDIs and other preliminary results. In section
3 we informally discuss the decidability results known for
SPDIs and GSPDIs previously presented, and we sketch our
solution. In sections 4 and 5 we present our main theoretical
results. We discuss how these results are applied to optimize
the algorithm and we briefly discuss the tool GSPeeDI in
section 6, before concluding.

2. GENERALIZED POLYGONAL HYBRID
SYSTEMS (GSPDI)

In this section we recall the main definitions and concepts
required in the rest of the paper. For a more detailed pre-
sentation see [2, 5].

A vector x ∈ R2 is denoted (x1, x2). The inner (scalar)
product xy = x1y1 + x2y2, while λx = (λx1, λx2). The
vector x̂ is defined as (x2,−x1) (x rotated clockwise π

2
de-

grees), and x̂x = 0. The angle ∠x
y, where y is situated

clockwise from x, denotes a differential inclusion. z ∈ ∠x
y

means that z is a (positive) linear combination of x and y:
z = αx + βy, α ≥ 0, β ≥ 0.

Definition 1. A Generalized Polygonal Hybrid System
(GSPDI) is a pair H = 〈P, F〉, where P is a finite partition of
the plane (each P ∈ P is a convex polygon, called a region of
the GSPDI), and F is a function associating a pair of vectors
to each polygon: F(P) = (aP ,bP). In a GSPDI every point
on the plane has its dynamics defined according to which
polygon it belongs to: if x ∈ P , then ẋ ∈ ∠bP

aP .

Definition 2. A trajectory segment of a GSPDI is a con-
tinuous and almost-everywhere differentiable function ξ :
[0, T] → R2, such that for all t ∈ [0, T], if ξ(t) ∈ P , then

ξ′(t) ∈ ∠bP
aP . The signature of a trajectory segment, is an

ordered sequence of edges Sig(ξ) = e1 . . . en traversed by ξ.

We define E(P) to be the set of edges of region P . We say
that an edge e ∈ E(P) is an entry-only of P if for all x ∈ e
and for all c ∈ ∠bP

aP , x+cε ∈ P for some ε > 0. e is exit-only
if the same condition holds for some ε < 0. Intuitively, an
entry-only (exit-only) edge of a region P allows at least one
trajectory in P starting (terminating) on edge e, but allows
no trajectories in P terminating (starting) on edge e.

We write In(P) to denote the set of all entry-only edges
of P , and Out(P) to denote the set of exit-only edges of P .
We call the set E(P) \ (In(P)∪Out(P)) the inout edges of
P , and denote it by InOut(()P)

Definition 3. A region P such that InOut(P) = ∅ is called
a good region. For a GSPDI where all P ∈ P are good we
say that the goodness assumption holds, and refer to it as
an SPDI.

Given a region P , we introduce a one-dimensional coordi-
nate system on each edge. For this edge we choose a point
of origin, with a radius vector v and a director vector e.
The vector e has a clockwise direction with respect to the
boundary of P for edges in Out(P), and counter-clockwise
for edges in In(P). Thus an inout edge e will have two dis-
tinct characterizations depending on whether it is considered
an input or an output edge, e and e−1.

We characterize the edge e by its extreme points el, eu ∈
Q ∪ {−∞,∞}, such that e = {v + xe|el ≤ x ≤ eu}. In the
following we will use x ∈ R2 to denote a point on an edge e,
and (e, x) to denote the local coordinate of x with respect
to e. An edge-interval (e, [x, y]) denote the interval between
two local coordinates x, y of e.

We assume in the following that e = {v+xe | 0 ≤ x ≤ 1}.
Thus, the largest possible edge-interval for any edge is [0, 1].
We call (e, [0, 1]) a full edge-interval.

Definition 4. A positive affine function f : R → R is a
function such that f(x) = ax+ b, a > 0. The inverse of this
function is f(x)−1 = 1

a
x− b

a

Definition 5. An affine multivalued function (AMF) F :
R→ 2R, written F = [fl, fu], is defined by F (x) = [fl(x), fu(x)]
where fl and fu are positive affine.

For an interval I = [l, u] we have that F (l, u) = [fl(l), fu(u)].
An inverted affine multivalued function F−1 : R → 2R , is
defined by F−1(x) = [f−1

u (x), f−1
l (x)].

We also need a way, given an inout edge e, to translate
between local coordinates when the edge is seen as an input
edge, and as an output edge. A point (e, x) is translated into
(e, flip(x)), where flip(x) = 1−x, is a negative affine func-
tion. An interval (e, [l, u]) is translated into (e, F lip([l, u]),
where Flip(l, u) = [flip(u), f lip(l)] [5].

Definition 6. Given an AMF F and two intervals S ⊆
R+ and J ⊆ R+, a truncated affine multivalued function
(TAMF) FF,S,J : R→ 2R is defined as follows: FF,S,J(x) =
F (x) ∩ J if x ∈ S, otherwise FF,S,J(x) = ∅. In what follows
we will write F instead of FF,S,J . For convenience we write
F(x) = F ({x}∩S)∩ J and F(I) = F (I ∩S)∩ J , where I is
an interval.

We say that F is normalized if S = Dom(F) = {x|F (x)∩
J 6= ∅} and J = Im(F) = F(S). An inverted truncated
affine multivalued function (inverted TAMF) is defined in
terms of an inverted affine multivalued function. TAMFs
are closed under composition [2].

In what follows we define the edge-to-edge successor for a
particular vector c, and for all vectors in ∠bP

aP .

Definition 7. Let ei ∈ In(P), eo ∈ Out(P), xi = (ei, xi)

and c ∈ ∠bP
aP . The edge-to-edge successor following c is

Succceieo
(xi) = xo, where xo = (eo, xo) such that xo = xi+tc

(for some t ≥ 0). We say that the vector c points in (into
P) across ei, and that it points out (of P) across eo. We also
say that c is good with respect to Succceieo

.

Definition 8. For (ei, I), Succeieo(I) is the set of points on
eo reachable from some point in I by a trajectory segment
ξ. That is, ξ(0) ∈ (ei, I), ξ(t) ∈ eo, t > 0, Sig(ξ) = eieo. If e0
is entry-only and e1 is exit-only then we say that Succce0e1
is good.

The following lemma shows how the successor Succceieo
is

used to construct the successor Succeieo . For ∠bP
aP , (ei, x), [l, u]

⊆ [0, 1] we have [2]:

Lemma 1. Succeieo([l, u]) = [fb
eieo

(l), fa
eieo

(l)] ∩ [0, 1].

Definition 9. Given a sequence of distinct edges e1 . . . en,
and the sequence e1 . . . ene1 . . . en . . . e1 . . . en, we say that
e1 . . . ene1 is a simple cycle, and we denote it (e1 . . . en).

3. REACHABILITY ANALYSIS OF GSPDIS
In order to better understand our contributions we infor-

mally explain in what follows the reachability algorithm for
SPDIs [1] and GSPDIs [5].

The algorithm presented in [1] for deciding reachability
on SPDI depends on the pre-processing of trajectory seg-
ments and a qualitative analysis to guarantee that we can
treat all signatures, by looking at only a finite set of abstract
signatures. Informally, this is achieved as follows: (1) Tra-
jectory segments are simplified — it is sufficient to look at
trajectories made up of straight segments across regions, and

(c)(a) (b)

b

a R2

ab

R1

R2

b

a

e1

R1

b

a

Out

a

b

R2

In

R1

b

a

In

In

In

In

In

In

In

In

In In

In

In

In

Out

Out

Out

Out

Out

Out

Out

Out

Out

Out

Out

Out

Out

e−1
1

Figure 2: (a) An SPDI with matching order of edges;
(b) a GSPDI with a duplicated inout edge; (c) a path
through the GSPDI using edge e1 in both directions.

which do not cross themselves; (2) Trajectory segments are
abstracted into signatures, based on the Poincaré map that
relates n-dimensional continuous-time systems with (n−1)-
dimensional discrete-time systems; (3) It is shown that it
is sufficient to look at signatures which consist only of se-
quences of edges and simple cycles; (4) Such signatures can
be abstracted into types of signatures — signatures which
do not take into account the number of times each simple
cycle is iterated. Many of the lemmas for proving that the
above guarantee the finiteness of types of signatures criti-
cally depend on the goodness assumption, which propagate
this dependency to the constructive proof given for deciding
reachability of SPDIs. More specifically, the proof of decid-
ability depends on the concept of monotonicity of TAMFs
and their composition. Before starting the analysis, the di-
rection of the edges separating regions is fixed. An inter-
esting result guarantees that the orientation of the edges in
each polygon can be split into two contiguous sequences of
edges — one being entry-only edges, the other being exit-
only edges. Furthermore, the orientation of an edge in one
region is guaranteed to match the orientation of the same
edge in the adjacent region as shown in Fig. 2-(a).

When one moves on to GSPDIs, inout edges break this
result since the direction of an edge when considered as an
input edge clashes with the direction it is given when used
as an output edge in the same region. (Entry-only edges
and exit-only edges can be assigned in one fixed direction
and do not cause any problem; see Fig. 2-(b).) To solve the
above problem the solution suggested in [5] is to use directed
edges, and differentiate between the edge used as an input,
and when it is used as an output, just as though they were
two different edges in the GSPDI. Fig. 2-(c) shows how an
inout edge can be seen in this manner. Note that depending
on in which direction the trajectory traverse the inout edge
e1, it is an input edge in region R1, but an output edge in
region R2, and similarly, e−1

1 is an output edge in region R1

and an input edge in region R2 (hence, we did not draw the
direction vector in the picture). In other words, any path
passing through the edge such as σ = e0e1e2 . . . e3e

−1
1 e4 (see

Fig. 2-(c)) can be analyzed as before. Since e1 and e−1
1 are

considered distinct edges the above path contains no cycle.
It can be seen that the standard analysis for SPDIs works

well for such cases. However, paths can now ‘bounce’ off
an edge. Recall that any pair of edges e0e1 is part of a
path if e0 is an input edge of a region, and e1 is an out-
put edge of the same region. One can calculate the TAMF
for such a trajectory. However, ee−1 can now be part of a

valid path, whose behavior cannot be expressed as a normal
TAMF, rather by the Flip TAMF. This breaks the analysis
used in SPDIs, to accelerate the analysis of simple cycles.
For GPSDIs the standard SPDI analysis is then extended to
handle such ‘bounces’ in paths. There are some problems
with the solution sketched above [5]: (i) Simple cycles con-
taining bounces need special treatment; (ii) There are many
implicit assumptions in the theoretical results, making un-
feasible the implementation of the algorithm.

Our solution to the above problems (contributions of this
paper) include: (i) A proof showing that the treatment of
simple cycles containing bounces can be avoided; (ii) All the
assumptions are made explicit, making the implementation
feasible.

Our reachability is not based on the one presented in [5]
(which is a depth-first search algorithm), but rather on an
adapted version of the breadth-first search algorithm for
SPDIs shown in [4].

This algorithm is conducted in a standard manner on a
directed graph where the edges are nodes and successors are
transitions. From an initial edge-interval all possible child
edge-intervals are generated and put into a queue. These
are then handled in turn. The search is finished whenever
some goal edge-interval is reached (success), or the queue is
empty (failure).

There are two kinds of transitions: Those that represent
ordinary successors Succeieo , and those that represent the
successor Succsem , iterating a cycle s some k number of
times and then exiting to an edge em not on s.

4. EDGE-TO-EDGE SUCCESSORS FOR IN-
OUT EDGES

The presence of inout edges in a GSPDI complicates the
construction of edge-to-edge successors Succaeieo

and Succbeieo

where either or both of ei or eo are inout edges. If ei is entry-
only and eo is exit-only we can easily see how positive affine
functions can be created using what we will refer to as the
standard construction [2]. In region R1 of Fig. 2(a) we see
that we can start at any point on any entry-only edge, follow
either a or b, and intersect the line through any exit-only
edge. But let us consider R1 in Fig. 2-(b). The edge e1 is
inout, so if we consider it to be an entry edge, we see that we
can never reach any exit edge by following b in its positive
direction. If we consider it to be an exit edge, we see that
we can never reach it from any entry edge by following a in
its positive direction.

We want to develop an alternative construction that en-
ables us to construct edge-to-edge successors for non-good
vectors and still preserve reachability. Before we show that
it is possible, and demonstrate the alternative construction,
we will present the source of the complications. We will con-
sider a single vector c in place of a and b, as the analysis
is similar for the two vectors. The few differences will be
explcitly mentioned.

We are interested in the following possibilities of vector c
w.r.t. ei: 1) it can point in across ei (0 < ∠c

ei
< π), 2) it

can be parallel to ei (∠c
ei

= 0 or ∠c
ei

= π), 3) it can point
out across ei (π < ∠c

ei
< 2π).

We are also interested in the angle between ei and eo. We
have: a) that 0 < ∠eo

ei
< π, b) that ∠eo

ei
= 0 or ∠c

ei
= π, and

c) that π < ∠eo
ei
< 2π.

Combining the above we get the different cases we see in

3

2
1

3

1

2

1

2)

2

3

3)1)

ei
ei

ei

eo

eo

eo eo

ei

eo

eo

ei
ei

Figure 3: Three regions, showing arcs where vectors
1) point in across ei, 2) are parallel to ei, 3) and point
out across ei.

A)

C

B
A A

B

C

B)

AB

C

C)

ei

ei

eo
eo

eo eo

ei ei

ei

ei

eo
eo

Figure 4: Three regions, showing arcs where vectors
A) point out across eo, B) are parallel to eo, C) and
point in across eo.

Fig. 3. The three thick arrows are example vectors of the
cases i), ii) and iii) above, and the three regions illustrates
the relationship between ei and eo.

Similarly, we can express the relation between vector c
and eo: A) it can point out across eo (0 < ∠c

ei
< π), B)

it can be parallel to eo (∠c
eo

= 0 or ∠c
eo

= π), and C) it
can point in across eo (π < ∠c

eo
< 2π). Fig. 4 shows the

corresponding cases for eo.
We take into consideration that c must be seen in relation

to both ei and eo at the same time. We have nine different
cases, {1, 2, 3}×{A,B,C}, not all of which are valid for each
kind of region, as shown in Fig. 5.

Having obtained these cases, we want to construct edge-
to-edge-successors, noting the following:

Lemma 2. It is not possible to construct any affine or
constant function following c when ∠c

eo
> π and c points in

across eo. (Cases 1C, 2C and 3C).

Lemma 3. It is not possible to construct any affine or
constant function when ∠c

eo
= 0 or ∠c

eo
= π, and c is parallel

to eo. (Cases 1B, 2B and 3B). However, if 0 < ∠c
ei
< π

(case 1B), then it is possible to construct the function f :
R → R2 defined such that f(x) = I if x = c and f(x) = ∅

1B

2C

(a) (b) (c)

1A2A
3A

3B 3C
1C

1B

2C

1A

2B 2B

3C
3C

1C

1A 2A

3B
3A

eo

eo

ei

ei

eo eo

ei ei
ei

ei

eo

eo

Figure 5: The arcs that show the different cases of
vector c in relation to ei and eo.

(a) (b) (c)

b′

ei
ei

a′

eo
eo eo

eo

fl(x) = −∞
b′

ei ei

a′
b′

ei

fu(x) = b

a′
ei

eo

eo

fu(x) =∞
fl(x) = −∞fu(x) =∞

fl(x) = b

Figure 6: Approximate vectors a′ and b′ and their
affine functions fu(x) and fl(x)

if x 6= c, for some c, where I is either [−∞, d] or [d,∞], for
some d.

In what follows we consider only the cases where c points
out across eo: the ’A’ cases.

Lemma 4. If ∠c
ei
> π (case 3A) the standard construc-

tion gives us a negative affine function: f(x) = ax+b, a < 0.

Lemma 5. If ∠c
ei

= 0 or ∠c
ei

= π (case 2A) the standard
construction gives us a constant function: f(x) = b.

In order to construct a successor Succeieo when it may be
that neither a nor b are good, we use the following procedure
(we show this for a only, as b is handled similarly).
• If the vector is of case 1A, then it is good, and we

can use the standard construction and get the positive
affine function fu(x) = ax+ b, a > 0.
• Otherwise, exchange the vector a for a new vector a′

which direction is moved in the counter-clockwise di-
rection from a, until is moved out of 1A into one of
case 1B, 2A or 2B.
• If a′ is parallel to ei but not to eo (case 2A), let fu(x) =
b.1

• For case 2B we approximate by a constant function
fu(x) = ∞, based on a vector that intersects the line
through eo at infinity.
• For case 1B, let fu(x) =∞. We may have to handle a

special situation, according to lemma 3.
The results of applying the procedure outlined above, for

our three regions, can be seen in Fig. 6. We let the modified
vectors a′ and b′ start in the center of ei.

From all of the above we have the following result.

Theorem 1. For any region P , with dynamics ∠b
a , such

that ∠b
a ≤ π, and two edges ei, eo ∈ E(P), we can al-

ways find two good vectors a′,b′ such that Succ
∠b

a
eieo(I) =

Succ
∠b′

a′
eieo(I), for any I ⊆ [0, 1].

Example. Consider the partial GSPDI of Fig. 7, with
the cycle (e1e2e3). The successors Succe1e2 and Succe3e1 are
good. We assume they are based on the following (general)
AMFs: Fe1e2([l, u]) = [a1l+ b1, c1u+d1], and Fe3e1([l, u]) =
[a3l + b3, c3u + d3]. For successor Succe2e3 we need to ap-
ply the procedure described above, after which we end up
with the following AMF: Fe2e3([l, u]) = [r,∞]. We want to
compute Fe1e2e3e1 . The composition Fe2e3 ◦ Fe1e2 gives us:
Fe1e2e3([l, u]) = [0(al + b1) + r, 0(c1u+ d1) +∞] = [r,∞].

1b can be determined as in the proof of lemma 5, which is
not presented here due to lack of space.

b′
a′

R2
a

b

R3
e3

a

b

e1

b

a
R1

e2

Figure 7: Part of GSPDI. The region R2 shows both

original dynamics ∠b
a and modified dynamcs ∠b′

a′ .

No matter which interval we start with, we end up at
[r,∞]. The composition Fe3e1 ◦ Fe1e2e3 gives us:
Fe1e2e3e1([l, u]) = [a3r + b3, c3∞+ d3] = [a3r + b3,∞].

Note that composition with a constant function always
yields another constant function.

5. THEORETICAL CONTRIBUTIONS TO
GSPDI REACHABILITY ANALYSIS

A directed graph may contain an unmanageably large
number of simple cycles. In order to perform reachabil-
ity analysis they may all have to be identified, and have
their combined successors computed and analyzed in order
to compute the exit sets, the edge-intervals that may be
reached after iterating the cycles any k number of times,
k > 1. We want to reduce this number by identifying prop-
erties of cycles that do not need to be iterated more than
once. These cycles are thus not required to be explicitly
identified and treated. In particular we want to avoid cycles
containing bounces.

Definition 10. Given a signature σ = e0e1 . . . en, a pair of
edges ejej+1 is said to be a bounce if ej+1 = e−1

j . That is,
the edge ej is visited twice in immediate succession.

The following result shows that no cycle needs to be it-
erated more than once as part of a search, if we can begin
that iteration with a full edge-interval (e, [0, 1]), for any edge
e. Let s be the cycle (e1 . . . en). Let r1 be the sequence of
edges ei . . . ene1 (1 < i ≤ n), and r2 be the sequence e1 . . . ej
(1 ≤ j ≤ n). Let P ∈ P, such that ej ∈ In(P), ex ∈ Out(P),
and Succejex 6= ∅, and em /∈ s.

Lemma 6. Succejem(Succr1skr2
(I)) ⊆

Succejem(Succr2([0, 1]))

We define the union of two closed intervals A and B, A∪
B 6= ∅, that are overlapping or adjacent to be a new closed
interval I = [l, u], where l is the lower end point, and u the
upper end point, of A and B.

We want to detect as many full edge-intervals as possible,
since their presence is beneficial to the analysis. The fol-
lowing lemma shows that if two edge-intervals are adjacent
or overlapping, then we only need consider the successors of
their union. This result is useful during reachability search,
as we might reduce the number of edge-intervals, and in-
crease the number of full edge-intervals.

Lemma 7. Let A = [l, a] and B = [b, u] be closed inter-
vals such that l < b ≤ a < u (A and B are adjacent or
overlapping). Let I = [l, a] ∪ [b, u]. Then, for any sequence
of edges σ = e1 . . . en, Succσ(I) = Succσ(A) ∪ Succσ(B).

Some edge-intervals are full a priori - we can consider
them full as soon as a search reaches the edge in question.
The following kind of edges have this property:

(c)(b)(a)

b

a

a b b a a b a b

Figure 8: (a) Reach-all region (b) Reach-all edge
with bouncing trajectory (c) Bouncing trajectory on
the left made redundant by trajectories on the right.

Definition 11. An edge e is reach-all iff ∀x, y ∈ e,∃ξ :
[0, t]→ R2, t ≥ 0.ξ(0) = x ∧ ξ(t) = y ∧ Sig(ξ) = e.

We also formulate a stronger property as well, that all
edges of a special kind of region become full if just a single
point on any of those edges is reached:

Definition 12. A reach-all region P is a region such that
∀e, e′ ∈ P ∧ ∀x ∈ e ∧ ∀y ∈ e′∃ξ : [0, t] → R2, t ≥ 0.ξ(0) =
x ∧ ξ(t) = y ∧ Sig(ξ) = ee′.

It is obvious that all the edges of a reach-all region are
reach-all as well. The following two lemmas let us identify
reach-all regions and edges. Regions where the dynamics
have angles larger than π are reach-all regions, and edges
where we can slide in both directions are reach-all.

Lemma 8. For P ∈ P, if ∠b
a > π then P is a reach-all

region.

An example of a reach-all region can be found in Fig. 8-
(a). Let P, P ′ ∈ P, e an edge of P and P ′, and x, y, z ∈ e,
such that x ≤ y ≤ z.

Lemma 9. If ∃ξ, ξ̇ ∈ ∠bP
aP , and ∃ξ′, ξ̇′ ∈ ∠

bP ′
aP ′ , such

that ∀x, y, z,∃t, t′ ∈ R, ξ(0) = y, ξ(t) = x, sig(ξ) = e and
ξ′(0) = y, ξ′(t′) = z, sig(ξ) = sig(ξ′) = e, then e is a reach-
all edge.

See Fig. 8-(b) for an example of a reach-all edge.
We now return to handling bounces. We will show that

bounces, for reachability purposes, either are redundant, or
appear as the result of a reach-all edge. Thus no cycle needs
to include a bounce to preserve reachability. First we look
at redundant bounces, which only follow the dynamics of
one region.

Lemma 10. Let ξ be a trajectory segment containing a
bounce. Assume that ξ̇ ∈ ∠bP

aP . Then reachability is pre-
served by the existence of trajectory segments ξ′ and ξ′′, such
that ξ′(0) = x1, ξ

′(t′) = x2, t
′ ∈ R and ξ′′(0) = x1, ξ

′′(t′′) =
x3, t

′′ ∈ R and sig(ξ′) = e1e2 and sig(ξ′′) = e1e3.

Fig. 8-(c) shows a bounce as described in the above lemma,
as well as the trajectory segments that make it redundant.

A bounce may also follow the dynamic of the region on the
other side of the edge that is bounced off. Let t′2 ∈ R, t2 <
t′2 < t3. Let x′2 ∈ e2 be a point outside the hull of ∠bP

aP .

Lemma 11. If ξ̇ ∈ ∠bP
aP ∪ ∠

bP ′
aP ′ , and sig(ξ) = e1e2e3 and

ξ(0) = x1, ξ(t2) = x2, ξ(t
′
2) = x′2, ξ(t3) = x3, then e2 is a

reach-all edge.

Figure 9: Example of a GSPDI. The picture is aut-
matically generated by the GSPeeDI tool.

A bounce as described in the lemma is shown in Fig. 8-
(b). From all the lemmas above we have the main result of
this section:

Theorem 2. There is no need to iterate cycles containing
reach-all edges (including bounces) more than once.

As we will see in next section, this theorem has a practical
impact on the performance of the reachability algorithm.

6. OPTIMIZATION AND IMPLEMENTATION
The theory in this paper was motivated by our develop-

ment of the tool GSPeeDI [3], which, given a GSPDI and
source and target edge-intervals, decides whether the target
is reachable from the source.

The tool is written in Python, a general-purpose high-
level programming language, which explicitly supports ±∞
as part of the float data type, enabling us to correctly rep-
resent the constant functions f(x) = ±∞.

The realization of affine function generation requires the
theoretical result of section 4, as the procedure set out in
the previous work [2] was inappropriate for certain special
cases in the absence of the goodness assumption.

The results in section 5 were initially derived from the
search for a practical way to deal with bounces and the ac-
companying Flip function, which is negative affine. The
analysis of cycles requires the affine functions to be positive.

Computing all simple cycles may be infeasible for large
graphs: The number of simple cycles in a complete, directed

graph with n nodes is exactly
Pn−1
i=1

n

n− i+ 1

!
(n− i)!.

For computing all simple cycles the tool uses an algorithm
due to Tarjan [6], which has a time bound of O((n+ e)(c+
1)), where e is the number of edges and c the number of
cycles in the graph. Clearly, the number of cycles is the
factor determining the point at which the size of the problem
becomes infeasible.

The tool has been run on examples with hundreds of
nodes. Such examples become infeasible if optimizations
are disabled, due to execution time and the memory require-
ments of the vast number of (unpermutated) cycles.

The properties of GPSDIs allow us to modify the algo-
rithm in such a way as to stop exploring all paths (possible
cycle prefixes) we such that: 1. Succwe([0, 1]) = ∅: it is not
possible to traverse this path; 2. e is reach-all; 3. The last
edge of w is e−1: a redundant bounce is found.

We will explain the optimizations’ effectiveness on a large
GSPDI (Fig. 9 show actual output of the GSPeeDI tool,

which partially shows the GSPDI). In the figure there is just
one reach-all region, and the surrounding reach-all edges can
be seen drawn with thicker lines2.

The resulting reachability graph contains 334 nodes. A
run of the algorithm without optimizations finds that the
total number of cycles (without permutations) is 181398. If
we apply the first optimization, we reduce that number to
1041 cycles. Adding the second optimization reduces the
number to 112 cycles, and applying all three leaves us with
85 cycles.

So, for this particular example, we find that more than
99% of the possible cycles are redundant. Computing the
number of permutations gives us a total of 1100 cycles subse-
quently used as meta-transitions in the breadth-first search.

The execution time of the program which generates the
cycles is less than a minute on a low-end, modern CPU. On
the same system a reachability search returning false (thus
having computed the entire reach-set for a particular start-
interval) finishes execution in slightly over ten seconds.

7. CONCLUSION
In this paper we have presented further theoretical results

concerning the reachability of GSPDIs, and we showed the
implication of such results on the optimization of the algo-
rithm, which has been implemented into the tool GSPeeDI.

The main application of GSPDIs is as approximation of
planar (non-linear) differential equations, as discussed in [5].
We are currently working on the development of techniques
to obtain such approximations.

8. ACKNOWLEDGMENTS
We thank Martin Steffen for useful discussion on early

versions of the paper.

9. REFERENCES
[1] E. Asarin, G. Schneider, and S. Yovine. On the

decidability of the reachability problem for planar
differential inclusions. In HSCC’01, volume 2034 of
LNCS, pages 89–104, 2001.

[2] E. Asarin, G. Schneider, and S. Yovine. Algorithmic
analysis of polygonal hybrid systems, part I:
Reachability. TCS, 379(1-2):231–265, 2007.

[3] H. A. Hansen and G. Schneider. Gspeedi – a
verification tool for generalized polygonal hybrid
systems. In ICTAC 2009, volume 5684 of LNCS, pages
343–348, August 2009.

[4] G. Pace and G. Schneider. Model checking polygonal
differential inclusions using invariance kernels. In
VMCAI’04, volume 2937 of LNCS, pages 110–121,
2003.

[5] G. J. Pace and G. Schneider. Relaxing goodness is still
good. In ICTAC’08, volume 5160 of LNCS, pages
274–289, 2008.

[6] R. E. Tarjan. Enumeration of the elementary circuits of
a directed graph. Technical report, Ithaca, NY, USA,
1972.

2That the region is reach-all, due to ∠b
a > π, is hard to

see in black-and-white, as the tool uses different colors to
distinguish a and b.

