
AWeb-Based Tool for Analysing Normative Documents in
English∗

John J. Camilleri
Chalmers University of Technology

and University of Gothenburg
Gothenburg, Sweden

john.j.camilleri@cse.gu.se

Mohammad Reza Haghshenas
mrhaghshenas@gmail.com

Gerardo Schneider
Chalmers University of Technology

and University of Gothenburg
Gothenburg, Sweden
gerardo@cse.gu.se

ABSTRACT

Our goal is to use formal methods to analyse normative documents
written in English, such as privacy policies and regulations. This re-
quires the combination of a number of different elements, including
information extraction from natural language, formal languages for
model representation, and an interface for property specification
and verification. A number of components for performing these
tasks have separately been developed: a natural language extrac-
tion tool, a suitable formalism for representing such documents, an
interface for building models in this formalism, and methods for
answering queries asked of a given model. In this work, each of
these concerns is brought together in a web-based tool, providing a
single interface for analysing normative texts in English. Through
the use of a running example, we describe each component and
demonstrate the workflow established by our tool.

CCS CONCEPTS

•Computingmethodologies→ Information extraction;Model

development and analysis; Knowledge representation and reason-
ing; • Applied computing→ Law;

KEYWORDS

normative texts, contract analysis, information extraction, con-
trolled natural language, model checking

ACM Reference Format:

John J. Camilleri, Mohammad Reza Haghshenas, and Gerardo Schneider.
2018. A Web-Based Tool for Analysing Normative Documents in English.
In Proceedings of ACM SAC Conference (SAC’18). ACM, New York, NY, USA,
Article 4, 8 pages. https://doi.org/xx.xxx/xxx_x

1 INTRODUCTION

Normative texts, or contracts, are documents which describe the
permissions, obligations, and prohibitions of different parties over a
set of actions. They also include descriptions of the penalties which
must be paid when the main norms of the document are violated.
We frequently encounter such texts in the form of privacy policies,
software licenses, workflow descriptions, terms of use, regulations,
and SLAs (service-level agreements). Despite being written for
human consumption and thus expressed in natural language, these

∗This work has been supported by the Swedish Research Council under grant number
2012-5746.

SAC’18, April 9-13, 2018, Pau,France
2018. ACM ISBN 978-1-4503-5191-1/18/04. . . $15.00
https://doi.org/xx.xxx/xxx_x

kinds of documents are typically long and difficult to follow, making
them hard to analyse manually.

What commitments am I agreeing to make?
Can my information be shared with third parties?
How late can I make my payment without facing fines?

These are the kinds of questions about a contract that we may want
answered, both as users and as authors. Using text-based search
to find such answers can be tedious and unreliable, for example
when clauses cross-reference each other, and when the document
contains exceptions and timing constraints. Our goal is to bring
formal methods to this kind of natural language analysis, packaged
as a tool which is usable by non-experts and which requires as little
understanding of the underlying technologies as possible. We do
this by first modelling these documents using a suitable formalism,
which then makes them amenable to verification using standard
techniques. This includes answering queries based on a syntactic
traversal of the model, as well as using model-checking to verify
temporal properties, by converting the model to a timed automata
representation.

The main components required for this have been individually
described in previous papers by the current authors [8–10]. This
paper presents a new web-based tool for the analysis of normative
texts in English, bringing each of these components together into
a single interface. This integration requires the development of
suitable transformations between formats, besides maintaining a
dictionary of key elements at each level of abstraction in order to
guarantee the translation from/to the natural language text and
the different formal representations. Our novel contributions also
include a set of query templates in natural language and a method
for processing counter-example traces, allowing users to interact
with the system completely in English.

The rest of the paper continues as follows. Section 2 introduces
the structure of the tool and gives an overview of the workflow it
establishes. In section 3 we then present the running example which
will be used throughout the paper to demonstrate the use of our
tool. Section 4 describes extraction and building a model through
post-editing of tabular data, including verbalisation of an existing
model using controlled natural language. Section 5 describes the
analysis which can be performed on the model, by using a set of
query templates which can be customised based on the current
model. The software architecture is then summarised in section 6.
Section 7 takes a look at some related work in this area, and we
conclude with a summary of the benefits and limitations of our
approach in section 8.

https://doi.org/xx.xxx/xxx_x
https://doi.org/xx.xxx/xxx_x

SAC’18, April 9-13, 2018, Pau,France John J. Camilleri, Mohammad Reza Haghshenas, and Gerardo Schneider

2 THE CONTRACT VERIFIER TOOL

The main contribution of this work is the Contract Verifier, a web-
based tool for modelling and analysing normative texts in English.
Figure 1 shows an overview of the workflow which our tool covers,
summarised in the following steps:

(1) Users start with an English text which they wish to build a
model out of.

(2) The text is submitted to an extraction phase which attempts
to automatically extract the clauses from the text, each of
which concerning at least an agent, action and modality.

(3) The results of the extraction are shown to the user in a
tabular format where each cell is editable. At this point, the
user must check the results of the extraction and post-edit

the clauses which are not completely correct.
(4) Once the user is happy with the model in tabular format,

this is converted into an actual model, which is internally
represented in an XML format.

(5) Fromhere, themodel can be verbalised in a controlled natural
language and viewed in a compact formal notation.

(6) The user then performs analysis by selecting the queries
which should be run against themodel. Queries are presented
as English sentence templates, which may include slots for
specifying relevant arguments.

(7) The queries are then submitted to the server which com-
putes the results and displays them to the user beside each
respective query.

(8) If the answer to a query is not as expected, this could point
to either:
(a) a problem with the contract model, in which case the
user may go back and edit the model and repeat the steps
as above; or

(b) a problem with the original normative document, where
the user may then modify the text and perform the analy-
sis again, or simply leave the original formulation as it is
(e.g., the analysis might detect a lack of a deadline associ-
ated with a given obligation, but this might be considered
desirable by the user).

A demonstration of the Contract Verifier is openly available on
the web1. Upon visiting this URL, users will be asked to log in. New
users may create an account so that their work can be saved under
their profile. Alternatively, one may log in with a guest account,
using username guest@demo and password contract.

3 RUNNING EXAMPLE

To show how our tool is used in practice, we pick a running example
of a normative text describing the rules of a university course
(see Figure 2). This example is based on courses held at our own
department, covering the requirements for passing the course and
the deadlines for the submission and grading of assignments. It
has been chosen as an example because it is concise yet contains a
variety of temporal constraints and dependencies between clauses.
The text itself has been written by ourselves.

Before publishing these rules as an official course description, the
authors (teachers/administrators) may wish to ensure that all the

1http://remu.grammaticalframework.org/contracts/verifier/

requirements for passing the course are enforced and that the rules
are consistent. Once published, end users of these rules (students)
may wish to query the parts which are relevant to them or work
out any flexibilities in their deadlines.

4 BUILDING A CONTRACT MODEL

4.1 Extraction from English

The first step towards building a formal model of our natural lan-
guage contract is to process the text in order to see what clause
information can be extracted automatically. This is done using the
ConPar tool [8], which can extract partial contract models from
English normative texts. ConPar is a natural language processing
(NLP) tool, which uses the Stanford Parser [14] to obtain depen-
dency trees for each sentence in the input text. These trees are then
processed by ConPar, which uses the dependency representation
to attempt to extract information related to:
(i) subject (agent)
(ii) verb and object (action)
(iii) modality (obligation, permission, prohibition)
(iv) temporal and non-temporal conditions.
In addition, ConPar will also try to identify refinement clauses,
where a single input sentence may translate to multiple sub-clauses
joined together using a connective such as conjunction, choice or
sequence.

The output of the ConPar tool is a tabular representation of the
extracted data, which is produced in a tab-separated value (TSV)
format. This is a simple format which can be easily loaded in any
spreadsheet or table-editing software. In this representation, each
row corresponds to a clause while the columns indicate the various
components, as listed above. The result of passing our example
through this tool is shown in Figure 3.

4.2 Post-editing

While quite a lot of clause information has been correctly extracted
by the tool, there are still some errors which need to be corrected
manually by the user. The use of a tabular format for displaying the
output of the extraction phase facilitates this post-editing. All cells
in the table are editable, and rows can be added/deleted as needed.

For example, in the case of clause 4 (Figure 3), the value in the
Modality field ({should}) should be replaced with the obligation
specifier O. Additionally, the value of Time field (within one week
of it being submitted) can be encoded with the phrase within
7, which is the accepted syntax for expressing this kind of time
restraint.

4.3 Conversion to contract model

After post-editing the extracted clause information, this can be
converted into a formal contract model. The formalism used for
representing contracts is based on the deontic modalities of obli-
gation, permission and prohibition of agents over actions. It
includes constructs for refining clauses by conjunction, choice and
sequence, and includes the possibility to specify reparations for
when a clause is violated. Clauses can be constrained by temporal
restrictions or guarded based on the status of other clauses. This
formalism is based on C-O Diagrams [12].

http://remu.grammaticalframework.org/contracts/verifier/

A Web-Based Tool for Analysing Normative Documents in English SAC’18, April 9-13, 2018, Pau,France

Natural Language

Normative
Contract

Tabular view

Mod Agent Action

O user pay

P admin block

Controlled Natural
Language (CNL)

Timed Automata
(NTA)

Tr
an

sl
at

io
n

Semantic Query

E◇ t<5 → p1.ok

SAT / UNSAT +
counter-example

Syntactic Query

isObl & agent(user)

Matching clauses

Contract Model

Natural Language

Query

<obligation>
 <agent>user</agent>
 <action>pay</action>
</obligation>
<permission>
 <agent>admin</agent>
 ...

E
xt

ra
ct

io
n

C
on

ve
rs

io
n

V
er

ba
lis

at
io

n

Figure 1: Overview of the contract analysis workflow established by the Contract Verifier.

Students need to register for the course before the registration
deadline, one week after the course has started.
To pass the course, a student must pass both the assignment
and the exam.
The deadline for the first assignment submission is on day 10.
Graders should correct an assignment within one week of it
being submitted.
If the submission is not accepted, the student will have until
the final deadline on day 25 to re-submit it.
The exam will be held on day 60.
Registered students must sign up for the exam latest 2 weeks
before it is held.

Figure 2: Example of a normative text describing the rules

involved in the running of a university course. The course

is assumed to start on day 0. This text is used as the running

example throughout this paper.

This conversion step is implemented as a straight-forward script
which takes the TSV representation as input and produces a contract
model file. We refer to the format of this file as COML, which is an
XML-based format for storing contract models in our formalism.
Once the conversion is complete, the COML file is stored on the
server and the user can view it using three different representations
simultaneously:
(i) post-edited input text,
(ii) controlled natural language (CNL), and
(iii) a compact formal notation (C-ODiagram Shorthand or CODSH).
These are shown in Figure 4 and explained in the sections below.

4.4 Verbalisation using CNL

Given a contract model in our formalism, we have developed a
method for linearising it as a phrase in a controlled natural language
(CNL) [21]. A CNL is a reduced version of a natural language (NL)
which has limited syntax and vocabulary, making it in fact a formal
language and thus expressible using a grammar. CNLs are often
used as interfaces for formal languages which are human-friendly,
yet still unambiguous and well-defined.

The CNL designed for this contract formalism is described in [9].
We use the Grammatical Framework (GF) [20] for defining the
grammar for our CNL and converting to and from our internal
formal representation. This also includes the possibility of building
a contract model directly using the CNL (rather than using the
extraction step), however we do not cover this input method in the
present work. The CNL representation may resemble the original
NL text in some ways, however it is characterised by less variation
in the expressions used and by certain structural features such as
labels before each clause.

The generation of the CNL representation requires that subjects,
verbs and objects are present in the lexicon. The lexicon used is a
large-scale English dictionary containing over 64,000 entries, but if
the contract contains terms which are not present in this lexicon
then the generation to CNL will fail. This failure however will not
affect the usability of the rest of the tool.

4.5 Compact formal notation

In addition to the post-edited text and the CNL, we also display
a view of the model in a formal syntax (Figure 4, bottom-right).
We refer to this notation as C-O Diagram Shorthand (CODSH).
It is designed mostly for developers who understand the formal

SAC’18, April 9-13, 2018, Pau,France John J. Camilleri, Mohammad Reza Haghshenas, and Gerardo Schneider

Figure 3: Screenshot showing the output from passing our normative text through the extraction tool (image has been cropped

to improve readability). Each row indicates a clause in the model. Note how the second English sentence has been refined into

multiple sub-clauses. The O in the modalities column stands for obligation, while D stands for declaration.

structure of the contract model but would like a more condensed
representation than the COML format. This can be helpful when
debugging. In particular, this notation reveals the names which are
automatically assigned to each clause in the conversion phase.

5 ANALYSIS

Once the model has been built, we can perform analysis on the
contract by running queries against it. The user is presented with a
list of query templates, as shown in Figure 5. Each query may have
slots for parameters which the user should provide; these are either
names of clauses, agents or actions. The possible completions for
these slots are extracted automatically from the contract model.

Internally, queries provided by our tool are computed in one of
two ways, either through syntactic filtering or via conversion to
timed automata and using the Uppaal verification tool [15]. Both
of these techniques are described below.

5.1 Syntactic analysis

Our tool currently provides six different syntactic queries (items
1–6 in Figure 5). These queries are syntactic in the sense that each
can be solved by traversing the contract model and filtering out
the corresponding clauses which match the query. As an example,
consider the following query:

What are the obligations of [agent]?
This query is internally encoded as the following conjunction of
predicates:

isObl ∧ agentOf ([agent])

where [agent] is replaced with a concrete agent name chosen by the
user. The solution to this query is computed via a Haskell function
which takes the contract model as a Haskell term together with the
query as a set of predicate functions, and returns a list of matching
clauses. The final output is given as a natural language sentence
listing the actions corresponding to the matching clauses. For the
example, asking for all the obligations for student will give the
output below:

The following are obligations of student:
• register for course
• submit assignment
• sign up for exam
• pass exam

The way the result is phrased will vary based on the query, as
well as the number of items in the result: up to two results are
inlined, while three or more are given as bullets. This is to make
the response more natural for the user.

5.2 Semantic analysis

Our tool also includes four semantic queries (items 7–10 in Figure 5).
We use the term semantic to refer to those queries which cannot be
answered simply by looking at the structure of the model. Consider
the following example:

The [agent] must [action] before time [number].

Determining this must take into consideration the operational be-
haviour of a contract model, including when actions are performed,

A Web-Based Tool for Analysing Normative Documents in English SAC’18, April 9-13, 2018, Pau,France

Figure 4: Screenshot showing the different output representations of the contract model (image has been cropped to improve

readability). Top: the post-edited input text; bottom-left: controlled natural language; bottom-right: compact formal notation.

Figure 5: Available query templates which users may exe-

cute against the contract model, with drop-downs for speci-

fying agents and actions extracted from the model. Queries

1–6 are syntactic, while queries 7–10 are semantic.

how new clauses are enabled and others expire. Processing seman-
tic queries is achieved through using model checking techniques,
by first converting a contract model into a network of timed au-
tomata [1] and then using the Uppaal tool to verify temporal prop-
erties against the translated model. This idea was introduced for
C-O Diagrams in [12], but we have provided our own improved

translation. By using verification, we are able to quantify over all
possible sequences of events with respect to the contract.

This approach requires that the query itself is encoded as a
property in a temporal logic which the model checker can process.
In the case of Uppaal, the property specification language is a
subset of TCTL [6]. The example query above is encoded as the
following Uppaal property:

∀□ allComplete() =⇒(
isDone

(
[agent]_[action]

)
∧ t0 − Clocks

[
[agent]_[action]

]
< [number]

)
Here, allComplete and isDone are helper functions included in the
translated Uppaal system which allow the status of clauses and
actions to be queried from within the timed properties. t0 is a never-
reset clock representing global time, while the Clocks array contains
a clock for each action in the system, which is reset when that action
is performed. The expression t0 −Clocks

[
a
]
thus gives the absolute

time at which action a was completed.
The property is then verified using Uppaal, which will return a

result of satisfied or not satisfied. In cases where a symbolic trace
is produced as part of the verification, this is parsed by our tool in
order to provide a meaningful abstraction of it. In this processing
step, we pick out the actions performed in the trace along with their
time stamps and present these as part of the result to the user. For
example, when running the query below on our contract example:

The student must register for course before time 5.

SAC’18, April 9-13, 2018, Pau,France John J. Camilleri, Mohammad Reza Haghshenas, and Gerardo Schneider

we get the following result in the tool:
NOT Satisfied
The property is violated by the following action se-
quence:
- student register for course at time 6
- student submit assignment at time 6
- . . .

where the remainder of the trace contains the other obliged actions
at time 6 or later. This is in fact as we expect; the contract states
that students have up to 7 days to register for the course, and thus
it is not true that they must have registered before day 5 in order to
satisfy the entire contract. If we change the time value in the query
from 5 to 7, then the result returned is Satisfied.

6 SOFTWARE ARCHITECTURE

The Contract Verifier tool is implemented as a PHP web application,
using a MySQL database for storing user accounts and the query
templates available in the system. Contract models in COML and
Uppaal-XML format are saved as files on the server. No server-side
framework is used. The client-side interface is based on the Ad-
minLTE Control Panel Template2, and the tabular editing interface
makes use of the editableTable jQuery library3.

The ConPar extraction tool is written in Java, primarily because
it uses the Stanford parser which is also implemented in Java. The
core of our system is written inHaskell, using algebraic data types to
define the structure of a contract model. The conversion from TSV
and translation to NTA are thus also written as Haskell functions
to and from this data type. The linearisation of a contract model
to CNL uses the GF runtime, which is a standalone application.
Similarly, executing semantic queries requires running Uppaal as
an external process.

Because of the variety of languages and programs used in our
tool chain, we provide a convenient layer over these components
in the form of a small server application which provides these
separate functionalities as individual web services. This modular
approach allows the web application providing the user interface to
consume each component via a web API, removing limitations on
implementation language and hosting requirements, and allowing
a clean separation of concerns between front-end and back-end.

Table 1 shows a summary of the API covering all the web services
provided by the server. This API is fully documented and publicly
accessible online4. The server itself is also implemented in Haskell.

7 RELATEDWORK

AnaCon [2] is a similar framework for the analysis of contracts,
based on the contract logic CL [18, 19], which allows for the de-
tection of contradictory clauses in normative texts using the CLAN
tool [13]. By comparison, the underlying logical formalism we use,
based on C-O Diagrams, is more expressive than CL as it includes
temporal constraints, cross-referencing of clauses and more. Be-
sides this, our translation into Uppaal allows for checking more
general properties, not only normative conflicts. In addition, their

2https://almsaeedstudio.com/
3http://mindmup.github.io/editable-table/
4http://remu.grammaticalframework.org:5446/

interface for specifying contracts is purely CNL-based and there is
no extraction tool from English as in our case.

Information extraction from natural language is of course a field
within itself, and even in the domain of contractual documents
in English there are many other works with similar goals. The
extraction task in our work can be seen as similar to that of Wyner
& Peters [22], who present a system for identifying and extracting
rules from legal texts using the Stanford parser and other NLP
tools within the GATE system. Their approach is somewhat more
general, producing as output an annotated version of the original
text, whereas we are targeting a specific, well-defined output format.
Other similar works include that of Cheng et al. [11], who combine
surface-level methods like tagging and named entity recognition
(NER) with hand-crafted semantic analysis rules, and Mercatali et
al. [16] who extract the hierarchical structure of the documents
into a UML-based format using shallow syntactic chunks.

One crucial aspect in any work targeting formal analysis of nat-
ural language documents is the confidence in the extraction from
a source document to the target formal language. In our tool, the
result of the extraction is usually incomplete and some amount
of manual post-editing is always generally required. Azzopardi
et al. [5] handle this incompleteness using a deontic-based logic
including unknowns, representing the fact that some parts have not
been fully parsed. Furthermore, the same authors present in [4] a
tool to support legal document drafting in the form of a plugin for
Microsoft Word. Though the final objective of their work diverges
from ours, we are both concerned with the translation of natural
language documents into a formal language by using an interme-
diate CNL. The main difference is that they target a more abstract
formal language (very much like CL), and as a consequence their
CNL is also different. Our formalism allows for richer representa-
tions not present in their language (e.g. real time constraints and
cross-references). Additionally, they do not target complex analysis
of contracts (they only provide a normative conflict resolution al-
gorithm), and we do not provide assistance in the contract drafting
process.

There is considerable work in modelling normative documents
using representations other than logic-like formalisms such as our
own. LegalRuleML [3] is a rule interchange format for the legal
domain, allowing the contents of legal texts to be structured in a
machine-readable format. The format aims to enable modelling and
reasoning, allowing users to evaluate and compare legal arguments
using tools customised for this format. A similar project with a
broader scope is MetaLex [7], an open XML interchange format
for legal and legislative resources. Its goal is to enable public ad-
ministrations to link legal information between various levels of
authority and different countries and languages, improving trans-
parency and accessibility of legal content. Semantics of Business
Vocabulary and Business Rules (SBVR) [17] uses a CNL to provide
a fixed vocabulary and syntactic rules for expressing the terminol-
ogy, facts, and rules of business documents of various kinds. This
allows the structure and operational controls of a business to have
natural and accessible descriptions, while still being representable
in predicate logic and convertible to machine-executable form.

We note that none of the works mentioned above present a single
tool for end-to-end document analysis, starting from a natural

https://almsaeedstudio.com/
http://mindmup.github.io/editable-table/
http://remu.grammaticalframework.org:5446/

A Web-Based Tool for Analysing Normative Documents in English SAC’18, April 9-13, 2018, Pau,France

Table 1: API of services provided in the web server, showing the relevant URL path and input/output formats for each service.

The various formats are: TSV (tab separated values), COML (Contract-Oriented XML), CODSH (C-O Diagram Shorthand), CNL

(Controlled Natural Language), and Uppaal-compatible XML.

Path Description Request Response

/nl/tsv Clause extraction (ConPar) English text TSV
/tsv/coml Convert TSV to COML TSV COML
/coml/codsh Show contract in shorthand COML CODSH
/coml/cnl Verbalise contract using CNL COML CNL
/coml/syntactic Execute syntactic query Query + COML Clause names
/coml/uppaal Translate contract to NTA COML UPPAAL XML

language text and finally allowing for rich syntactic and semantic
queries, as in the case of our tool.

8 CONCLUSION

In this paper we have presented Contract Verifier, a web-based tool
for analysing normative documents written in English. The tool
brings together a number of different components packaged to-
gether as a user-friendly application. We demonstrate a typical
workflow through the system, starting with an English text, ex-
tracting a contract model from it, and executing different kinds of
queries against it. Each of the components used by our tool is im-
plemented as a standalone module, with a web-based API exposing
each module as a web service. Individual modules can be easily
replaced and new ones can be added, such as introducing a new
back-end for runtime verification. Similarly, new interfaces can be
built around the existing modules without having to make changes
to the underlying modules.

An important feature of the Contract Verifier tool is the level
of automation it provides: everything except the post-editing of
the extracted model (and of course choosing the queries to be
performed) is automatic. For example, the names of clauses, agents
and actions are automatically extracted from the contract so the
user can select them using drop-down menus when making queries.
Also, each clause is given a unique identifier as well as a clock that
is reset when that clause is activated. Though these are mainly
intended for internal use when performing semantic queries, users
may even use them explicitly in the post-editing phase to encode
relative timing constraints.

We see this tool as a successful implementation of a user interface
for bringing together various separate components and providing a
clear workflow for analysing normative texts in English. That being
said, it is as such a proof-of-concept tool and has not undergone any
extensive usability testing or application in real-world scenarios.
We conclude here with a critical look at the shortcomings and
limitations of the current work.

Evaluation

Our goal is to make the task of analysing a normative document eas-
ier and more reliable than if one were to do it completely manually.
Measuring whether we achieve this, and to what extent, requires
proper assessment. Some evaluation has already been carried out
for the natural language extraction part of the workflow (the Con-
Par tool), measuring the accuracy of tool for extracting a correct

model from a normative document. By calculating precision and
recall, F1 scores of 0.49 to 0.86 were obtained for the test set of four
documents [8].

However, we currently do not have a thorough evaluation of
the complete Contract Verifier workflow as presented here. This
would take the form of an empirical study comparing document
analysis using our tool with a purely manual approach, measuring
the amount of post-editing required to build a correct model, the
time required to formulate a query and obtain a result, and the
overall ease of use of the tool in a qualitative sense. We consider a
study of this kind important future work.

Limitations

Extraction. The extraction phase relies on dependency trees and
thus takes a syntactic-level approach to parsing. While a fair deal
of information can be extracted in this way from simpler sentences,
a deeper understanding of a phrase often involves using related
or opposite concepts which cannot be determined without more
elaborate processing on the semantic level. In addition, we assume
that each input sentence translates into one or more clauses, and
have no support for detecting when a phrase should actually modify
an existing clause instead.

Modelling. Our tool uses a tabular interface to help make the
task of modelling user-friendly, but some understanding of the un-
derlying formal language and its semantics is necessary in order
to work efficiently with it. For example, our formalism is essen-
tially action-based, where clauses prescribe what an agent should or
should not do. However, empirically we have found that normative
documents often describe what should or should not be, i.e. refer-
ring to state-of-affairs. While these can often be paraphrased to fit
into our formalism, this is a non-trivial task which currently must
be done completely by the user. The formalism itself has its own
limitations, for example we are unable to encode percentages over
quantities or any kind of arithmetic in actions, which are common
features in some types of contracts (e.g., in SLAs).

Verification. When it comes to running queries, those which are
syntactic can quickly be answered by an algorithm which is linear
in the size of the model. For semantic queries however, the con-
version to timed automata means that the state-space explosion
problem typical of model checking is a potential problem. Certain
optimisations made during the translation process could improve
this somewhat. For instance, our generated NTA contain many

SAC’18, April 9-13, 2018, Pau,France John J. Camilleri, Mohammad Reza Haghshenas, and Gerardo Schneider

parallel synchronising automata as a result of the modularity of
the translation, and some ad hoc heuristics could likely be used to
reduce the number of automata or the need for certain synchronisa-
tions, thus improving the performance. That said, this is ultimately
a theoretical problem which we cannot avoid altogether.

Scalability

Extraction. We are limited here by the speed of the ConPar tool,
which itself uses the Stanford dependency parser. While parse time
is related to the length of the input sentence, in our tests we have
found that parsing and extracting a single sentence takes on average
roughly half a second.5

Post-editing. The tabular interface for editing the extracted clauses
has no concrete limits in terms of the number of clauses it can han-
dle. What it does lack is support for managing a document’s internal
hierarchy (sections and sub-sections), which is a common feature
of normative texts.

Analysis. As discussed above, the running of semantic queries
is the biggest barrier to the scalability of the system due to the
state-space explosion problem. For our small example here, a query
requiring a search of the entire search space requires a few millisec-
onds to complete, but this performance may degrade drastically as
the model size increases.

Queries. Our current implementation only offers a limited num-
ber of syntactic and semantic queries. New query templates can
easily be added without any theoretical constraints. However, the
user interface may need to be updated to help users navigate and
possibly search through a long list of queries.

In summary, the Contract Verifier tool in its current state can
handle documents of essentially any size in what concerns the ex-
traction of a formal representation from a natural language text, its
post-editing, and the execution of syntactic queries. This however
could be improved by adding an extra layer of document hierarchy
management to the tool, allowing the task to be segmented into
smaller sub-parts. In what concerns semantic queries, the tool can
realistically only handle smaller individual contracts containing
tens of clauses. This is essentially due to our choice to translate
contract models into Uppaal timed automata. An alternative here
could be to use SAT solvers, or some other verification technology,
to process the kind of semantic queries we perform. In any case, we
believe Contract Verifier is an important step towards a rich analysis
of normative texts, even if the analysis were to be restricted to just
syntactic queries.

5 Tests carried out on a dual-core MacBook Air from 2013.

REFERENCES

[1] Rajeev Alur and David L. Dill. 1994. A Theory of Timed Automata. Theoretical
Computer Science 126, 2 (1994), 183–235. https://doi.org/10.1016/0304-3975(94)
90010-8

[2] Krasimir Angelov, John J. Camilleri, and Gerardo Schneider. 2013. A Framework
for Conflict Analysis of Normative Texts Written in Controlled Natural Language.
Journal of Logic and Algebraic Programming 82, 5-7 (2013), 216–240. https:
//doi.org/10.1016/j.jlap.2013.03.002

[3] Tara Athan, Harold Boley, Guido Governatori, Monica Palmirani, Adrian Paschke,
and Adam Wyner. 2013. OASIS LegalRuleML. In ICAIL’13). ACM, 3–12. https:
//doi.org/10.1145/2514601.2514603

[4] Shaun Azzopardi, Albert Gatt, and Gordon Pace. 2016. Integrating Natural
Language and Formal Analysis for Legal Documents. In Conference on Language
Technologies and Digital Humanities. Academic Publishing Division of the Faculty
of Arts, 32–35.

[5] Shaun Azzopardi, Albert Gatt, and Gordon J. Pace. 2016. Reasoning About
Partial Contracts. In JURIX’16. IOS Press, 23–32. https://doi.org/10.3233/
978-1-61499-726-9-23

[6] Gerd Behrmann, Alexandre David, and KimG. Larsen. 2006. ATutorial on UPPAAL
4.0. Technical Report. Department of Computer Science, Aalborg University.
http://www.it.uu.se/research/group/darts/papers/texts/new-tutorial.pdf

[7] Alexander Boer, Radboud Winkels, and Fabio Vitali. 2008. MetaLex XML and the
Legal Knowledge Interchange Format. In Computable Models of the Law. LNCS,
Vol. 4884. Springer, 21–41. https://doi.org/10.1007/978-3-540-85569-9_2

[8] John J. Camilleri, Normunds Grūzı̄tis, and Gerardo Schneider. 2016. Extracting
Formal Models from Normative Texts. In International Conference on Applica-
tions of Natural Language to Information Systems (NLDB 2016) (LNCS), Vol. 9612.
Springer, 403–408. https://doi.org/10.1007/978-3-319-41754-7_40

[9] John J. Camilleri, Gabriele Paganelli, and Gerardo Schneider. 2014. A CNL for
Contract-Oriented Diagrams. In CNL’14 (LNCS), Vol. 8625. Springer, 135–146.
https://doi.org/10.1007/978-3-319-10223-8_13

[10] John J. Camilleri and Gerardo Schneider. 2017. Modelling and Analysis of Nor-
mative Documents. Logical and Algebraic Methods in Programming 91 (2017),
33–59. https://doi.org/10.1016/j.jlamp.2017.05.002

[11] Tin Tin Cheng, Jeffrey Leonard Cua, Mark Davies Tan, Kenneth Gerard Yao,
and Rachel Edita Roxas. 2009. Information extraction from legal documents. In
SNLP’09. IEEE, 157–162. https://doi.org/10.1109/snlp.2009.5340925

[12] Gregorio Díaz, María-Emilia Cambronero, Enrique Martínez, and Gerardo Schnei-
der. 2014. Specification and Verification of Normative Texts using C-O Di-
agrams. Transactions on Software Engineering 40, 8 (2014), 795–817. https:
//doi.org/10.1109/TSE.2013.54

[13] Stephen Fenech, Gordon J. Pace, and Gerardo Schneider. 2009. CLAN: A Tool for
Contract Analysis and Conflict Discovery. In ATVA’09 (LNCS), Vol. 5799. Springer,
90–96. https://doi.org/10.1007/978-3-642-04761-9_8

[14] Dan Klein and Christopher D. Manning. 2003. Accurate Unlexicalized Parsing.
In ACL’03. ACL, 423–430. https://doi.org/10.3115/1075096.1075150

[15] Kim G. Larsen, Paul Pettersson, and Wang Yi. 1997. UPPAAL in a Nutshell.
Software Tools for Technology Transfer 1, 1 (1997), 134–152. https://doi.org/10.
1007/s100090050010

[16] Pietro Mercatali, Francesco Romano, Luciano Boschi, and Emilio Spinicci. 2005.
Automatic Translation from Textual Representations of Laws to Formal Models
through UML. In JURIX’05 (Frontiers in Artificial Intelligence and Applications),
Vol. 134. IOS Press, 71–80.

[17] Object Management Group (OMG). 2015. Semantics of Business Vocabulary and
Business Rules (SBVR). Document number: formal/2015-05-07. (2015). http:
//www.omg.org/spec/SBVR/1.3/PDF

[18] Cristian Prisacariu and Gerardo Schneider. 2007. A Formal Language for Elec-
tronic Contracts. In FMOODS’07 (LNCS), Vol. 4468. Springer, 174–189. https:
//doi.org/10.1007/978-3-540-72952-5_11

[19] Cristian Prisacariu and Gerardo Schneider. 2012. A Dynamic Deontic Logic for
Complex Contracts. Journal of Logic and Algebraic Programming 81, 4 (2012),
458–490. https://doi.org/10.1016/j.jlap.2012.03.003

[20] Aarne Ranta. 2011. Grammatical Framework: Programming with Multilingual
Grammars. CSLI.

[21] Adam Wyner, Krasimir Angelov, Guntis Barzdins, Danica Damljanovic, Brian
Davis, Norbert Fuchs, Stefan Höfler, Ken Jones, Kaarel Kaljurand, Tobias Kuhn,
Martin Luts, Jonathan Pool, Mike Rosner, Rolf Schwitter, and John Sowa. 2010.
On Controlled Natural Languages: Properties and Prospects. In CNL’09 (LNCS),
Vol. 5972. Springer, 281–289. https://doi.org/10.1007/978-3-642-14418-9_17

[22] Adam Wyner and Wim Peters. 2011. On rule extraction from regulations. In
JURIX’11. Frontiers in Artificial Intelligence and Applications, Vol. 235. IOS Press,
113–122. https://doi.org/10.3233/978-1-60750-981-3-113

https://doi.org/10.1016/0304-3975(94)90010-8
https://doi.org/10.1016/0304-3975(94)90010-8
https://doi.org/10.1016/j.jlap.2013.03.002
https://doi.org/10.1016/j.jlap.2013.03.002
https://doi.org/10.1145/2514601.2514603
https://doi.org/10.1145/2514601.2514603
https://doi.org/10.3233/978-1-61499-726-9-23
https://doi.org/10.3233/978-1-61499-726-9-23
http://www.it.uu.se/research/group/darts/papers/texts/new-tutorial.pdf
https://doi.org/10.1007/978-3-540-85569-9_2
https://doi.org/10.1007/978-3-319-41754-7_40
https://doi.org/10.1007/978-3-319-10223-8_13
https://doi.org/10.1016/j.jlamp.2017.05.002
https://doi.org/10.1109/snlp.2009.5340925
https://doi.org/10.1109/TSE.2013.54
https://doi.org/10.1109/TSE.2013.54
https://doi.org/10.1007/978-3-642-04761-9_8
https://doi.org/10.3115/1075096.1075150
https://doi.org/10.1007/s100090050010
https://doi.org/10.1007/s100090050010
http://www.omg.org/spec/SBVR/1.3/PDF
http://www.omg.org/spec/SBVR/1.3/PDF
https://doi.org/10.1007/978-3-540-72952-5_11
https://doi.org/10.1007/978-3-540-72952-5_11
https://doi.org/10.1016/j.jlap.2012.03.003
https://doi.org/10.1007/978-3-642-14418-9_17
https://doi.org/10.3233/978-1-60750-981-3-113

	Abstract
	1 Introduction
	2 The Contract Verifier tool
	3 Running example
	4 Building a contract model
	4.1 Extraction from English
	4.2 Post-editing
	4.3 Conversion to contract model
	4.4 Verbalisation using CNL
	4.5 Compact formal notation

	5 Analysis
	5.1 Syntactic analysis
	5.2 Semantic analysis

	6 Software architecture
	7 Related work
	8 Conclusion
	References

