
UNIVERSITY OF OSLO
Department of Informatics

FLACOS’08
Workshop
Proceedings

Research Report No.
377

Gordon J. Pace

Gerardo Schneider

ISBN 82-7368-337-0
ISSN 0806-3036

November 2008

Proceedings of

FLACOS’08

Second Workshop on Formal

Languages and Analysis

of Contract-Oriented Software

27–28 November 2008

Malta

Gordon J. Pace and Gerardo Schneider (editors)

Foreword

The 2nd Workshop on Formal Languages and Analysis of Contract-Oriented Software (FLA-
COS’08) is held in Malta. The aim of the workshop is to bring together researchers and practi-
tioners working on language-based solutions to contract-oriented software development.
The workshop is partially funded by the Nordunet3 project “COSoDIS” (Contract-Oriented Soft-
ware Development for Internet Services) and it attracted 25 participants.

The program consists of 4 regular papers and 10 invited participant presentations. The regular
papers were selected by the following programme committee:

Björn Bjurling SICS, Sweden
Olaf Owe University of Oslo, Norway (co-chair)
Anders P. Ravn Aalborg University, Denmark
Gerardo Schneider University of Oslo, Norway (co-chair)

Further information can be found at the workshop homepage: http://www.ifi.uio.no/flacos08.

Acknowledgments

We thank the Department of Computer Science, University of Malta for its support.

Welcome to Malta!
Gordon J. Pace and Gerardo Schneider

Table of Contents

Cc-Pi: A Constraint-Based Language for Contracts with Service Level
Agreements? . 1

Maria Grazia Buscemi and Ugo Montanari

A Tool for the Design and Verification of Composite Web Services 9
Maŕıa Emilia Cambronero, Gregorio Dı́az, Valent́ın Valero, and
Enrique Mart́ınez

Permission to Speak: An Access Control Logic . 17
Nikhil Dinesh, Aravind Joshi, Insup Lee and Oleg Sokolsky

Integrating Contract-Based Security Monitors in the Software
Development Life Cycle . 25

Alexander M. Hoole, Isabelle Simplot-Ryl and Issa Traore

Towards Verifying Contract Regulated Service Composition 31
Alessio Lomuscio, Hongyang Qu and Monika Solanki

Security-By-Contract for the Future Internet? . 39
Fabio Massacci, Frank Piessens and Ida Siahaan

Increasing Trust in Public Service Delivery – Contract-Based Software
Infrastructure for Electronic Government . 46

Adegboyega Ojo and Tomasz Janowski

Service Oriented Architectures: The New Software Paradigm 54
W. Reisig

A Contract-Oriented View on Threat Modelling . 61
Olav Skjelkv̊ale Ligaarden and Ketil Stølen

Service Contracts in a Secure Middleware for Embedded Peer-to-Peer
Systems . 69

F. Benigni, A. Brogi, S. Corfini and T. Fuentes

A Framework for Contract-Based Reasoning: Motivation and Application 77
Sophie Quinton and Susanne Graf

An Aspect-Oriented Behavioral Interface Specification Language 85
Takuo Watanabe and Kiyoshi Yamada

Treaty – A Modular Component Contract Language 93
Jens Dietrich and Graham Jenson

Cc-Pi: A Constraint-Based Language for

Contracts with Service Level Agreements�

Maria Grazia Buscemi1 and Ugo Montanari2

1
IMT Lucca Institute for Advanced Studies, Italy

m.buscemi@imtlucca.it

2
Dipartimento di Informatica, University of Pisa, Italy

ugo@di.unipi.it

Abstract. Service Level Agreements are a key issue in Service Oriented

Computing. SLA contracts specify client requirements and service guar-

antees, with emphasis on Quality of Service (cost, performance, avail-

ability, etc.). We overview a simple model of contracts for QoS and SLAs

that combines two basic programming paradigms: name-passing calculi

and concurrent constraint programming. In the resulting calculus, called

cc-pi calculus, SLA requirements are constraints that can be generated

either by a single party or by the synchronisation of two agents. We rely

on a system of named constraints that equip classical constraints with a

suitable algebraic structure providing a richer mechanism of constraint

combination. Besides small examples, cc-pi has been applied to a Telco

case study. The model allows to specify, negotiate, and enforce policies

in complex scenarios where policy negotiations and validations can be

arbitrarily nested.

1 Introduction

A key feature of the service oriented computing paradigm is the possibility of se-

lecting and invoking services. Beside functional properties, services may expose

non-functional properties including Quality of Service (QoS), cost, and security.

Non-functional parameters play an important role in service discovery and bind-

ing. Indeed, a service requester might have minimal QoS requirements below

which a service is not considered useful. Moreover, multiple services that meet

the functional requirements of a requester can still be differentiated according

to their non-functional properties. Service Level Agreements (SLAs) capture the

mutual responsibilities of service provider and service requester with respect to

non-functional properties, with emphasis on QoS values.

The terms and conditions appearing in a SLA contract can be negotiated

among the contracting parties prior to service execution. In the simplest case,

one of the two parties exposes a contract template that the other party can fill

in with values in a given range. However, in general the two parties may need

a real negotiation in which they pose arbitrary complex policies, namely SLA

�

Research supported by the EU IST-FP6 16004 Integrated Project Sensoria

1

2

requirements and guarantees. If the parties fail to reach an agreement, they may

weaken their policies. Moreover, during the service execution, the service usage

is checked for compliance with the SLA defined at subscription time.

The cc-pi calculus [6, 7] is a model of contracts with QoS and SLAs that is also

suited to study mechanisms for resource allocation. This model is inspired by two

basic programming paradigms: name-passing calculi and concurrent constraint

programming (cc programming) [11]. While the informal concept of constraint

is widely used in a variety of different fields, a very general, formal notion of con-

straint system has been introduced in the cc programming paradigm. Basically,

cc programming is a simple and powerful computing model based on a shared

store of constraints that provides partial information about possible values that

variables can take. Concurrent agents can act on this store by performing either

a tell action (for adding a constraint, if the resulting store is consistent) or

an ask action (for checking if a constraint is entailed by the store). As compu-

tation proceeds, more and more information are accumulated, thus the store is

monotonically refined.

The cc-pi calculus enriches classical cc programming with a channel-based

communication mechanism and a restriction operation à la pi-calculus [10] along

with a possibly non-monotonic evolution of the constraint store. Specifically, cc-

pi features a symmetric, synchronous mechanism of interaction between senders

and receivers, where the sent name is ‘fused’ (i.e. identified) to the received

name, and such an explicit fusion allows using interchangeably the two names.

The entities involved in a SLA negotiation are modelled as communicating cc-pi

processes and SLA guarantees and requirements are expressed as constraints that

can be generated either by a single process or as a result of the synchronisation

of two processes. Moreover, the restriction operator of the cc-pi calculus can

limit the scope of names thus allowing for local stores of constraints, which may

become global after a synchronisation.

The constraint systems adopted in cc-pi rely on named c-semirings. A

c-semiring [2] is a commutative semiring with top element and such that the

sum operation ⊕ is idempotent. Intuitively, the preference level associated to

each variable instantiation is modelled as a value of the c-semiring; the combi-

nation of constraints is expressed by the c-semiring product ⊗, while the semiring

sum a ⊕ b chooses the worst constraint better than a and b. Named c-semirings

enrich classical c-semirings with a notion of support to express the relevant names

of a constraint. Semiring-based structures can specify networks of constraints for

defining constraint satisfaction problems and model fuzzy or probabilistic values,

as well as Herbrand unifications.

A recent trend in Telecommunication is to adopt service-oriented technolo-

gies to expose capabilities (e.g. call control, sending/receiving messages, or ac-

cess information on end users), implemented in a Telco network, to applications

deployed in third party administrative domains. In such a context, network op-

erators and third parties have to define SLAs in order to monitor the access and

usage of Telco capabilities. We have applied the cc-pi calculus for specifying,

negotiating, and enforcing contracts for Telco services.

2

3

Related work. Bistarelli and Santini [4] have presented a constraint-based model

for SLAs as an extension of soft cc programming [3]. The proposed model in-

cludes operations quite different from those of the cc-pi calculus, such as those for

relaxing the constraints involving a given set of variables and then adding a new

constraint, and for checking if a constraint is not entailed by the store. Coppo

and Dezani-Ciancaglini [8] have proposed a calculus of contracts by combining

the basic primitives of the cc-pi calculus with the notion of sessions and session

types to design communicaion protocols which assure safe and reliable commu-

nication sequences. Bacciu et al. [1] have developed a formalism for specifying

the service guarantees and requester requirements on QoS and the negotiation

mechanism. Unlike our model, their approach relies on fuzzy sets rather than on

c-semirings. SLAng [12] and WSLA [9] are XML-based languages for defining

SLAs at a lower level of abstractions. The elements of SLAng are also constraints

on the behaviour of associated services and service clients, but their are speci-

fied in OCL. WSLA provides the ability to create new SLAs as functions over

existing metrics. This is useful to formalise requirements that are expressed in

terms of multiple QoS parameters. The semantics for expressions over metrics is

not formally defined, though.

2 The CC-Pi Calculus

In this section we outline the main features of the cc-pi calculus. The interested

reader can refer to [6] for a detailed presentation of the calculus.

The cc-pi calculus combines synchronous channel-based communication with

primitives like tell and ask that are inspired by the constraint-based computing

paradigms and that account for placing constraints and making logical checks.

In more detail, a single cc-pi process tell c.Q can place a constraint c (which

corresponds to a certain requirement/guarantee) if c is consistent with the actual

store and then evolve to process Q. The process check c.Q behaves like tell c.Q

except for the fact that c is not added. Similarly, the process ask c.Q checks

whether c is entailed by the actual store of constraints and, in the positive

case, becomes Q. Alternatively, two processes P = p〈x̃〉.P ′ and Q = p ỹ.Q

′ that

are running in parallel (P |Q) can synchronise with each other on the port p

by performing the output action p〈x̃〉 and the input action p ỹ, respectively,

where x̃ and ỹ stand for sequences of names. Such a synchronisation creates a

constraint induced by the identification of the communicated parameters x̃ and

ỹ, if the store of constraints obtained by adding this new constraint is consistent,

otherwise the system has to wait that a process removes some constraint (action

retract c). Finally, a process (x)P declares a local name x that can become

public as a result of a synchronisation.

Underlying constraint system. The cc-pi calculus is parametric with respect to

named constraints, which are meant to model different SLA domains. Conse-

quently, it is not necessary to develop ad hoc primitives for each different kind

of SLA to be modelled. A named constraint c is an element of a named c-

semiring, namely a c-semiring structure and equipped with a notion of support

3

4

supp(c) that specifies the set of “relevant” names of c, i.e. the names that are

affected by c. The notation c(x, y) indicates that supp(c) = {x, y}. Formally, a

c-semiring S = 〈A,⊕,⊗, 0, 1〉 is a commutative semiring with top element and

such that ⊕ is idempotent. C-semiring values express a preference level, while

the combination of constraints is expressed by the product operation and the

sum of two constraints a and b chooses the worst constraint better than a and b.

The relation � over constraints is defined as a� b if a ⊕ b = b. Intuitively, a� b

expresses that a is more constrained than b, or, more interestingly, that a entails

b. A set C of named constraints is consistent if the product of the elements of C

is different for the bottom element 0.

Soft constraints. Named constraints are particularly suited to specify soft con-

straint satisfaction problems. The key idea underlying constraint satisfaction

problems is to solve a problem by stating constraints representing requirements

about the problem and, then, finding solutions satisfying all the constraints.

Soft constraint satisfaction problems are meant to express preferences rather

than strict requirements or to provide a not-so-bad solution when the problem

is overconstrained. Formally, given a domain D of interpretation for a set of

names N and a c-semiring S = 〈A,⊕,⊗, 0, 1〉, a soft constraint c can be repre-

sented as a function c = (N → D) → A associating to each variable assignment

η = N → D (i.e. instantiation of the variables occurring in it) a value in A, which

can be interpreted e.g. as a set of preference values or costs. Soft constraints can

be combined by means of the operators of S. For instance, the interpretation of

the constraint c = x ≤ a ⊗ b ≤ y, where x, y are names in N , a, b are domain

values in D, the underlying c-semiring is S = 〈{False, True},∨,∧, False, True〉,
and ≤ has the usual meaning of “less than or equal” on numbers, is that c is the

function (N → D) → {False, True}, with the assignment η such that cη = True

if η(x) ≤ a and b ≤ η(y), while cη = False otherwise.

3 A Telecommunication case study

In this section we analyse a case study borrowed from the Telecommunication

area. We show how to apply the cc-pi calculus for specifying, negotiating, and

enforcing policies for Telco services. We start by introducing a service scenario

called CallBySms.

The CallBySms service allows a mobile phone user to activate a voice call by

sending an SMS message to a specific service number. The SMS message must

contain a nickname of the person the user wishes to call. The service is able to

automatically find the number associated with the nickname and to set up a third

party call between the user and the callee. In order to keep privacy, the service

does not know actual phone numbers, but only opaque-id representing users.

The service in turn uses two services, ThirdPartyCall and ShortMessaging, for

specifying the operations respectively necessary to set-up and control calls and to

receive/send short messages. Figure 1 depicts a possible service scenario in which

John wishes to call Mary and he knows that Mary’s nickname is “sunshine”.

4

5

1. The Third Party application subscribes the services that are used by the

CallBySms service and signs a SLA contract with the Network Operator;

2. The CallBySMS service is activated and the Third Party application receives

a service number, e.g. 11111;

3. Mary sends an SMS “REGISTER sunshine” to the service number 11111;

4. The service associates “sunshine” to the opaque-id of Mary;

5. John sends an SMS “CALL sunshine” to the service number 11111;

6. The service retrieves the opaque-id associated to “sunshine” and set-up a

call;

7. John’s phone rings; John answers and gets the ringing tone;

8. Mary’s phone rings; Mary answers;

9. John and Mary are connected.

Fig. 1. CallBySms Service Scenario

Policies as constraints. We now focus on specifying and ensuring time policies.

In [5] we address modelling and enforcement of other policies such as policies on

frequency. For simplicity, hereafter we take the reference constraint system to be

a classical constraint satisfaction problem by considering the named c-semiring

of Boolean values. However, such constraint system can be easily generalised to

soft constraint satisfaction problems by replacing the underlying c-semiring with

an arbitrary c-semiring.

The constraint ctime(i, f) = (7 ≤ i ≤ 9) ⊗ (15 ≤ f ≤ 18) specifies the initial

and final time ranges within which calls can be set up by end users. Similarly,

dtime(i, f) = (6 ≤ i ≤ 8) ⊗ (17 ≤ f ≤ 19) states the time requirements of

the third party. The result of combining these policies is the intersection of

5

6

the initial and final time ranges, which is expressed by the c-semiring product

etime(i, f) = ctime(i, f) ⊗ dtime(i, f) = (7 ≤ i ≤ 8) ⊗ (17 ≤ f ≤ 18). Note that

the constraint etime is part of the SLA contract among the network operator and

the third party application and it is validated by the operator domain once a

call request from a end user is received. Other policies might depend on some

network operator parameter while being related to the agreement of the third

party with every end-user.

Cc-pi specification. We now show the main steps of the formalisation in cc-pi

calculus of the policy negotiation and service execution scenario of CallBySms.

We refer to [5] for a complete description of the specification.

The negotation phase between the third party application and the network

operator consists of the two parties placing their own constraints and trying to

synchronise on port x in order to export their local parameters. If the set of all

such constraints induced by the synchronisation is consistent, the two parties

have concluded a contract, which is expressed by the c-semiring product of all

constraints:

NO Neg(x, z, t) = (i, f) (tell ctime(i, f)). x〈i, f〉. NO Acpt Reqst(x, z, i, f, t)

3rdPA Neg(x) = (i′, f ′) (tell dtime(i
′
, f

′)).x〈i′, f ′〉. 3rdPA Acpt Reqst(x)

The process ClockT is meant to simulate the actual time by increasing of a time

unit a variable t starting from its present value T. We assume this + operation

automatically resets the clock by the end of the day:

ClockT(t) = retract (t = T). tell (t = T + 1). ClockT+1(t)

After a service activation request by the third party application, the network

operator is ready to accept registration requests from end-users and to forward

them to the third party application. An end-user intending to register to Call-

BySms tries to synchronise with the network operator on z with its private

identity mary and nickname sunshine as parameters. The network operator for-

wards this request to the third party application by sending on x the nickname

and a private channel name ch, though not revealing the user’s identity:

Regist User(z, sunshine) = (mary) (z〈mary , sunshine〉. Wait Calls(mary))

NO Acpt Reqst(x, z, i, f, t) = (id ,nn)(z〈id ,nn〉.x〈nn〉.(

NO Acpt Reqst(x, z, i, f, t)

|NO Acpt Call(i, f, t, id ,nn)))

3rdPA Acpt Reqst(x) = (nn ′) (x〈nn ′〉.(3rdPA Acpt Reqst(x))

A user who wants to call Mary but only knows her nickname is specified by

a process sending its private name john on the public port sunshine and then

waiting to be connected with sunshine on port john. The network operator ver-

ifies that the call request is within the legal time range. In case of success, the

6

7

network operator forwards the name john to the private port mary in order to

connect the two users:

Wait Calls(mary) = (cal ′) (mary〈cal ′〉.cal ′〈〉.Wait Calls(mary))

Caller(sunshine) = (john)sunshine〈john〉.john〈〉.0

NO Acpt Call(i, f, t, id ,nn) = (cal) (check (i ≤ t ≤ f).nn〈cal〉.id〈cal〉.

NO Acpt Call(i, f, t, id ,nn))

The whole system S is given by the parallel composition of the two users, the

clock and the processes specifying the policy negotiation followed by the pro-

cesses modelling the service execution:

S = (x, z, t, sunshine)Regist User(z, sunshine) |Caller(sunshine) |

tell (t = 0). Clock0(t)) |NO Neg(x, z, t) | 3rdPA Neg(x)

Note that our framework can be employed to model more complex negotiation

scenarios, e.g. in which there is an arbitrary number of end-users or in which

the third party application and the network operator may want to retract their

initial policies and replace them with weaker constraints, in order to reach an

agreement.

4 Conclusions

We have presented the cc-pi calculus, a constraint-based model of SLA contracts,

and we have shown its flexibility by analysing a Telco case study. In [7], the cc-pi

calculus has been equipped with an abstract semantics in the style of open pi-

calculus, along with a symbolic transition system with contextual labels. We have

also studied the expressiveness of the calculus: we have provided a reduction-

preserving translation of cc programming [6] and a translation of the explicit

fusion calculus by Gardner and Wischik which respects open bisimilarity [7].

We plan to further explore expressiveness issues by translating other calculi

like the open pi-calculus and the applied pi-calculus and by proving that such

translations preserve the behavioural equivalences defined for these calculi.

References

1. D. Bacciu, A. Botta, and H. Melgratti. A fuzzy approach for negotiating quality

of services. In Proc. TGC, volume 4661 of Lect. Notes in Comput. Sci., pages

200–217, 2007.

2. S. Bistarelli, U. Montanari, and F. Rossi. Semiring-based constraint satisfaction

and optimization. Journal of the ACM, 44(2):201–236, 1997.

3. S. Bistarelli, U. Montanari, and F. Rossi. Soft concurrent constraint programming.

ACM Trans. Comput. Logic, 7(3):563–589, 2006.

4. S. Bistarelli and F. Santini. A nonmonotonic soft concurrent constraint language

for sla negotiation. In Proc. CILC, 2008.

7

8

5. M. Buscemi, L. Ferrari, C. Moiso, and U. Montanari. Constraint-based policy

negotiation and enforcement for telco services. In Proc. TASE, pages 463–472.

IEEE Computer Society, 2007.

6. M. G. Buscemi and U. Montanari. Cc-pi: A constraint-based language for spec-

ifying service level agreements. In Proc. ESOP, volume 4421 of Lect. Notes in

Comput. Sci., pages 18–32. Springer, 2007.

7. M. G. Buscemi and U. Montanari. Open bisimulation for the concurrent constraint

pi-calculus. In Proc. ESOP, volume 4960 of Lect. Notes in Comput. Sci., pages

254–268. Springer, 2008.

8. M. Coppo and M. Dezani-Ciancaglini. Structured communications with concurrent

constraints. In Post-Proc. of TGC, 2008. To appear.

9. A. Keller and H. Ludwig. The WSLA framework: Specifying and monitoring service

level agreements for web services. Jour. Net. and Sys. Manag., 11(1):57–81, 2003.

10. R. Milner, J. Parrow, and J. Walker. A calculus of mobile processes, I and II.

Inform. and Comput., 100(1):1–40,41–77, 1992.

11. V. Saraswat and M. Rinard. Concurrent constraint programming. In Proc. POPL.

ACM Press, 1990.

12. J. Skene, D. Lamanna, and W. Emmerich. Precise service level agreements. In

Proc. ICSE, 2004.

8

A Tool for the Design and Verification of Composite Web

Services

Maŕıa Emilia Cambronero, Gregorio Dı́az, Valent́ın Valero, and Enrique Mart́ınez �

Departamento de Sistemas Informáticos

Escuela Politécnica Superior de Albacete

Universidad de Castilla-La Mancha

Campus Universitario s/n. 02071. Albacete, SPAIN

{ MEmilia.Cambronero, Gregorio.Diaz, Valentin.Valero, Enrique.Martinez }@uclm.es

Abstract. This paper describes the main features of the Web Services Translation tool, WST

for short, a tool for modeling and verification of Web Services systems with time restrictions.

The different parts of WST are then presented, and a case study is used to show the potential of

this tool. This case study is called “Dynamic Internet Purchase Site” and it allows us to see the

capabilities of modelling, code generation and verification of the tool. This case study is a Web

Service system with time restrictions, which are one of the main objetives of the WST verification

part.

1 Introduction

Internet and Web technologies are a new way of doing business, more cheaply and efficiently, as enter-

prises can provide new and dynamic services in a faster way by the composition of Web Services. But

B2B e-commerce is still emerging, and new software technologies are being required to support their

development. Specifically, there is a need for effective and efficient means to abstract, compose, analyse,

and evolve Web Services in an appropriate time-frame [8].

In this framework we can find some problems, which are the main motivation of the development of

Web Services Translation tool:

– The interest in web services has grown in recent times as more and more intra/inter-organizational

applications use this model, but little effort has been dedicated to systematically design and analyze

web services systems.

– The analysis of Web Services Coordination and specifically, the timed restrictions that must be

enforced in Web Services for which timed aspects are crucial for a correct functionality. This point

can be covered by using the so called choreographies, which describe the composition of several

existing Web Services in order to provide a Composite Web Service.

– The use of formal techniques bring rigour and consistency to system specification and implemen-

tation. Web services systems can also be described, analysed and implemented by using formal

techniques. They allow us to have unambiguous Web services descriptions, which can be later

checked for detecting errors or can be used to prove that some properties of interest hold.

Thus, the main goal of this work is to present a tool based on a model-driven methodology, which

allows us to deal with these problems. WST tool covers different methodological phases for the design

and implementation of Composite Web Services, following the software life cycle: design and imple-

mentation of choreographies with timed restrictions, and their validation and verification. In the design

phase we use the Unified Modeling Language (UML 2.0 [13]), in order to model the system conforming

to the initial analysis requirements in a proper way. Thus, WST supports the modelling phase by means

of a UML sequence diagram editor.

�

Supported by the Spanish government (cofinanced by FEDER founds) with the project TIN2006-15578-C02-

02, and the JCCLM regional project PAC06-0008-6995.

9

The paper is structured as follows. A discussion of related work is shown in Section 2. In Section 3

the Web Services Translation tool is presented. Section 4 explains the application of WST tool. Finally,

the conclusions and the future work are presented in Section 5.

2 Related Work

In the market we can find different Web Services tools. For instance, H. Foster et al. [5] show the

design and implementation of a tool, called WS-Engineer, for a model-based approach to verifying

compositions of web service implementations. The tool supports verification of properties created from

design specifications and implementation models to confirm expected results from the viewpoints of

both the designer and implementer.

In [6] Xiang Fu et al. present a tool, called WSAT, for analyzing and verifying composite web service

specifications by using model checking techniques. In this case the specifications are written in WS-

BPEL, and they are translated to Guarded Finite State Automata (GFSA), and the model checker

SPIN [10] is then used to analyze and verify the system.

Another tool for the analysis of Web services systems is EA4B [7], which defines an execution

log for WS-BPEL. The execution log can then be read for post-execution debugging or for near real-

time monitoring. This tool can be integrated with static analysis tools such as WSAT, so error traces

generated by WSAT can be translated to log files and visually displayed.

There is another tool, called WS-VERIFY [9], intended for the analysis of WS-BPEL specifications

by using the NuSMV model checker [3]. The specifications written in WS-BPEL are translated into a

formalism called WSTTS (Web Services Timed State Transition Systems), which are similar to timed

automata.

In [1] a declarative service flow language (DecSerFlow) is also presented, which is used for monitoring

purposes. In that work process mining techniques are used to check the conformance of service flows

by comparing the specification written in DecSerFlow with reality. A tool supporting this language

(Declare) is presented in [12].

3 Web Service Translation tool

Web Services Translation tool (WST) is an integrated environment for the modelling and verification

of real-time systems. It allows us to model systems by using UML 2.0 sequence diagrams, then we can

translate these diagrams into WS-CDL specification documents and, in turn, the WS-CDL specifications

are translated into Timed Automata, which are then used to simulate and verify the system behaviour.

This tool is available at http://www.dsi.uclm.es/retics/WST/.

In the generation of Web Services, as in the generation of any software system it is necessary to

apply a methodology covering every phase of the life cycle. Figure 1 depicts a diagram that shows a

schematic view of the top-down methodology implemented by WST, which consists of the following

phases:

1. Analysis phase: In the analysis phase we use a technology based on goal models performing require-

ment engineering, KAOS [11] in order to capture the requirements that the system must fulfill.

2. Design phase: In the design phase we use the Unified Modeling Language (UML 2.0 [13]), and

specifically sequence diagrams including some of their new capabilities, as the possibility of nesting

frames to model the time restrictions of a system as well as the UML Profile for Schedulability,

Performance, and Time (RT-UML [14]) in order to capture the time analysis requirements of systems

in a proper way.

3. Choreography Implementation phase: we automatically translate the UML sequence diagrams into

WS-CDL documents. The WS-CDL specification consist of the different parties plus its relationships

and control structures used for structuring the communication process.

10

2

 Choreography
 Implementation

3

 Verification of
Choreography
Implementation

4
XSLT

Choreography Layer

WS-CDL
 XML

XSLT

§ Time Restrictions

§ Model Checking Engine

 Verification

 TIMED AUTOMATA
 XML

 Analysis

 KAOS
1

Design
Sequence Diagrams

UML 2.0
 XMI

2

Fig. 1. WST-Methodology

Object −→ Role

Message −→ Relationship Type & Channel
+

& Interaction

Label and Time Constraint −→ Time Variable & Information Type & Expression

Frame “alt” −→ Choice

Frame “opt” −→ Workunit (without repeat condition)

Frame “loop” −→ Workunit (with a repeat condition)

Frame “par” −→ Parallel

Where the symbols +, | are BNF notation, and & is used to join information

Table 1. UML 2.0 to WS-CDL Mapping rules

4. Verification of Choreography Implementation phase: the generated WS-CDL documents are trans-

lated into Timed Automata, which are used to simulate and verify some properties of interest by

using the UPPAAL tool. The properties to check are those that we have established in the first

step. If we detect some failures here, we return to the second step.

WST applies several XSL Stylesheets to an initial XML document to obtain another XML document.

Let us now describe briefly the two main translations supported by the WST tool.

3.1 Obtaining WS-CDL documents from UML 2.0 sequence diagrams

WST translates a Web Service description with timed restrictions written by using UML sequence

diagrams into a more commonly used language for Web Services choreographies description, WS-CDL.

The WST tool uses three XSL Stylesheets in cascade in order to obtain the WS-CDL document from

the XMI UML document. The UML file is structured in different sections, from which we obtain the

elements that compose the WS-CDL document. Table 1 contains a scheme illustrating how the main

elements of UML are translated into WS-CDL (for more details see [2]).

11

3.2 Obtaining Timed Automata from WS-CDL specifications

WST also translates the WS-CDL specifications into formal descriptions (Timed Automata) supported

by the UPPAAL tool. In order to obtain these formal descriptions, WST uses XSL Stylesheets in cascade

that are applied over the WS-CDL specifications. These specifications contain different elements like

role types, channels, variables, control structures, etc, which are translated into the different elements

of Timed Automata: templates, channels, variables, states, transitions, guards, and so on. A complete

description of this translation can be found in [4].

4 Case Study: Dynamic Internet Purchase Site

Internet sites have been used to provide several functionalities. Among them, the most typical are

searchers, personal pages (blogspots), information pages, government pages and pages for selling prod-

ucts. This last kind of sites has generated a great expectancy over financial markets due to the chance

that represents to cover different national markets by using the Internet. This idea has been one of

the most important reason to achieve what we call nowadays the “globalization” phenomenon. This

is the reason to choose selling sites as a case study. This scenario is based on typical selling sites as

“Amazon.com”. The main features that we can discover in these sites are product search, cart, payment

gateway, checkout and carrier facilities. Furthermore, we have modified it with a new feature that makes

our site dynamic. With this feature, we can modify our site easily by adding or removing new parties

to it. This site accepts three kind of parties, each of them playing a different role: provider, gateway or

carrier.

Fig. 2. Relational Diagram for a Selling Site.

Providers supply the site with the products to be sold and the information about them: price, selling

price, description, number of days to be supplied, expiry date, etc.

Web Service Parameters Output Description

Attach Type and Info ID It allows to attach a new party by using the type (Provider, Payment

Gateway or Carrier) and the info parameters. As a result this service

returns the identification.

Detach Type and ID none It detaches the party passed as an argument.

Status none Info It shows the state of the selling site: Online, Off-line or Maintenance.

Info Type and ID Info It returns as a result the info of a certain party identified by the parame-

ters.

Request PI() none List It elaborates a list of the products and returns it.

AddItem ID and Amount none It adds a product to the user cart.

RemoveItem ID and Amount none It removes a product from the user cart.

PaymentAck PayID none For informing the selling site if a payment has been successfully.

Delivered ID none The carrier informs that the product identified by the identification has

been delivered.

Table 2. Selling Site Web Services

Gateways let user introduce the personal and confidential information in order to perform the

payment.

Carriers transport the product to users within the time bound established with the Internet site. To

accomplish this task, the Internet site requests the time of delivery before asking the carrier to deliver

the product. If the carrier fails to deliver the product in this interval, then the site cancels the delivery

and orders the refund to the user.

12

Web Service Parameters Output Description

ProductsInfo none List It returns a list with the products provided by the provider.

Request Id and Amount none It evaluates the request and establishes whether the request can be im-

mediately fulfilled or not. In case of a negative response, it returns the

number of days to provide the request.

Booking ID and Amount boolean This service ask for selling a certain product and amount. If an error

occurs, then a negative number is produced.

Status none Info It shows the state of the provider: Online, Off-line or Maintenance.

Table 3. Providers Web Services

Figure 2 illustrates the relationships among the different roles and parties. The Internet site runs as

a central system where all actions must be coordinated to achieve the common goal. The user provides

inputs to this system and gets outputs as a result. The Internet site contacts providers for products,

payment gateways for checkout process and carriers for offering users the carriers facilities. Tables 2, 3,

4 and 5 summarize the different services offered by each party.

Web Service Parameters Output Description

Request UsrInf and Total PayID It contacts with the bank and accesses to the user identification with

the confidential information of the user. If the purchase is permitted by

the bank, then the transaction is performed and a payment identification

returned.

Status none Info It shows the state of the payment gateway: Online, Off-line or Mainte-

nance.

Table 4. Payment Gateway Web Services

Web Service Parameters Output Description

Request UsrInf and ProdInf Days It returns the number of days to deliver the product. If the address is not

reachable by the carrier a negative number is produced.

Delivering UsrInf and ProdInf DelvID It is a delivering order that produces a Delivering Id.

Delivering Stt DelvID DelvInfo It returns the location of the package.

Status none Info It shows the state of the carrier site: Online, Off-line or Maintenance.

Table 5. Carrier Web Services

A sequence diagram has been elaborated that models the choreographies that could be generated.

In this sense, Figure 3 depicts a scenario where a user performs a typical purchase in the selling site.

The user starts by requesting the product list, then he selects a product and adds it to his cart. Once

the cart has at least one product, the user can remove the product from the cart, adds a new product or

performs the checkout. If this final option is performed, then the scenario starts the payment procedure

by contacting the payment gateway with the total amount and the seller information. Then, the user

supplies the credential to the payment gateway and an acknowledgement is sent to the selling site. If the

payment has finished successfully, then a carrier is requested for delivering the product within 48 hours.

Within this period, once the carrier has delivered the package, he informs to the selling site about it

and the process finishes. But, if the period has expired, then the seller refunds the money to the user

and informs the carrier to abort the delivery. Other two possible cases captured by this scenario are:

first, the possibility of a negative acknowledgment from the payment gateway, in this case the purchase

is aborted; second, the user remains idle too much time and the session expires.

The translation of this scenario into WS-CDL and Timed Automata is depicted in Figure 4. In

the left-hand side of the figure, we can observe that the XMI definition of the sequence diagram is

transformed into a WS-CDL specification. And in the right-hand side of the figure, the generated

specification is subsequently translated into a timed automata specification supported by the UPPAAL

tool.

An example of a simulation of this scenario is shown in Figure 5. This figure shows a snapshot of

the Uppaal tool at the simulation tab where the scenario is running and several messages are being

sent and received between the user and the selling site at that moment. At the left upper side of this

figure we can see the automata running in parallel. These automata correspond to three of the parties

involved in the scenario (InternetSite, User, and Carrier).

Another snapshot is shown in Figure 6, where we can see the verification process for different

requirements that the scenario must fulfil in order to prove whether its functionality is correct or not.

In this sense, this figure shows at the top part the formulas that are being verified and the results can

be found at the bottom. For example, with this tool we can verify if the scenario can finish at correct or

incorrect situations. These situations are represented in the figure by the three first formulas; the first

13

Fig. 3. A piece of the sequence diagram for the study case.

Fig. 4. Translation from XMI sequence diagram into WS-CDL and from WS-CDL into Timed Automata,

respectively.

corresponds to the successfufl delivery, the second to the session expiration and the third to the time

exceeded for the delivery. The second and the third situation should be taken into account despite of

being unsuccessfull scenarios.

We can see that during the verification we sometimes obtain negative responses to our requirements.

This cases should be studied in detail by following the next three steps. The first step is to generate

the counterexample. The second step consists of following the counterexample in order to detect where,

when and how the error occurs. And last, the third step consists of deciding if it is a real error or an

error occurring due to an inconsistency in the design of the checked requirement. In the case of a real

error, it is necessary to modify the diagram and recheck the requirement to verify if the error has been

fixed. For instance, in the scenario under study, we have found several errors and this errors allow the

14

Fig. 5. Uppaal Simulation for the scenario and Uppaal Verification process for the scenario.

developers to detect the model inconsistencies in an early phase of the development, decreasing the

number of errors in later phases.

5 Conclusions and Future Work

In this work, we have presented WST as a tool to support Web Services designs with time restrictions.

The starting point in WST are UML 2.0 sequence diagrams, which allow us to model the communication

among the parties, and also the control structures of the communication processes and the variables that

capture the time and control conditions. After modelling the sequence diagrams, they can be translated

into Web Services descriptions. These descriptions are a global view of the communication processes.

Finally, the descriptions will be translated into a formal specification supported by a model checking

engine. This engine allow developers to validate the design of the Web Services.

To show these features, we have used a real example based on an Internet selling site where we

have designed a scenario. In this scenario, a user adds several products to a cart, performs the payment

and waits the delivery of the product. We have introduced two time restrictions. the first based on the

expiration of an Internet session and the second based on the maximum delay of the delivery.

15

Fig. 6. Uppaal Verification process for the scenario.

References

1. W.M.P. van der Aalst and M. Pesic. Specifying and Monitoring Service Flows: Making Web Services Process-

Aware. In the book Test and Analysis of Web Services, pp. 11–55. Editors: L. Baresi and Elisabetta Di Nitto.

Springer. 2007.

2. M. E. Cambronero, G. Dı́az, J. J. Pardo, V. Valero, and Fernando Pelayo. RT-UML for Modeling Real-

TimeWeb Services. Proceedings of Modeling, Design, and Analysis for Serviceoriented Architecture Work-

shop, mda4soa, SCC 2006, pp. 131–139, Chicago, USA, 2006. IEEE Computer Society.

3. A. Cimatti, E.M. Clarke, F. Giunchiglia and M. Roveri. NuSMV: A New Symbolic Model Checker. Interna-

tional Journal on Software Tools for Technology Transfer (STTT), vol 2, no.4, pp. 410–425. 2000.

4. G. Dı́az, J.J. Pardo, M.E. Cambronero, V. Valero, and F. Cuartero. Verification of Web Services with Timed

Automata. In ENTCS, vol: 157, issue: 2, pages 19–34. 2005.

5. H. Foster, S. Uchitel, J. Magee, and J. Kramer. WS-Engineer: A Tool for Model-Based Verification of Web

Service Compositions and Choreography. 29th IEEE/ACM International Conference on Software Engineer-

ing (ICSE), pp. 771–774. IEEE Computer Society/ACM Press, 2006.

6. X. Fu, T. Bultan, and J. Su. Wsat: A tool for formal analysis of web services. Proceedings of Computer-

Aided Verification (CAV), vol. 3114 of Lecture Notes in Computer Science, pp. 510–514. Springer–Verlag,

2004.

7. A. Gravel, X. Fu, and J. Su. An analysis tool for execution of bpel services. IEEE Joint Conference on E-

Commerce Technology (CEC) and Enterprise Computing, E-Commerce and E-Services (EEE), pp. 429–432,

Tokyo, Japan, 2007. IEEE Computer Society.

8. R. Hamadi and B. Benatallah. A Petri Net-based Model for Web Service Composition. In Proceedings of

the 14th Australasian database conference, vol. 17, pp. 191–200. 2003.

9. R. Kazhamiakin. Formal Analysis of Web Service Compositions. PhD. Dissertation, Univ. of Trento. 2007.

10. G.J. Holzmann. The SPIN Model Checker: Primer and Reference Manual. Addison-Wesley, 2003.

11. A. van Lamsweerde A. Dardenne and Stephen Fickas. Goal-directed requirements acquisition. Selected

Papers of the Sixth International Workshop on Software Specification and Design. Science of Computer

Programming, vol. 20, Issue 1-2, pp. 3–50. 1993

12. M. Pesic, H. Schonenberg and W.M.P. van der Aalst. DECLARE: Full Support for Loosely-Structured

Processes. Proc. of 11th International Enterprise Distributed Object Computing Conference (EDOC’07),

page 287. IEEE Computer Society Press. 2007.

13. OMG. UML 2.0 Superstructure proposal v.2.0., January 2003.

14. UML Profile for Schedulability, Performance, and Time Specification, Version 1.1.

http://www.omg.org/docs/smsc/04-12-05.pdf.

16

Permission to Speak: An Access Control Logic∗

Nikhil Dinesh Aravind Joshi Insup Lee

Oleg Sokolsky

Department of Computer and Information Science

University of Pennsylvania

{nikhild,joshi,lee,sokolsky}@seas.upenn.edu

October 26, 2008

Abstract

The modality of saying is central to access control logics. In this paper, we investigate the interaction of

saying with the deontic modalities of obligation and permission. The motivation is to provide a unified formalism

for phenomena that have been studied separately in the literature – (a) representation in access control, e.g.,

delegation and speaking for, (b) positive and negative permissions, and (c) conformance in the presence of

iterated deontic modalities, e.g., “required to forbid”. The central idea is to use statements that permit or require

other statements. We propose two axiom schemas that transfer permissions and obligations from one set of laws

to another. Policies are expressed in a non-monotonic formalism that accommodates reasoning about the transfer

of permissions.

1 Introduction

Access control is an important problem in trust management systems. Informally, a trust management system in-

volves a set of actors or principals, and a set of controlled or regulated actions, e.g., accessing medical information,

or downloading a song. The goal of such a system is to administrate requests to perform actions. Trust manage-

ment systems are commonly decomposed into two (interacting) components [1]: (a) authentication - determining

the source of a request, and (b) access control - determining whether a request is permitted according to a policy.

We focus on the problem of access control, which involves representing policies and evaluating requests. How-

ever, we will consider policies containing both obligations and permissions, rather than the usual access control

setting where permission is the more important deontic modality.

The motivation for this work is to provide a unified formalism for phenomena that have been considered sep-

arately in the literature – (a) representation in access control [3, 1, 2, 6, 11, 13], e.g., delegation and speaking for,

(b) positive and negative permissions (cf. [5]), and (c) conformance in the presence of iterated deontic modali-

ties [16], e.g., “required to forbid”. The central idea of this paper is that these phenomena involve the interaction

between the modalities of saying and permission. We discuss each item in turn to illustrate the connection.

Representation in Access Control: While there are a wide variety of access control logics, one commonality

that stands out is a notion of saying [1]. We can express the fact that a principal makes a statement. says
l(A)ϕ

denotes that principal A says ϕ in the set of laws l(A).1 B represents A on ϕ is expressed as says
l(B)ϕ ⇒

says
l(A)ϕ, where ⇒ is the implication connective of the underlying logic. Speaking for is a case of representation

where one principal represents another on all statements. In [1], B speaks for A is expressed using second-order

quantification, i.e., ∀ϕ : says
l(B)ϕ ⇒ says

l(A)ϕ. While there are a few alternatives in formalizing speaking

for [1, 3, 10], we will recast it in terms of the interaction between saying and permission. An advantage of this

analysis is that we can relate problems in access control policies to problems with regulatory texts in general.

We derive speaking for by taking a different view on representation. Specifically, we add an axiom schema to

a propositional modal logic, which allows us to express speaking for using a propositional formula. The axiom

∗This research was supported in part by ONR MURI N00014-07-1-0907 NSF CCF-0429948 and ARO W911NF-05-1-0158.
1We relativize speaking to a set of laws rather than a principal, i.e., says

l(A)
ϕ, rather than says

A
ϕ. This lets us use saying to reason

about specific statements [9], and avoid the algebra over principals in [3, 10].

17

that we propose involves the interaction between saying and permission. We say that B represents A on ϕ iff A

says that B is permitted to say ϕ, i.e., says
l(A)(PB(says

l(B)ϕ)), where PBψ is read as B is permitted to bring

about ψ. Our the axiom of transfer states that if A says that B is permitted to say ϕ, and B says ϕ, then A says ϕ,

which we express in our logic as

(says
l(A)(PB(says

l(B)ϕ)) ∧ says
l(B)ϕ) ⇒ says

l(A)ϕ

The axiom of transfer is intended for a particular sense of speaking/saying, i.e., speaking on someone’s behalf.

This sense of saying is the usual one in access control. To simplify matters, we do not explicitly represent the

principal on behalf of whom a statement is being made. B speaks for A is expressed as says
l(A)(PB(says

l(B)⊥)),

i.e., A says that B is permitted to say anything (⊥). We motivate our approach by showing how we can express

constructs that have been examined in the literature on deontic logic.

Positive and Negative Permission: The intuitive definition of permission as the dual of obligation, i.e., PAϕ =

¬OA¬ϕ (OAϕ is read as “A is obligated to bring about ϕ”) is known to be inadequate (cf. [5]). It works fine

for explicitly given permissions. However, for implicit permissions further distinctions need to be made. The

most common distinction is between positive and negative permission. Can we conclude that and action foo not

mentioned in the law is permitted? In one sense (positive permission), the answer is “no”, because no explicit

permission has been given. In another sense (negative permission), the answer is “yes”, because the principal has

not been explicitly forbidden from performing foo.

In our approach, the two kinds of permission are distinguished by varying the scope of negation. To establish

positive permission, we determine whether ϕ ⇒ says
l(H)(¬OA¬foo) provable?, while for negative permission,

we would establish that ϕ ⇒ says
l(H)(OA¬foo) not provable? In Section 2, we use the formalism of [9] to reason

about provability and its negation. The negation of provability is needed to express didn’t say. In other words, H

didn’t say ϕ iff says
l(H)ϕ is not provable from H’s statements. The discussion in [5, 15] suggests to us that the

relationship between negative permission and didn’t say is known, but to our knowledge, an explicit representation

of saying has not been carried out in a deontic logic.

Iterated Deontic Modalities: Marcus [16] pointed out a problem in formalizing iterated deontic modalities. We

relate it to the distinction between the two senses of permission. Consider the following statement: A should not

allow her child (B) to play near the road. Which sense of permission is appropriate here? Using positive permis-

sion, we get “A should not explicitly permit B to play”, which is inadequate. Negative permission is appropriate

here – “A should not not require B not to play”, i.e., “A should require B not to play”. To accommodate such

reasoning, the two kinds of permission need to be distinguished in the syntax of the logic. We note that [16]

argues for a distinction between senses of obligation rather than permission. In our approach, the various senses

are distinguished by varying the scope of negation.

We now discuss the relationship between representation and iterated permissions. Suppose a hospital (H)

permits a patient (A) to permit her mother (B) to access her information. We will rephrase the permission as fol-

lows: H says that A is permitted to say that B is permitted to access her information. Formally, this is represented

as says
l(H)(PA(says

l(A)(PBaccess))). If A does indeed permit access to her mother (says
l(A)(PBaccess)), we

will conclude says
l(H)(PBaccess) using the axiom of transfer, i.e., H permits access to B. As a result, iterated

permissions are related to representation, i.e., “H permits A to permit B to do ϕ” iff “A represents H in permitting

B to do ϕ”.

Outline: In Section 2.1, we present the axiomatization of the modal operators for saying and obligation. We

introduce two additional axioms that describe the interaction between the two modalities. In Section 2.2, we

integrate the axiomatization into a logic programming approach of [9], to describe the process of saying. Then,

in Section 3, we discuss our formalism in the context of related work. We consider two examples from existing

access control logics and their representation in our formalism. We also consider the treatment of iterated deontic

modalities [16] and argue that the partial solution provided in this paper is sufficient for access control applications.

2 A Logic for Access Control

In this section, we develop an access control logic, in the form of two interacting components – (a) the inference

component, which involves the choice of appropriate axioms, and (b) the saying component, which is used to

represent policies. Figure 1 shows the interaction between the components of the access control system. There

are two kinds of actions of interest – (1) operational acts, e.g., downloading a song, and (2) speech acts. The

18

operational acts are described using a state, which contains the interpretation of predicates, and the speech acts

are described using laws.

Laws:

1. If B says p, then p

2. p

A

B

Utterances:

Law 1 says p

Law 2 says p

Grant or Deny

Violations

Request

AxiomsState

Figure 1: Interaction between the components of the access control system

A principal speaks by introducing laws. In Figure 1, the principals A and B introduce the laws 1 and 2

respectively. The laws are evaluated using the axioms to produce a set of utterances, i.e., what the laws say. To

determine what a principal says, we look at what her laws say, e.g., B says p iff “Law 2 says p” is provable

from the utterances using the axioms. A set of laws can be thought of as a logic program, and utterances as the

extensions that result from the program (via a fixed point computation). Once we have the utterances, there are

several decision problems of interest. The access control problem is to decide whether a request is permitted

by the set of utterances. The conformance problem is to decide whether operational and speech acts satisfy the

obligations imposed by the utterances, and if they do not, violations are reported.

2.1 The Inference Component – Syntax and Axioms

In this section, we develop a predicate logic with two modalities saying and obligation. We allow formulas with

free variables, but no quantifier over objects. The quantification over objects is carried out in the process of

saying (Section 2.2), which uses provability in the propositional subset of the language defined here. We begin by

defining the syntax:

Definition 1 (Syntax) Given sets Φ1, ...,Φn (of predicate names), countable sets of variables X , object names O,

boolean variables B, a finite set of identifiers ID, and a function l : O → 2Id, the language L(Φ1, ...,Φn, X, O, B, l, ID),

abbreviated as L, is defined as follows:

ϕ ::= p(y1, . . . ,yj) | b | ϕ ∧ ϕ | ¬ϕ | says
Id

ψ | says
l(y) ψ

ψ ::= ϕ | ψ ∧ ψ | ¬ψ | Oyϕ

where, p ∈ Φj , (y1, ..., yj) ∈ (X ∪O)j , y ∈ X ∪O, and b ∈ B. We assume that X ∩O = ∅. The set of formulas

obtained from each BNF rule are referred to as Lϕ and Lψ respectively, and L = Lϕ ∪ Lψ .

Disjunction ϕ∨ψ = ¬(¬ϕ∧¬ψ) and implication ϕ ⇒ ψ = ¬ϕ∨ψ are derived connectives. Oyϕ is read as

“ϕ is obligated of y”. Permission is defined as the dual of obligation, i.e., Pyϕ = ¬Oy¬ϕ. The saying operators

are understood as follows. Principals speak by introducing identified laws (Section 2.2), thus says
Id

ϕ is read as

“ϕ is said in the laws Id”. l(A) is the set of laws introduced by the principal A ∈ O, allowing us to express “A

says ϕ”.

Note that the BNF rules ensure the alternation of obligation and saying modalities, e.g., Oy says
l(y) Ozϕ ∈

L, but OyOzϕ �∈ L. Following von Wright [19], we understand obligations as applying to actions and their

consequences. The language Lϕ (obtained from the first BNF rule) describes actions – (a) atomic actions, (b)

combinations of actions (using connectives), or (c) saying, which is (a consequence of) a speech act. An obligation

is an opinion, which is created via a speech act, but is not an act by itself.

The statements in L will be used in the inference component of access control, i.e., to determine what has been

said. In other words, we will be given a set of utterances U and a question ψ, and we need to determine whether

19

U ⇒ ψ is provable. We focus on provability for the propositional subset of L, i.e., without variables and function

applications. The propositional subset of L has the modalities says
Id

ϕ (for all Id ⊆ ID), and OA(ϕ) (for all

A ∈ O).

A1 All substitution instances of propositional tautologies.

A2 Q(ϕ ⇒ ψ) ⇒ (Q(ϕ) ⇒ Q(ψ)) (for all modalities Q)

A3 says
Id

ϕ ⇒ says
Id

′ ϕ (for all Id ⊆ Id

′)

A4 OAϕ ⇒ PAϕ (for all A ∈ O)

A5 (says
IdA

(PB says
IdB

ϕ) ∧ says
IdB

ϕ) ⇒ says
IdA

ϕ (for all {A, B} ⊆ O, IdA ⊆ l(A), and IdB ⊆ l(B))

A6 says
IdA

(PB says
IdA

ϕ) ⇒ says
IdA

ϕ (for all {A, B} ⊆ O, and IdA ⊆ l(A))

R1 From � ϕ ⇒ ψ and � ϕ, infer � ψ

R2 From � ϕ, infer � Q(ϕ) (for all modalities Q)

Figure 2: Axiomatization of the propositional fragment of L.

We adopt the axiomatization in Figure 2. A1 and R1 give us propositional reasoning. A2 and R2 are common

to both saying and obligation. A3 and A4 are specific to saying and obligation respectively. Finally, A5 and A6

describe the interaction between the two modalities. We will now discuss the axioms in the context of related

work.

Axioms for Saying: The axioms A1 and A2, together with the rules R1 and R2, gives us the modal logic K. The

K axiomatization was used by Abadi et al [3] as a basis for all (classical) access control logics. Further motivation

comes from our previous work [9]. In [9] and in Section 2.2 here, to describe policies, we evaluate says
Id

ϕ

using provability. Given a set of formulas U , says
Id

ϕ is true w.r.t. U iff
∧

U ⇒ says
Id

ϕ is provable. The K

axiomatization is sound w.r.t. this definition. A3 says that if ϕ is said by the statements (Id), then ϕ also holds

according to a larger set of statements (Id

′). This axiom is also sound w.r.t. [9].

Obligation and Its Interaction with Saying: The K axiomatization, together with A4, gives us the the modal

logic KD. This axiomatization is common to many systems, giving it the name Standard Deontic Logic (c.f. [12]).

The main focus of this work is on the problem of iterated deontic modalities [16]. Our goal is to provide a

partial solution, as needed for access control. We characterize the interaction between saying and obligation with

two axioms. The transfer axiom, A5, is read as “If A says that B is permitted to say ϕ, and B says ϕ, then A says

ϕ”. As we discussed in Section 1, A5 is needed to accommodate speaking for and delegation, and we will discuss

examples in Section 3.1. The self-respecting axiom, A6, is read as “If A permits B to say ϕ using A’s laws, then A

says ϕ”. A6 ensures that statements in l(B) do not (inadvertently) interfere with the consequences of statements

in l(A).

Provability: The process of saying (Section 2.2) relies on provability in the language L. We say that ϕ is provable

(denoted � ϕ), if ϕ is an instance of the axioms A1-A6 or follows from the axioms using the rules R1 and R2.

In the full paper, we establish the decidability of the provability question; that is, given ϕ ∈ L which is

propositional, � ϕ is decidable. There, we provide a Kripke semantics for which the axiomatization is sound and

complete. As in [10], semantics is used to show that a statement is not provable. The full paper also provides the

discussion of the computational complexity of testing satisfiability of ϕ.

2.2 The Saying Component - Policies and Conformance

In this section, we briefly discuss the representation and evaluation of policies or regulations. The result of

evaluating regulation is a set of annotations or utterances, from which we can determine conformance. The

formalism developed here is an extension of [9], and is a generalized form of logic programming. Logic programs

are popular in representing regulatory texts [18, 17, 12], and access control policies [13, 7, 4].

20

Definition 2 (Syntax of Regulation) Given a finite set of identifiers ID, a body of regulation Reg is a set of

statements such that for each id ∈ ID, there exist ϕ ∈ Lϕ and ψ ∈ Lψ such that: id : ϕ � ψ ∈ Reg

id : ϕ � ψ is read as: “the precondition ϕ leads to the postcondition ψ”. The distinction between precondi-

tions and postconditions corresponds to the distinction between input and output in input-output logic [14].

Example: We will describe the evaluation using an example from [9], which is a fragment of the law that regulates

collection and testing of blood donations.

(1) Except as specified in (2), every donation of blood or blood component must be tested for evidence of

infection due to Hepatitis B.

(2) You are not required to test donations of source plasma for evidence of infection due to Hepatitis B.

Statement (1) conveys an obligation to test donations of blood or blood component for Hepatitis B, and (2)

conveys a permission not to test specific types of donations. We represent the two statements above as follows:

• 1 : bb(u) ∧ d(x) ∧ ¬ says
{2}(¬Outest(x)) � Outest(x), and

• 2 : bb(v) ∧ d(y) ∧ sp(y) � ¬Ovtest(y)

The predicates are understood as follows. bb(u) is true iff u is a bloodbank, d(x) is true iff x is a donation, sp(y)

is true iff y consists of source plasma, and test(x) is true iff x is tested for Hepatitis B. In the obligation, the

subformula says
{2}(¬Outest(x)) is understood as “u is not obligated to test x according to statement (2)”.

Objects Predicates Utterances

o, o1, bb(o), d(o1), sp(o1), test(o1) says
{2}(¬Ootest(o1))

o2 bb(o), d(o2), ¬sp(o2), ¬test(o2) says
{1}(Ootest(o2))

Table 1: A state and its utterances

Regulatory statements are evaluated with respect to states, which supply valuations of predicates used in the

statements, and assignments of objects to variables. If the precondition of a statement is true, the postcondition,

with variables substituted by their respective object assignments, is uttered. Table 1 shows a state of a bloodbank

augmented with utterances. There are three objects – o is a bloodbank, o1 is a donation of source plasma, and o2

is a non-source plasma donation. We define conformance as the satisfaction of all obligations that are derived as

utterances. Thus the state does not conform to the regulation, since o2 is not tested.

Evaluating the regulation: We say that a statement id depends on a statement id

′ if says
Id

ψ with id

′ ∈ Id

is used in the precondition of id. If dependencies are acyclic, evaluation is performed in the dependency order;

in the case of cycles, a least fixed point is computed. To evaluate the example, we first consider permission

2 : bb(v) ∧ d(y) ∧ sp(y) � ¬Ovtest(y). Since the precondition of statement (2) is true for the assignment of

v to o and y to o1, we have the utterance says
{2}(¬Ootest(o1)). However, since o2 is not a donation of source

plasma, there is no corresponding utterance. Now consider the formula says
{2}(¬Outest(x)) in the antecedent

of (1). To evaluate it, we look for a set of utterances U that make the formula provable, that is, �
∧

U ⇒
says

{2}(¬Outest(x)). In Table 1, there is an annotation that makes this implication a propositional tautology

when u is assigned to o and x to o1. This lets us, in turn, to produce the utterance says
{1}(Ootest(o2)).

3 Discussion

In this section, we discuss how various constructs from the literature are expressed in our framework. In Sec-

tion 3.1, we discuss access control examples. Section 3.2 discusses conformance in the presence of iterated

deontic modalities [16]. Our approach provides a partial analysis, and we argue that it suffices for access control

applications.

21

3.1 Access Control

We discuss two access control examples in this section. The first example highlights an important restriction of

the policies in Section 2.2, i.e., a policy lets us conclude what has been said, but not what actually happens. The

second example illustrates how the delegation operator of [13] can be defined in our framework.

Example 1 [10]: Consider a file-access scenario with an administrating principal (A), a user (B), a file (file1), and

the following policy:

1. If A says that file1 should be deleted, then this must be the case.

2. A trusts B to decided whether file1 should be deleted.

3. B wants to delete file1.

We introduce a new principal F for the file system. The set U of utterances (U) obtained at the fixed point

is {says
l(F) PA says

l(A) OF (delfile1), says
l(A) PB says

l(B) OF (delfile1), says
l(B) OF (delfile1)}. In the first

utterance, the file system F says that A is permitted to require it (F) to delete file1. The second utterance is

the delegation from A to B, and the third utterance is B’s wish to delete file1. Using A5, we will conclude that

U � says
l(F) OF (delfile1). In other words, the system requires itself to delete file1.

Our analysis differs in an important way from [10]. We do not conclude that file1 is actually deleted, i.e.,

U �� deletefile1. In fact, we can show that there is no policy (as defined in Section 2.2) that lets us make this

conclusion. In some cases, it may be warranted to assume/axiomatize self-conformance, i.e., (says
l(F) OF (ϕ)) ⇒

ϕ. However, conflicting self-imposed requirements would make U inconsistent.

Example 2: The delegation operator of [13] has a compelling definition in our framework. The syntax (in [13])

for delegation is “x delegates (ϕ)d to y”, where d is the depth of delegation. We define the schema ps(ϕ, x, d),

where x is used to generate variable names, and d ∈ N :

• ps(ϕ, x, 1) = Px1
says

l(x1)
ϕ

• ps(ϕ, x, d) = Pxd
says

l(xd)(ϕ ∧ ps(ϕ, x, d − 1)), for d > 1

The statement “A delegates (delfile1)2 to B” is interpreted as follows: A says delfile1 if B says it or anyone that

B trusts says it. Suppose, in addition, that B delegates (delfile1)1 to C, and C says delfile1. We express this with

the following rules:

1. (x2 = B) � ps(delfile1, x, 2)

2. (y1 = C) � ps(delfile1, y, 1)

3. � � delfile1

If 1 ∈ l(A), 2 ∈ l(B) and 3 ∈ l(C), we will derive A says delfile1. Further redelegations by C (by modifying

statement 3) will not be attributed to A.

In [13], a representation statement is used to allow transfers without consuming delegation depth. If C rep-

resents B on delfile1, then C is permitted the same redelegation as B. In our approach, delegation is just a

special kind of representation. A delegates (ϕ)d to B iff B represents A on “delegating (ϕ)d−1 to anyone”. If C

represents B on “delegating (ϕ)d−1 to anyone”, then she represents A as well.

Our approach can capture more complicated cases of delegation. For example, A may not wish to trust C

to the same extent as B. Informally, we can express this lack of trust by permitting B to delegate, if she does

not delegate to a higher depth. Such conditional delegations cannot be expressed in the formalism in [13]. Note

however that the restrictions in [13] are motivated from the perspective of efficiency, while the focus here is on

expressive power. Exploring restrictions on rules (for efficiency) is an interesting problem for further research.

3.2 Iterated Deontic Modalities

The main purpose for our extension of the logic in [9] is to provide a (partial) analysis of iterated deontic modali-

ties [16], i.e., sentences of the form “required to allow x”.

22

Example 1 (based on [16]): consider

(3) The owners of parking lots ought to forbid parking near the entrance.

We analyze this sentence as follows: “The owners of parking lots ought to (introduce laws that) forbid parking

near the entrance.”. In other words, (3) is an obligation to introduce a prohibition. If the owner introduces such a

law, then the person parking is viewed as non-conformant, but it is the owner that needs to conform to (3). We can

represent (3) in logic as follows:

3 : owner(x) ∧ person(y) � Ox says
l(x) Oy¬pne(y, x)

Here owner(x) denotes the owner of a parking lot, person(y) is a person parking a car, and pne(y, x) denotes

y parking near the entrance of the lot owned by x.

Let us assume a state where {owner(A), person(B), pne(B, A)} hold. Suppose first that A does not intro-

duce any laws, i.e., l(A) = ∅. The computed utterances are {says
{3} OA says

∅
OB¬pne(B, A)}. Here, A does

not conform to {3}, because there is an obligation that l(A) does not satisfy; however, B conforms. Now suppose

that A introduces the law 2 : person(y) � Oy¬pne(y, A). l(A) = {2}. The computed utterances now are:

{says
{3} OA says

{2} OB¬pne(B, A), says
{2} OB¬pne(B, A)}. Here A conforms to {3}. However, now B does

not conform. We have thus captured the situation where the statement (3) conveys an obligation to A and if A

conforms, the embedded obligation is conveyed to B.

Example 2: As we mentioned, our approach provides only a partial analysis of iterated modalities. Consider the

following example:

(4) You are required to allow a patient to see his records.

By our analysis, (4) is an obligation on the hospital to provide a permission. Let us suppose that a hospital

introduces such a permission in its policy. Has it conformed to (4)? The problem arises in distinguishing between

claimed permission, and actual permission. A hospital claims that it permits a patient to see his records, by making

an appropriate rule. On the other hand, a hospital actually permits a patient to see his records, by taking an action,

e.g., sending the records via mail. Due to the practical difficulties, we focus on claimed permission, and leave open

the problem of analyzing actual permission. In access control systems, permitted actions (other than statements)

are in the control of the system. Every permitted request can be facilitated by the system, and we assume that the

system facilitates accordingly. To our knowledge, this assumption of facilitation is common to all access control

systems.

4 Conclusions

We have motivated and described an access control logic that uses the interaction between saying and deontic

modalities. We proposed two axioms to characterize the interaction (Section 2.1), and showed how these axioms

could be incorporated into a logic programming approach (Section 2.2). In Sections 1 and 3, we discussed how

various constructs that have been studied separately are unified in our formalism.

Logic programming has been popular in access control [13, 7, 4]. The formalism that we adopted (Section 2.2)

provides a way to integrate the logic programming approaches with the logics of saying, i.e., by evaluating saying

using provability. However, the provability tests can be expensive, and it is of interest to identify tractable frag-

ments. The logic programming restriction to Horn clauses, and the techniques in [8, 12] suggest some directions

toward this end.

References

[1] M. Abadi. Logic in access control. In Proceedings of the Symposium on Logic in Computer Science, 2003.

[2] M. Abadi. Access control in a core calculus of dependency. Electronic notes in Theoretical Computer

Science, 172:5–31, 2007.

23

[3] M. Abadi, M. Burrows, B. Lampson, and G. Plotkin. A calculus for access control in distributed systems.

ACM Transactions on Programming Languages and Systems, 15(4):706–734, 1993.

[4] E. Bertino, B. Catania, E. Ferrari, and P. Perlasca. A logical framework for reasoning about access control

models. ACM Transactions on Information Systems Security, 6(1):71–127, 2003.

[5] G. Boella and L. van der Torre. Permissions and obligations in hierarchical normative systems. In Proceed-

ings of the 9th international conference on AI and law, 2003.

[6] A. Cirillo, R. Jagadeesan, C. Pitcher, and J. Riely. Do as I SaY! Programmatic access control with explicit

identities. In 20th IEEE Computer Security Foundations Symposium, 2007.

[7] J. Crampton, G. Loizou, and G. O. Shea. A logic of access control. The Computer Journal, 44(1):137–149,

2001.

[8] N. Dinesh, A. Joshi, I. Lee, and O. Sokolsky. Checking traces for regulatory conformance. In Proceedings

of the Workshop on Runtime Verification (to appear), volume 5289 of LNCS, pages 86–103, 2008.

[9] N. Dinesh, A. Joshi, I. Lee, and O. Sokolsky. Reasoning about conditions and exceptions to laws in regulatory

conformance checking. In Proceedings of the Conference on Deontic Logic in Computer Science, 2008.

[10] D. Garg and M. Abadi. A modal deconstruction of access control logics. In Proceedings of the 11th Inter-

national Conference on Foundations of Software Science and Computation Structures (FoSSaCS), 2008.

[11] D. Garg and F. Pfenning. Non-interference in constructive authorization logic. In 19th IEEE Computer

Security Foundations Workshop, 2006.

[12] G. Governatori and A. Rotolo. Bio logical agents: Norms, beliefs, intentions in defeasible logic. Autonomous

Agents and Multi-Agent Systems, 17(1):36–69, 2008.

[13] N. Li, B. N. Grosof, and J. Feigenbaum. Delegation logic: a logic-based approach to distributed authoriza-

tion. ACM Transactions on Information and System Security, 6(1):128–171, 2003.

[14] D. Makinson and L. van der Torre. Input/output logics. Journal of Philosophical Logic, 29:383–408, 2000.

[15] D. Makinson and L. van der Torre. Permissions from an input/output perspective. Journal of Philosophical

Logic, 32(4), 2003.

[16] R. B. Marcus. Iterated deontic modalities. Mind, 75(300), 1966.

[17] L. T. McCarty. A language for legal discourse - i. basic features. In Proceedings of ICAIL, 1989.

[18] M. Sergot, F.Sadri, R. Kowalski, F.Kriwaczek, P.Hammond, and H. Cory. The british nationality act as a

logic program. Communications of the ACM, 29(5):370–86, 1986.

[19] G. H. von Wright. Deontic logic. Mind, 60:1–15, 1951.

24

Integrating Contract-based Security Monitors in the Software Development Life

Cycle∗

Alexander M. Hoole1, Isabelle Simplot-Ryl2, Issa Traore1

1Dept. of Electrical and Computer Engineering

University of Victoria

P.O. Box 3055 STN CSC

Victoria, B.C. V8W 3P6

CANADA

2LIFL CNRS UMR 8022/INRIA Lille-Nord Europe

Universite de Lille I, Cite Scientifique

F-59655 Villeneuve d’Ascq Cedex

FRANCE

E-mail: alex.hoole@ece.uvic.ca isabelle.ryl@lifl.fr itraore@ece.uvic.ca

Abstract

Software systems, containing security vulnerabilities, continue to be created and released to consumers. We need to

adopt improved software engineering practices to reduce the security vulnerabilities in modern systems. These practices

should begin with stated security policies and end with systems which are quantitatively, not just qualitatively, more secure.

Currently, contracts have been proposed for reliability and formal verification; yet, their use in security is limited. In this

work, we propose a contract-based security assertion monitoring framework (CB SAMF) that is intended to reduce the

number of security vulnerabilities that are exploitable, spanning multiple software layers, to be used in an enhanced systems

development life cycle (SDLC).

1. Introduction

Security has always been a hybrid of art and science as throughout history humans have attempted to protect valuable

assets. Our modern information driven society has placed an increased value on data and the transfer and storage of infor-

mation. More recently, in the last decade, industry and academia have pushed for more secure solutions for information

technology assets and facilities as we have equally seen a rise in malicious hacking and security threats.

Many different approaches have been presented recently toward solving the problem of weak security; however, we

obviously have not yet found a solution since security related attacks continue to persist.

Gary McGraw identifies three trends that have a large influence on the growth and evolution of the software security

problem [13]. First, connectivity to the Internet has increased the number of attack vectors and the ease of which an attack

can be made. Second, extensibility of software is allowing systems to grow in an incremental fashion which potentially adds

new security vulnerabilities to existing systems. Lastly, the extensive increase of software complexity in modern information

systems leads us to a greater number of vulnerabilities. These three trends will continue and lead us to one, hopefully obvious,

conclusion. Security and dependability vulnerabilities must be resolved during design and testing before being released to

the general public.

Recently, we have observed a promising shift in industry and academia to reduce security vulnerabilities during the

software development life cycle (SDLC), rather than attempt to patch the problem after software is shipped [4, 8, 9, 13]. If

we can reduce security defects early in the SDLC we reduce not only the number of vulnerabilities but also the risk of attack.

While there are areas being researched which target specific areas of security during the systems development life cycle

(SDLC), a methodology for testing security across multiple software layers is still lacking. We propose a contract-based

security assertion monitoring framework (CB SAMF) that is intended to reduce the number of security vulnerabilities that

are exploitable, spanning multiple software layers, to be used in an enhanced SDLC.

∗This work is partially supported by CPER Nord-Pas-de-Calais/FEDER Campus Intelligence Ambiante.

25

The following section will review SDLC and how it relates to security, Section 3 discusses modeling techniques related

to security, Section 4 introduces our proposed approach, Section 5 discusses our contract model, Section 6 expands on the

benefits of contracts for security, and Section 7 provides our concluding remarks.

2 SDLC and Security

Security policy documents are often used by organizations to specify the laws, rules, practices, and principles that govern

how to manage, protect, and transfer sensitive information. These policy documents represent a corner stone from which

software requirements can be built. Requirements in turn drive most modern software/system development life cycles. During

the SDLC there are many opportunities to reduce security vulnerabilities.

A SDLC is typically an iterative and recursive process which clearly identifies the stages that should lead a successful

software project through its entire development life cycle. We are interested with integrating security into every phase of

the SDLC. In fact, several tools and methodologies have already begun to integrate themselves accordingly. We believe,

however, that there is a great deal of work remaining in this area.

The SDLC is still lacking models, methods, and tools that assist in creating more secure and reliable software products.

The audience for this work includes individuals and teams fulfilling the following roles during a SDLC: analyst, architect,

developer, tester, maintainer, user, and support. Essentially, all of the development-related stake holders in the SDLC.

Recently Serpanos and Henkel asserted that a unified approach to dependability and security assessment will let architects

and designers deal with issues in embedded computing platforms [18]. The observation that security and dependability are

interrelated is an important one. Serpanos and Henkel differentiate the two based on security flaws being problems that are

exploited on purpose, while flaws which are exploited by accident would be qualified as dependability problems. It would be

interesting to have a framework that can support both dependability and security. Thus, we have kept dependability in mind

while designing our framework; however, we focus on security vulnerability monitoring since it is our primary concern.

The goal of our research is to create new methods, models, and tools that integrate into the phases of the SDLC to create

more secure software. We cannot always depend on the consumer to have sufficient protection mechanisms in place on their

systems.1 We need to take a more active role during development to ensure software ships fewer security vulnerabilities.

A modified form of the SDLC is depicted in Figure 1 showing how various security activities can be integrated into the

iterative and recursive SDLC. Existing SDLC hybrids integrate some of the steps identified in Figure 1 such as those put

forward by CERT, Microsoft’s Michael Howard and Steve Lipner [9], and others. Nothing has been identified to date that

guarantees security in software systems; however, our aim is to help reduce the risk associated with security vulnerabilities.

3 Modeling

For many years software developers have been using methodologies meant to simplify and standardize the SDLC. One

notation that has met with a great deal of success, in several methodologies, is the Unified Modeling Language(UML). UML

does not handle all analysis, design, and implementation requirements for all projects. For example, UML is a natural fit

for most object oriented languages; however, not all projects demand an object oriented approach. Projects that require high

performance, and a low memory footprint, are typically implemented in non-object oriented languages such as C.

Several diagrams that are used in UML are useful in the broader spectrum of all software design projects. For instance, use

case diagrams are very useful in identifying the main functions of a software artifact. In fact, use cases provide the earliest

opportunity to identify security risk in a new SDLC for a given application (other than general risk analysis).

Recently, a more modern addition to use cases, called misuse cases, has been created. Misuse cases, also known as abuse

cases, can be used during requirements analysis [1, 7, 17] leading to a more complete understanding of potential security

risks that need to be mitigated. Hope, McGraw, and Antón also mention that misuse cases can be over-used and can lead to

identification of a fairly large set of misuse cases that may have little impact on security [7]. With the knowledge of subject

matter experts and security analysts these misuse cases need to be prioritized to balance risk and cost. During development

many risks can be completely mitigated based on the early warnings of the misuse cases. We must recognize, however, that

the probability of a particular misuse may not be completely understood and that some risks may not be identified until later

in the SDLC. It would be useful to have a mechanism that can identify these security threats in the code and allow for a

monitoring system to be implemented to capture and trace any possible misuse.2

1Consumers often employ intrusion detection systems, firewalls, and other products to help reduce security risks.
2An example of such an approach would be to use the output of static analysis security tools as the basis of misuse case creation.

26

Figure 1. Security activities integrated into the typical waterfall SDLC. Regular SDLC steps are
numbered and linked in diagonal. Security activities are shown horizontally.

Misuse case diagrams can be used to expose a wide variety of threats including privacy violation, denial of service,

privilege escalation, identity or information theft, and network based attacks. As with use case diagrams, misuse case

diagrams are continually reviewed and revised throughout the SDLC. The components that make up a misuse case are

documented already in [1, 7, 17].

Once misuse cases have been identified we can then proceed with the identification of security violation scenarios. One

technique for identification of these violation scenarios is the use of an attack tree. Each depth first traversal of an attack tree

will identify possible violation scenarios [15].

4 Proposed Approach

Now that we have discussed some of the methods for identifying potential vulnerabilities, we propose a model for mon-

itoring applications for security violations during the middle phases of the SDLC which also allows for the collection of

forensic data based on the prioritized security risks identified earlier in the SDLC.

This monitoring framework can be integrated early during SDLC. In Figure 2, we depict how the security policy docu-

ment is used as part of the processes identifying the security requirements. Security requirements are then used during the

identification of misuse cases (along with normal use cases) that are intended to identify potential vulnerabilities. Once prior-

itized, these misuse cases can then drive the creation of attack trees which further identify intrusion scenarios. The intrusion

scenarios can then be used during design and testing to create sequence diagrams and associated test cases. Finally, during

implementation, sequence diagrams can be generated which identify security vulnerabilities (for example, system/function

calls that have known vulnerabilities). Once a vulnerability has been identified, a ”contract” can be created using assertions

and additional rules to guard against, or verify, a given vulnerability. These contracts can then in turn be used to generate

security probes that are used during execution to track forensic data in our monitoring framework (CB SAMF).

Consideration should be given as to whether or not output formats from existing tools, such as static analysis tools, may

be translated into a format that may be used by the assertion monitoring framework.

27

Figure 2. System flow diagram leading to the use of contracts and monitoring probes.

Ultimately the focus of the initial work will be on the last three nodes of Figure 2 by creating and consuming a contract,

generating the assertion probes, monitoring assertions, and reacting appropriately using the monitoring framework.

5 Contract Model

The notion of a contract used in software engineering is not a new idea [6, 10, 11, 14]. When used for security, however,

we must look outside of the basic preconditions and postconditions that are often used when implementing systems using

contracts and look carefully at what properties need to be specified in a contract to improve security. Historically, the

precondition specifies when it is appropriate to call a particular feature (function/method), while a postcondition specifies

what is true after a particular feature is called (what has been accomplished by the function/method). 3

Our definition of contract needs to bind the caller and callee to deal with additional properties involving timing, property

values, and other events.4 For example, a contract that is specified for a supplier X is consumed by a consumer Y guarantees

that X has fulfilled the postcondition(s), provided that Y has satisfied the precondition(s). Thus, the contract provides pro-

tection for both parties. The consumer is protected from the supplier since the postconditions have been guaranteed by the

supplier. The supplier is protected from the consumer since the preconditions have been guaranteed by the consumer.

Contracts, as proposed by Meyer, are not suitable for security monitoring.5 The require, guarantee, and references fields of

the contract, that correspond to the pre, post, and invariants, do not handle all of the necessary attributes of security defects. In

particular, we would propose the addition of several new contractual fields including context, history, and response. Context

is required since the basic reliability contract above does not factor environmental influence. History is required since security

vulnerabilities are often complex and are sometimes the result of a series of actions which may occur in parallel. Both context

and history can be useful when dealing with DoS and race-condition vulnerabilities. Finally, response is required so that we

can choose how a particular assertion is handled when an exploitation is detected. We desire the ability to deal with security

assertion failures, not just detect them as would be the case if we used the form of contract proposed by Meyer.6

Our form of contract includes the following fields:

• Requirements - in the form of preconditions (PRE)

• Guarantees - in the form of postconditions (POST)

• References - in the form of invariants (INV)

• Context - in the form of relevant environmental information (CONT)

• History - in the form of some knowledge keeping construct (HIST)

3Many pre and postconditions are more to do with robustness than security.
4The definition of binding contract: The legal agreement between two or more entities to perform and/or not perform a set of actions.
5For example,under normal contracts, a false precondition does not guarantee that the system will not process the input. It may still allow certain types

of attacks such as buffer overflows to continue.
6The concept of resumption and organized panic for exception handling, used by Meyer, could also fall under our broader response category [14].

28

• Response - in the form of a reactive measure (RESP)

Work done by Barringer et al on program monitoring and rule-based runtime verification has exposed interesting results

[2, 3]. Specifically, the work on linear temporal logic (LTL) and program states has been core to several attempts towards

runtime verification and is a promising candidate for the notation of our contracts.

Each contract (C) will contain a breakpoint (B) and one or more assertions (A). A breakpoint identifies a monitoring lo-

cation or symbol in the target application. For example, a contract should be able to specify a target function in a program

which affects the state of an assertion. The assertion is a rule which must remain true at the breakpoint. Each assertion has

associated with it zero or more of the security contract extensions (E) mentioned above (context, history, and response). An

assertion can take on one of the following three forms: precondition (PRE), postcondition (POST), or invariant (INV). We

do not represent the assertions types separately since they all take the same form. Each assertion is composed of zero or

more rules (R), relating to the target (remember the breakpoint B), and zero or more monitors (M). The rules, monitors, and

extensions are individually named (N). A rule specifies a property of the state of the program which needs to remain true,

while a monitor enforces one or more rules. The quantifiers min and max represent liveness and safety properties respectively

and are important for the boundary cases of a monitor trace. The body of every rule and monitor is specified as a boolean

valued formula of the syntactic category Form.7 Therefore, each contract may be instantiated using the following grammar8:

C := B (A{E}) {A{E}};

E := {CONT} | {HIST} | {RESP};

A := {R}{M};

R := {max|min} N(T1x1, ..., Tnxn) = F ;

M := mon N = F ;

T := Form | primitive type;

B := symbol | HEX address;

F := exp|true|false|¬F |F1 ∧ F2|F1 ∨ F2|F1 → F2| � F | � F |

F1 · F2|N(F1, . . . , Fn)|xi;

CONT := env N | res N;

HIST := trace N | runningsum N | runningavg N;

RESP := core N | term N | kill N | log N;

When defining rules, the max prefix indicates that a given rule defines a safety property and min indicates that a rule is

a liveness property [3, 16].9 We have also tentatively defined possible extended behaviors for context, history and response

elements and may extend these in the future. Context may specify environmental or resource information (external to the

program) which is needed by the contract. History may contain trace data or statistically relevant information for the contract.

Finally, response may specify an action to perform an assertion is violated.10

From this definition it is possible to use multiple separate monitors or redirect multiple rules to the same monitor.

6 Benefits of Contract for Security Monitoring

Targeting the identification, verification and removal of security vulnerabilities from systems is not a trivial task. We chose
the notion of contracts for an assertion framework so that we can state precise properties about a system without having to

7This notation is derived from linear temporal logic (LTL) and is inspired by the EAGLE framework that was proposed by Barringer et al [2, 3].
8Each line is a Extended Backus-Naur Form (EBNF) production. Following is a simplified description of EBNF notation that we have used:

:= meaning ”is defined as”

| meaning ”or”

, meaning concatenation (used to separate items in a sequence)

{ } meaning zero or more times

{ }- meaning one or more times

[] meaning optional item

() meaning grouping

; marks the end of a rule
9Safety properties state that if a behavior is unacceptable any extension of that behavior is also unacceptable. Liveness properties state that for a given

requirement, and any finite duration, the behavior can always be extended such that it satisfies the requirement[16, 12].
10Possible responses include the following: core=produce a core dump, term=terminate the task, kill=kill the task, log=produce an audit report for the

event.

29

modify the code directly. In order to understand the benefits of these contracts for security monitoring we will briefly discuss
a variety of common security vulnerabilities. An example set of common security problems found in systems is as follows:

• Exploitable Logic Error • Inadequate Parameter Validation Incomplete/Inconsistent

• Inadequate Concurrency Control • Inadequate Authentication/Authorization/Identification

• Weak Dependencies/Altered Files • Implicit Sharing of Data and Data Leakage

As we progress with this work we expect that a wide variety of vulnerabilities should be covered by contracts. Exploitable
logic errors are difficult to track down; however, if we can identify environmental, historical, or timing information related to
the expected behavior, contracts can be written to detect misuse. Parameter validation issues can be handled by our pre and
post conditions. Concurrency, accountability, and protocol issues can be tracked through the use of historical, environmental,
pre and post conditions. Finally, the addition of historical and environmental assertions should allow us to track vulnerabilities
related to weak dependencies and data leakage. Furthermore, to give an idea of the types of attacks we should attempt to
counter, a listing of network related attack classes is as follows (derived from [5]):

• Password Stealing • Social Engineering

• Bugs and Back Doors • Authentication Failures

• Protocol Failures • Information Leakage

• Exponential Attacks Viruses and Worms • Denial-of-Service Attacks

• Botnets • Active Attacks

Contracts are not suitable for dealing with all types of attacks. For example, password stealing can occur through the use of a

network sniffer or through the use of social engineering techniques. The ability of an attacker to passively monitory network

traffic will not be prevented through the use of contracts; however, we can use contracts to ensure that security properties of

our systems (derived from our initial security policies) are observed. In the case of password stealing, the password should

never enter a public network in clear text and the protocol used for authentication should not be subject to replay attacks.

These are properties for which we can design contracts.

7 Conclusion

Our enhanced version of contracts provides a novel way to propagate requirements-based security assertions through the

SDLC. Some techniques, such as misuse cases, attack trees, and static analysis, are already providing ways of identifying

potential vulnerabilities during the early phases of the SDLC; however, these approaches can lead to a high rate of false-

positives which consume resources. Our (CB SAMF) is able to help reduce vulnerabilities in multi-layered systems by not

only providing a way to detect if a particular contract is violated, but also provides reactive measures.

References

[1] I. Alexander. Misuse cases: Use cases with hostile intent. IEEE Software, 20(1):58–66, 2003.
[2] H. Barringer, A. Goldberg, K. Havelund, and K. Sen. Program monitoring with ltl in eagle. ipdps, 17:264b, 2004.
[3] H. Barringer, A. Goldberg, K. Havelund, and K. Sen. Rule-based runtime verification, 2004.
[4] M. Bishop. Computer Security: Art and Scienc. Addison-Wesley, Boston, MA, USA, 2003.
[5] W. R. Cheswick, S. M. Bellovin, and A. D. Rubin. Firewalls and Internet Security: Repelling the Wily Hacker. Addison-Wesley

Longman Publishing Co., Inc., Boston, MA, USA, 2003.
[6] A. Février, E. Najm, and J.-B. Stefani. Contracts for odp. In ARTS ’97: Proceedings of the 4th International AMAST Workshop on

Real-Time Systems and Concurrent and Distributed Software, pages 216–232, London, UK, 1997. Springer-Verlag.
[7] P. Hope, G. McGraw, and A. I. Anton. Misuse and abuse cases: Getting past the positive. IEEE Security and Privacy, 02(3):90–92,

2004.
[8] M. Howard. Building more secure software with improved development processes. IEEE Security and Privacy, 2(6):63–65, 2004.
[9] M. Howard and S. Lipner. The Security Development Lifecycle. Microsoft Press, Redmond, WA, USA, 2006.

[10] J. C. M. Jr. Programming by contract. Computer, 29(3):109–111, 1996.
[11] L. Lamport. A simple approach to specifying concurrent systems. Commun. ACM, 32(1):32–45, 1989.
[12] Z. Manna and A. Pnueli. The temporal logic of reactive and concurrent systems. Springer-Verlag New York, Inc., New York, NY,

USA, 1992.
[13] G. McGraw. Software Security: Building Security In. Addison-Wesley Professional, 2006.
[14] B. Meyer. Applying ”design by contract”. Computer, 25(10):40–51, 1992.
[15] A. Moore, R. Ellison, and R. Linger. Attack modeling for information security and survivability, 2001.
[16] D. K. Peters and D. L. Parnas. Requirements-based monitors for real-time systems. SIGSOFT Softw. Eng. Notes, 25(5):77–85, 2000.
[17] G. Peterson and J. Steven. Defining misuse within the development process. IEEE Security and Privacy, 04(6):81–84, 2006.
[18] D. Serpanos and J. Henkel. Dependability and security will change embedded computing. Computer, 41(1):103–105, 2008.

30

Towards verifying contract regulated service composition

Alessio Lomuscio Hongyang Qu Monika Solanki

Department of Computing, Imperial College London, UK

Abstract

We report on a novel approach to (semi-)automatically compile and verify contract-regulated service com-

positions. We specify web services and the contracts governing them as WSBPEL behaviours. We compile

WSBPEL behaviours into the specialised system description language ISPL, to be used with the model checker

MCMAS to verify behaviours automatically. We use the formalism of temporal-epistemic logic suitably ex-

tended to deal with compliance/violations of contracts. We illustrate these concepts using a motivating

example whose state space is approximately 10
6

and discuss experimental results.

1 Introduction

Web services (WS) are now considered one of the key technologies for building new generations of digital busi-

ness systems. Industrial strength distributed applications can be built across organisational boundaries using

services as basic building blocks. When services are combined, a significant challenge is to regulate the business

interactions between them. In an environment where previously unknown services are dynamically discovered

and binded, their composition is usually underpinned by binding agreements or “contracts”. Should a contract

be broken by one of the parties, “legal remedies” may be applicable in the form of penalties, additional rights to

some party, and, possibly, additional penalties with respect to third parties.

Conventionally, contracts have been defined and interpreted using natural languages. In electronic business

environments, new formal models and tools are needed to enable the successful enforcement of dynamic contrac-

tual agreements between services. While designing a contract-regulated composition, an important aspect is the

rigorous analysis of possible execution behaviours of individual services as well as the overall behaviour of the

composition. A system made of few localised services may only interact in a small number of ways governed

by a limited set of contract clauses. However when several subsystems coordinate in an open environment, the

contracts binding them are non-trivial and complex, making it difficult to forsee all the possible executions. Ad-

ditionally, while trying to comply to their respective contractually defined behaviours, certain components may

fail, some may be incapacitated to provide the services in the expected timeline, and others still may have to

prioritise certain requests.

In this paper, we propose a novel approach towards the verification of services, where transactions are con-

trolled by binding electronic contracts. Verification of WS is an active topic of research (e.g., see [16, 18]).

However it has so far been concerned with checking safety and liveness properties only. Our proposed framework,

builds upon existing work in the domain of multi agent systems (MAS) [17, 1]. We take the view that a web

service can be modelled as an “agent” [5]. When WS are phrased as a contract-regulated MAS, several properties

become worth studying, including various notions of correctness and violations of the contracts during a run, the

evolution of the agents’ knowledge about themselves, the contracts and the expected peers’ behaviours, etc.

The specification and analysis of agent behaviour in a MAS has been widely explored. Several formal models

have been investigated to specify formally and unambiguously the behaviour of the system. Many of these are

based on modal logic, including temporal, epistemic, and deotic logic. Developments in verification of MAS via

model checking techniques [15, 4, 9] has kept pace with the advancement in the specification techniques. Along

with temporal languages, it is now also possible to verify a variety of modalities describing the informational and

intentional state of the agents.

The above leads us to explore the verification of contract-based WS implemented by means of MAS model

checkers. To this end, we propose a verification methodology where services or “contract parties” (CP) are

specified using WSBPEL [13]. The contractually correct behaviours for every CP are also specified in WSBPEL.

In our approach, a compiler of our design takes as input both these behaviour descriptions, and generates an

ISPL program, which is fed to the symbolic model checker MCMAS for verification.

The rest of the paper is organised as follows. In Section 2 we briefly introduce WSBPEL, ISPL and MCMAS.

Section 3 introduces a motivating example and some of its key properties. Section 4 presents our proposed

framework. Section 5 discusses the implementation of the compiler and Section 6 gives experimental results from

verification. We conclude in Section 7.

31

2 Preliminaries

2.1 MCMAS and ISPL

MCMAS [11] is a specialised model checker for the verification of multi-agent systems. It builds on symbolic

model checking via OBDDs as its underlying technique, and supports CTL, epistemic and deontic logic. The

current version of MCMAS [10] has the following features: (1) Support for variables of the following types:

Boolean, enumeration and bounded integer. Arithmetic operations can be performed on bounded integers. (2)

Counterexample/witness generation for quick and efficient display of traces falsifying/satisfying properties. (3)

Support for fairness constraints. This is useful in eliminating unrealistic behaviours. (4) Support for interactive

execution mode. This allows users to step through the execution of their model.

MCMAS uses ISPL as its input language. A system encoded in ISPL is composed of the environment e

and a set of agents A = {1, . . . , n}. Each agent i ∈ A has a set of local states Li and a set of local actions

Acti. The protocol function of agent i, Pi : Li → 2Acti, defines for each local state li ∈ Li the set of actions

that are allowed to be executed in li. Similarly, the environment has its local states Le, local actions Acte and

protocol function Pe. The transition relation among local states of agent i is defined by the evolution function

Evi : Li × Act1 × · · · × Actn × Acte → Li. The definition of Evi suggests that the local actions of an agent can

be observed by other agents. The evolution function Eve of the environment is defined in the same way.

To reason about the behaviours of agent i with respect to correctness [12], Li is further partitioned into

two disjoint sets: a non-empty set Gi of allowed (“green”) states and a set Ri of disallowed (“red”) states. In

this paper, we use green states to denote the behaviours in compliance with contracts and red states to denote

violations, by means of temporal epistemic properties.

ISPL allows user defined atomic propositions over global states of the system. A global state is composed of

a local state from every agent and the environment. The logic formulae to be checked by MCMAS are defined

over the atomic propositions.

2.2 WSBPEL

WSBPEL [13] is a popular and de facto industrial standard for describing service composition. The specification

has been elaborately explained in several web service based literature [13]. is highly recommended.

WSBPEL defines a model and an XML based grammar for the orchestration of executable and abstract

business processes. A BPEL process defines the interaction between partners. The specification provides the

control logic to coordinate arbitrarily complex web services, defined in WSDL. A BPEL process can interact

synchronously or asynchronously with its partners, i.e., its clients, and with the services the process orchestrates.

The building blocks for a BPEL process are the descriptions of the parties participating in the process, the

data that flows through the process and the activities performed during the execution of the process. Some

examples of activities include “receive”, “reply”, “assign”, “sequence” and “wait”. WSBPEL also introduces

systematic mechanisms for dealing with business exceptions and processing faults. Moreover, WSBPEL introduces

a mechanism to define how individual or composite activities within a unit of work are to be compensated in

cases where exceptions occur or a partner requests reversal.

3 A Motivating Case Study

In this section we present a composition of services, regulated as a pre-defined contract. The case study was first

presented in earlier work on verifying service composition with MCMAS [1]. Here, we focus on the automatic

compilation of services from WSBPEL into ISPL.

In the example, the participating contract parties comprise: a principal software provider (PSP), a software

provider (SP), a software client (C), an insurance company (I), a testing agency (T), a hardware supplier (H),

and a technical expert (E). The high-level workflow of the composition is defined as follows: Client C wants to

get a software developed and deployed on hardware supplied by H . To deploy the software, the technical expert

E is needed. Components of the software are provided by different software providers. We consider two software

providers here: PSP and SP . The components need to be integrated by the providers before the software is

delivered to C.

The software integration is carried out by PSP , when SP delivers its component. PSP and SP twice update

each other and C about the progress of the software development. Should the client like any changes in the

software, he can request them before the second round of updates. Any change suggested by the client after

the second update is considered a violation and the client is charged a penalty. The client can recover from this

violation by paying the penalty or by withdrawing the request for changes. If PSP and SP do not send their

updates as per schedule, this is also considered a violation and they are charged a penalty. Every update is

followed by a payment in part by the client C to the PSP . Payment to SP is handled by PSP and is done once

the software is deployed successfully.

32

PSP ’s obligations:

1. Update SP and C twice about the progress of the software.

2. Integrate the components and send them to T for testing.

3. If components fail, integrate the revised software and send them for testing.

4. Make payment to SP after successful deployment of software.

C’s obligations:

1. Request changes before the second round of updates.

2. Pay penalty if changes are requested after second round of updates.

3. Make payment to the PSP after every update.

Figure 1: Obligations of Contract parties

Agent Violation condition Recovery

1 PSP - does not send messages to SP and/or C in the first

and/or second run of update.

pay penalty charge

2 - does not send payment to SP . no

3 SP - does not send update messages to PSP or C. pay penalty charge

4 - does not send its components to PSP . no

5 C - request changes after second update. pay penalty charge or withdraw changes

6 - does not send the payment to PSP . no

7 T - does not send the testing report to C, PSP and/or

SP .

no

8 H - does not deliver the hardware system to C. no

9 - ignores the deployment failure. no

10 E - does not deploy the software on the hardware system. no

11 I - does not process the claim of C. no

Figure 2: Agents and their violation conditions.

PSP integrates the components and sends the integrated component to T for testing. Results from testing

are made available to all the parties, i.e., PSP , SP , and C. If the integration test fails, the components are

revised and tested again. Components can be revised twice. If the third test fails, C cancels the contract with

PSP . If the testing succeeds, C invokes I to get the software insured. C then invokes H to order the hardware.

Finally C invokes E to get the software deployed. If the software cannot be deployed then the hardware and the

components have to be re-evaluated. Components can be revised twice. If the third test fails C always cancels

the contract with PSP and H . Figure 1 illustrates the obligations of the PSP and C.

From the above scenario it can be seen that contracts between services can be usefully employed to illustrate

the notion of correctness in behaviour. Any deviation from the behaviour identified in the contract is considered

a violation. The contract might in some cases also specify mechanisms for recovering from violations.

The contract between various parties can be violated in many ways. Figure 2 illustrates informally some of

the conditions under which some local violations may occur.

4 Verification framework

In this section we discuss our framework for the verification of contracts. Our approach targets two levels of

verification:

• conformance of the behaviour of an individual contract party to its contractually correct behaviour.

• conformance of the combined behaviour of all the contract parties to the overall contract.

For the sake of clarity in the figure and the paper, we elaborate on the components of the architecture and the

verification methodology, only for contract party C1. Note that a similar mechanism would be replicated for all

the contract parties in the composition.

1. Natural language contracts: Conventionally contracts are specified in a natural language. A contract

stipulates the obligations of parties entering the contract. It defines behaviours that are considered to be

violation of some obligations, and may outline penalties and/or recovery actions from the violations. For

verification, a conventional contract is encoded as an e-contract in WSBPEL.

2. Contract party: A contract party (CP) is a service, that is a first class citizen of the contract regulated

composition. The behaviour of a CP is governed by the rights, obligations and violations stipulated in

the contract, and agreed to by the CP. The overall fulfillment of a contract depends on the adherence of

each CP in the composition to its specified behaviour. In our framework, each contract party is an agent

with well defined green and red states corresponding to states of compliance and violation respectively. Our

proposed methodology aims to verify the adherence of each agent’s behaviour to what has been specified

as contractually correct behavior for the agent.

33

3. Contract party/agent behaviour: The behaviour of an agent can be defined in terms of a two-part

behaviour: all possible behaviours and contractually correct behaviours. In order to automate the verifica-

tion, we encode both these behaviours in BPEL. Note that it is possible to describe contractually correct

behaviours using a specification language, tailor-made for describing contracts e.g., [14]. However, keeping

both these behaviours at the same level of abstraction, provides the system designer with the flexibility

needed to combine and compile the behaviours into a model suitable for verification.

For an agent, we refer to its all possible behaviours as BPEL-behaviour and the contractually correct be-

haviours as its BPEL-contract. Note that both the behaviours are inter-dependent and replicate information

such as variable and action description for the agent, in their specification.

4. Compiler: The compiler is a novel and integral component of our architecture. The compiler takes as

input the BPEL-behaviour and the BPEL-contract for an agent and combines them to generate an ISPL

program. The compiler parses the BPEL-behaviour to generate a partial model that enumerates the local

states but abstracts from defining red and green states. The BPEL-contract is then parsed to enumerate

the green/red states for the agent. The internal details of the compiler are illustrated in Section 5.

5. ISPL and MCMAS: The ISPL program compiled semi-automatically from the BPEL specification, en-

codes the overall and desired behaviour of an agent. The program is fed to MCMAS for verification of the

agent’s behaviour.

5 Implementation

The core component of our framewrok is the compiler that translates a WSBPEL specification into an ISPL

program. It generates basic atomic propositions and properties automatically for verification.

Given the two specifications (BPEL-behaviours and BPEL-contracts), we propose a three step methodology

to generate the corresponding ISPL program:

1. We represent a BPEL process by an automaton. The BPEL-behaviour is first read into memory, followed by

the BPEL-contract. Both behaviours are translated into automata. We use behaviour automata to denote

the automata representing the BPEL-behaviour and contract automata for the BPEL-contract.

2. For each state in the contract automata, we look for its counterpart in the behaviour automata and label

it as green. We then label all other states in the behaviour automata as red. Based on these labels, basic

properties specified in temporal-epistemic logic are generated.

3. The labelled behaviour automata and the properties are written to the ISPL file input to the checker.

In what follows, we discuss the methodology in detail.

5.1 Translating BPEL programs into automata

The compiler uses the following rules to do the translation.

• “Assign”, “receive”, “invoke” and “empty” activities are translated into transitions connecting the respec-

tive source state and target state. A “sequence” activity is translated into a sequence of transitions.

• An “if” activity is translated into two sequences of transitions, one for the if-branch and another for the

else-branch. The first transition in the if-branch uses the condition in the “if” activity as its guard, while

the first transition in the else-branch uses the negation of the condition as the guard. A “while” activity

is translated in the same way as an “if” activity except that the target state of the last transition and the

source state of the first transition in the if-branch are the same.

• “OnMessage” activities and “onAlarm” activities in a “pick” activity are translated into transitions with a

common source state.

• A branch in a “flow” activity is translated into a separate automaton. The beginning and the end of these

automata are synchronised with the automaton representing the BPEL process. In doing so, we differ

from [8], where a “flow” is translated such that: all branches are executed sequentially and all possible

permutations are represented as a single automaton.

• Fault handlers and exceptions are translated into transitions as well. The latter transition assigns a specific

value to a variable and the guard of the former transition tests if the variable has this value. Other kinds

of handlers are dealt with in the same way. Theoretically, in every state where an exception could happen

a copy of the exception/handler transition is produced using this state as its source state (note that these

copies have the same target state). Thus one transition would be replicated many times. In practice,

however, we have a succinct way to implement it due to the flexibility of ISPL, as discussed later.

34

As remarked in the literature review, much work has been appeared on translating BPEL into model checkers’

input languages, e.g., [8, 7, 2]. However, only few of them can process all BPEL structures. A detailed discussion

can be found in [2].

5.2 Colouring the model

We use the green and red of labelling in ISPL code to differentiate between contractually correct and incorrect

behaviours, as shown in Figure 3. This is possible because the BPEL-contract specification defines behaviours

Figure 3: Labelling behaviours

included also in the BPEL-behaviour specification. Labelling the states in the behaviour automata is done as

follows:

1. The initial state of a behaviour automaton is labelled as green.

2. For every transition in the contract automata, we find the same transition in the behaviour automata and

label its target state as green.

3. For all states that are not green, we label them as red.

We do not look for matched states directly because the states are named in a numerical way and, therefore,

the same state in the behaviour automata and the contract automata might have different names. However,

transitions get their name from the BPEL activities, each of which has a unique name.

After the labelling process finishes, the compiler encodes three kinds of atomic propositions, which are used

to define basic formulae to be checked in the following way. For each BPEL process p, we define

• an atomic proposition pgreen holding in all green states of the process;

• an atomic proposition pend holding in the last state of process p;

• an atomic proposition predi
holding in the corresponding red state i.

Two kinds of basic properties are generated based on the atomic properties. For each BPEL process p, define

E (pgreen U pend). (1)

This property specifies that p has a way to conduct a whole run in compliance with its contract obligations. For
each atomic proposition pred ∈ {pred0, pred1, . . .}, define

EF pred. (2)

This property represents a test to check whether a agent may violate its contractual behaviours.

The above properties verify the basic behaviours of contract parties. More properties can be manually added

to the automatically generated ISPL code in order to test other interesting behaviours (see below).

5.3 Generating an ISPL program

Once the behaviour automatas are labelled, they are ready to be written to an ISPL file for verification. Each

automaton is mapped to an agent in the file. Let A = {1, . . . , n} be the set of automata and A = {1, . . . , n} the

set of agents. Here we only enumerate the key steps to generate an agent i ∈ A from an automaton Ai ∈ A.

1. Local states generation. A local state l ∈ Li is a valuation for the set of local variables V ari. Thus, the
generation of Li is performed through the generation of V ari. If Ai is generated from a BPEL process p,
then

V ari = V arp ∪ {state},

where V arp is the set of variables defined in p and state is an additional enumeration variable. Each value
of state represents a unique state of Ai. If Ai is a “flow” branch in p, then

V ari = V ar
′

p
∪ {state},

where V ar

′

p
⊆ V arp is the set of variables used by Ai. In order to reduce the agent’s state space, the

compiler monitors the usage of every variable v ∈ V arp. If v is never read by any transitions in Ai, then it

is discarded.

35

2. Local actions generation. Acti is obtained from the transitions of Ai. Each transition is mapped into an

action; additionally if two transitions have the same name, they are mapped into the same action.

3. Protocol generation. Let l(state) be the value of variable state in state l ∈ Li and El the set of allowed

actions in l. For any transition t whose source state is represented by l(state), the action to which t

is mapped is included in El. Obviously, two states l1, l2 ∈ Li have the same set of allowed actions if

l1(state) = l2(state).

4. Evolution function generation. Each transition in Ai is translated to an evolution item. For a transition t

with source state s1, target state s2, and guard c, the evolution item is defined to be of the following form:

state=s2 if state=s1 and c and Action=t.

This item means that if in the current state, the variable state has value s1 and the guard c is satisfied,
the execution of t makes agent i move to a state where state has value s2. If t is synchronised with another
transition t

′ in the automaton Aj ∈ A, then the evolution item is

state=s2 if state=s1 and c and Action=t and Aj .Action=t’.

If t assigns a value expr to a variable v, the assignment is translated on the left side of “if”, i.e.

state=s2 and v=expr if · · · .

If there are multiple copies of t, e.g., t represents a fault handler, we use the following form to specify an
evolution item for all copies:

state=s if (state=s1 or state=s2 or . . .) and c and Action=t and · · · ,

where s1 and s2 are the source states of these copies and s is their target state. If t is allowed in all states,
the above form can be simplified to

state=s if c and Action=t and · · · .

6 Experimental Analysis

We evaluated the compilation and verification mechanism on the case study illustrated in Section 3. We rep-

resented the composition in terms of a WSBPEL orchestration. The following BPEL code represents the full

behaviour of the client C, when receiving updates from PSP and SP . Note that for brevity, only essential infor-

mation is shown. The BPEL-contract is the same as BPEL-behaviour except that it defines only contractually

correct and therefore limited behaviours.

<pick name="Update1">

<onMessage partnerLink="PSP_C"
operation="recPSP" portType="ns1:recMsg" variable="RecPSPIn">

<empty name="Empty1"/>
</onMessage>
<onMessage partnerLink="PSP_C_int"

operation="recPSP" portType="ns1:recMoney" variable="SendSPIn1">
<receive name="recUpdate1" createInstance="no" partnerLink="PSP_C1"

operation="recPSP" portType="ns1:recMsg" variable="RecPSPIn">
</receive>

</onMessage>
<onMessage partnerLink="PSP_NoC"
operation="recNoPSP" portType="ns1:recMsg" variable="RecPSPIn">

<exit name="Exit347"/>
</onMessage>

</pick>

The translation generates the following ISPL program for the client.

Agent Client
Vars:
state : { Client_0, Client_1, ...};

count : 0 .. 3;
...

end Vars
Actions={Client_Upd1_0, Client_Upd1_1,...};

Protocol :
state=Client_0:{Client_Upd1_0, Client_Upd1_1,

Client_Upd1_2, Client_While1};

state=Client_1:{Client_Empty1};
...

end Protocol
Evolution :
state=Client_0 and count=count+1 if

state=Client_24 and Action=Client_Assign375;
...

end Evolution
end Agent

36

The following listing gives an example about how to define atomic propositions and properties in ISPL.

Evaluation
Client_green if Client.state = Client_0 or

Client.state = Client_1 or ...;
Client_end if Client.state = Client_51;

Client_red0 if Client.state = Client_11;
...

end Evaluation

Formulae
E (Client_green U Client_end);

EF Client_red0;
...

end Formulae

In addition to the basic properties automatically generated by the compiler, we manually added a few more

complex properties to the model. Those properties were also studied in [1]. Some atomic propositions, e.g.,

“receiveSoftware” and “softwareTested”, are also added to the ISPL code manually. In particular, we considered

the following:

• Whenever PSP is in a compliance state, he knows the contract can be eventually fulfilled successfully.

AG(PSP green → KPSP EF (PSP end))

• There exists a path where C is always in compliance with the contract until he eventually receives the
software.

E(C green U receiveSoftware)

• PSP knows that it is possible that PSP , SP , C, I, H , T and E are all in compliance until the software is
delivered.

KPSP E(all green U softwareDelivered),

where all green represents PSP green∧SP green∧C green∧ T Green∧H green∧E green∧ I green.

• There is a trace in which the client is always in contract compliant states until the software is delivered
(while the client remains compliant) before the client enters a violation.

E(C green U E((C green ∧ softwareDeployed) U ¬C green))

The generated ISPL model was encoded automatically by MCMAS by using 134 BDD variables: 49 BDD variables

for local states (the same number of BDD variables are constructed for the transition relation) and 36 for local

actions. The total number of global states is approximately 106. On a machine running Linux Fedora 8 x86 64

version (kernel 2.6.24.3-50) on Intel Core 2 Duo E4500 2.2GHz with 4GB memory, it took about 24 seconds with

34 MB memory space for MCMAS to verify 25 properties.

In this example, all basic properties hold on the model, which means not only all parties can fulfil their

contractual obligations successfully, but also that all the violations shown in Figure 2 can actually happen.

Amongst the manually added properties, the first one does not hold. The reason is that even though PSP fulfills

its contractual obligations, the software might not pass testing hence not be deployed. For a similar reason, the

third one does not hold either.

7 Conclusions

In this paper we presented a novel technique for the verification of contract-regulated service compositions. In

our approach, services and contracts are specified as WSBPEL behaviours. We showed how these behaviours

could be semi-automatically compiled into ISPL, and then verified using the symbolic model checker MCMAS.

The salient feature of the approach is the possibility of checking agent compliance with respect to contracts and

the potential of compiling a fairly large subset of BPEL constructs to ISPL. We illustrated the methodology using

a realistic case study with a reasonably large state space.

It is worth mentioning that there are two limitations in the current framework: (1) Since MCMAS cannot

handle real-time systems, some BPEL constructs such as deadline and timeout have to be translated into non-

deterministic behaviours. For real-time properties, a secondary model checker, such as Uppaal [3] or Verics[6],

can be integrated into the framework. (2) The contracts that can be dealt with are written in natural languages

and translated into BPEL code manually. Nowadays, some contracting languages, e.g., [14], have been proposed

in order to construct electronic contracts to be processed by computers. Currently, we are working on compiling

electronic contracts into ISPL to allow more automation.

37

References

[1] A. Lomuscio and H. Qu and M. Solanki. Towards verifying compliance in agent-based web service composi-

tions. In Proceedings of The Seventh International Joint Conference on Autonomous Agents and Multi-agent

systems (AAMAS-08). ACM Press, 2008.

[2] L. Baresi, D. Bianculli, C. Ghezzi, S. Guinea, and P. Spoletini. Validation of web service compositions. IET

Softw., 1(6):219–232, December 2007.

[3] J. Bengtsson, K. Larsen, F. Larsson, P. Pettersson, W. Yi, and C. Weise. New generation of Uppaal. In

Proceedings of the International Workshop on Software Tools for Technology Transfer, 1998.

[4] R. Bordini, M. Fisher, C. Pardavila, W. Visser, and M. Wooldridge. Model checking multi-agent programs

with CASP. In CAV’03, volume LNCS 2725, pages 110–113. Springer-Verlag, 2003.

[5] D Booth, H Haas, F McCabe, E Newcomer, M Champion, C Ferris and D Orchard. Web service architecture.

W3c working group note 11 february 2004, 2004. http://www.w3.org/TR/ws-arch/.

[6] P. Dembiński, A. Janowska, P. Janowski, W. Penczek, A. Pólrola, M. Szreter, B. Woźna, and A. Zbrzezny.

VerICS: A tool for verifying Timed Automata and Estelle specifications. In Proc. of the 9th Int. Conf. on

Tools and Algorithms for the Construction and Analysis of Systems (TACAS’03), volume 2619 of LNCS,

pages 278–283. Springer-Verlag, 2003.

[7] Howard Foster, Sebastian Uchitel, Jeff Magee, and Jeff Kramer. Model-based verification of web service

compositions. In Proceedings of the 10th IEEE International Conference on Automated Software Engineering.

IEEE Press, 2003.

[8] X. Fu, T. Bultan, and J. Su. Analysis of interacting BPEL web services. In 13th international conference

on World Wide Web, pages 621–630. ACM Press, 2004.

[9] P. Gammie and R. van der Meyden. MCK: Model checking the logic of knowledge. In Proceedings of 16th

International Conference on Computer Aided Verification (CAV’04), volume 3114 of LNCS, pages 479–483.

Springer-Verlag, 2004.

[10] A. Lomuscio, H. Qu, and F. Raimondi. Mcmas 0.9 alpha. http://sourceforge.net/projects/

ist-contract/, 2008.

[11] A. Lomuscio and F. Raimondi. MCMAS: A model checker for multi-agent systems. In Proceedings of TACAS

2006, volume 3920, pages 450–454. Springer Verlag, 2006.

[12] A. Lomuscio and M. Sergot. Deontic interpreted systems. Studia Logica, 75(1):63–92, 2003.

[13] OASIS Web service Business Process Execution Language (WSBPEL) TC. Web service Business Process

Execution Language Version 2.0, 2007.

[14] S. Panagiotidi, J. Vazquez-Salceda, S. Alvarez-Napagao, S. Ortega-Martorell, S. Willmott, and P. Storms

R. Confalonieri. Contracting agent language. In Symposium on Behaviour Regulation in Multi-Agent Systems,

2008.

[15] W. Penczek and A. Lomuscio. Verifying epistemic properties of multi-agent systems via bounded model

checking. Fundamenta Informaticae, 55(2):167–185, 2003.

[16] Marco Pistore, F. Barbon, Piergiorgio Bertoli, D. Shaparau, and Paolo Traverso. Planning and monitoring

web service composition. In AIMSA, pages 106–115, 2004.

[17] M. Wooldridge. An introduction to multi-agent systems. John Wiley, England, 2002.

[18] X. Fu T. Bultan and J. Su. Conversation Protocols: A Formalism for Specification and Verification of

Reactive Electronic Services. In CIAA, volume LNCS 2759, pages 188–200. Springer-Verlag, 2003.

38

Security-By-Contract for the Future Internet �

Fabio Massacci1, Frank Piessens2, and Ida Siahaan1

1 Universita‘ di Trento, Italy name.surname@disi.unitn.it
2 Katholieke Universiteit Leuven, Belgium name.surname@cs.kuleuven.be

1 The Future Internet

With the advent of the next generation java servlet on the smartcard, the Future Internet

will be composed by web servers and clients silently yet busily running on high end

smart cards in our phones and our wallets. Thus we can no longer accept the current

security model where programs can be downloaded on our machines just because they

are vaguely “trusted”. We need to know what they do in more precise details.

The End of Trust in the Web. The World Wide Web evolved rapidly in 90’s and the

notion has changed from a network to a platform where people migrate desktop appli-

cations. The security model of the current version of the web is based on an assumption

that the good guys develop their application, expose it on the web, and then let other

good guys using it while stopping bad guys from misusing it.

The business trend of outsourcing processes or the construction of virtual organi-

zations have slightly complicated this initially simple picture. Now running a “service”

means that different service (sub)components can be dynamically chosen and different

partners are chosen to offer those (sub)services. Hence we need different trust estab-

lishment mechanisms (see e.g. [10]).

This assumption is no longer true for the new world of Web 2.0 and the Future In-

ternet. Even now a user downloads a multitude of communicating applications ranging

from P2P clients to desktop search engines, each of them ploughing through the user’s

platform, and springing back with services from and to the rest of the world. To deal

with the untrusted code either .NET or Java can exploit the mechanism of permissions.

Permissions are assigned to enable execution of potentially dangerous or costly func-

tionality, such as starting various types of connections. The drawback of permissions

is that after assigning a permission the user has very limited control over how the per-

mission is used. Conditional permissions that allow and forbid use of the functionality

depending on such factors as bandwidth or the previous actions of the application itself

(e.g. access to sensitive files) are also out of reach. Once again the consequence is that

either applications are sandboxed (and thus can do almost nothing), or the user decided

that they are trusted and then they can do almost everything.

The mechanism of signed assemblies from trusted third parties does not solve the

problem either. Currently a signature on a piece of code only means that the application

� Research partly supported by the Projects EU-FP6-IST-STREP-S3MS, EU-FP6-IP-

SENSORIA, and EU-FP7-IP-MASTER. We would like to thank Eric Vetillard for pointing

to us the domain of Next Generation Java Card as the Challenge for the Future Internet.

39

comes from the software factory of the signatory, but there is no clear definition of what

guarantees it offers. It essentially binds the software with nothing. We built our security

models on the assumption that we could trust the vendors (or at least some of them).

The examples from reputable companies such as Channel 4 (or BBC, Sky TV etc.) show

that this is no longer possible. Still we really want to download a lot of software.

The Smart(Card) Future of the Web. The model that we have described above is es-

sentially the web of the personal computers. None of the users complaining about 4oD

[14] have considered their PC or their Web platform “broken” because it allowed other

people to make use of it. They did not consider returning their PC for repair. They

considered themselves being gullible users ripped off by an untrusted vendor.

Another domain at the opposite side of the psychological spectrum is smartcard

technology. The technology enjoyed worldwide deployment in 90’s with Java Card Ap-

plets and their strict security confinement. At the beginning of the millennium, many

applications such as large SIM cards and identity management businesses are imple-

mented on smart-cards to address mobile devices security challenges.

The smartcard technology evolved with larger memories, USB and TCP/IP support

and the development of the Next-Generation Java Card platform with Servlet engine.

The Future Internet will be composed by those embedded Java Card Platforms running

on high end smart cards in our phones and our wallets, each of them connecting to

the internet and performing secure transactions with distributed servers and desktop

browsers without complicated middleware or special purpose readers.

We still want to download a huge amount of software on our phones but there is

a huge psychological difference from a consumer perspective. If our PC is sluggish in

responding, we did something wrong or downloaded the wrong software, if our phone

is sluggish, it is broken. Moreover, in the realm of next generation Java card platforms

we cannot just download a software without knowing what it does. The smart card web

platform must have a way to check what is downloading.

2 Security by Contract for the Smart Future Internet

In the previous FLACOS workshop we [11] have proposed the notion of Security-by-

Contract (S×C)[5, 4]. In S×C we augment mobile code with a claim on its security

behavior (an application’s contract) that could be matched against a mobile platform’s

policy before downloading the code. A digital signature does not just certify the origin

of the code but also bind together the code with a contract with the main goal to pro-

vide a semantics for digital signatures on mobile code. This framework is a step in the

transition from trusted code to trustworthy code.

S×C Workflow. At development time the mobile code developers are responsible for

providing a description of the security behavior that their code finally provides. Such a

code might also undergo a formal certification process by the developer’s own company,

the smart card provider, a mobile phone operator, or any other third party for which the

application has been developed. By using suitable techniques such as static analysis,

monitor in-lining, or general theorem proving, the code is certified to comply with the

40

Fig. 1. SxC Workflow

developer’s contract. Subsequently, the code and the security claims are sealed together

with the evidence for compliance (either a digital signature or a proof) and shipped

for deployment. At deployment time, the target platform follows a workflow similar to

the one depicted in Fig.1 (see [19]). First, it checks that the evidence is correct. Such

evidence can be a trusted signature or a proof that the code satisfies the contract (one

can use Proof-Carrying-Code (PCC) techniques to check it.

As we have evidence that the contract is trustworthy, the platform checks, that the

claimed policy is compliant with the policy that our platform wants to enforce. If it

is, then the application can be run without further ado. It is a significant saving from

in-lining a security monitor. In case that at run-time we decide to still monitor the ap-

plication then, as with vaccination, we inline a number of checks into the application so

that any undesired behavior can be immediately stopped or corrected.

Contract for the Smart Future Internet. A contract is a formal complete and correct

specification of the behavior of an application for what concerns relevant security ac-

tions (Virtual Machine API Calls,Web Messages etc). By signing the code the developer

certifies that the code complies with the stated claims on its security-relevant behavior.

A policy is a formal complete specification of the acceptable behavior of applications

to be executed on the platform for what concerns relevant security actions.

Technically, a contract can be a security automaton in the sense of Schneider [8],

and it specifies an upper bound on the security-relevant behavior of the application:

the sequences of security-relevant events that an application can generate are all in the

language accepted by the security automaton. We can have a slightly more sophisticated

approach using Büchi automata [18] if we also want to cover liveness properties that can

be enforced by Edit automata. This definition can be sufficient for theoretical purposes

but it is hardly acceptable for any practical use.

A variant of the PSLANG language [1] has been proposed for S×C for mobile code

(.NET and Java). The formal counterpart of the language is the notion of automata

modulo theory [12] where atomic actions are replaced by expressions that can finitely

41

capture infinite values of API parameters. For the smart future internet, we need to

identify a suitable language for the specification of contracts and policies at a level of

abstraction that is suitable and can be used for all S×C phases (Fig.1)

Application-contract compliance. Static analysis can be used at development time to

increase confidence in the contract. With static analysis, program analysis and verifica-

tion algorithms are used in an attempt to prove that the application satisfies its contract.

The major advantage of static analysis is that it does not impose any runtime over-

head, and that it shows that all possible executions of a program comply with the con-

tract. The major disadvantage is that the problem of checking application-contract com-

pliance is in general undecidable, and so automatic static analysis tools will typically

only support restricted forms of contracts, or restricted forms of applications, or the

tool will be conservative in the sense that it will reject applications that are actually

compliant, but the tool fails to find a proof for this.

The programs and services running on the embedded servlet will be significantly

more complex and have actions at different level of abstractions whose full security

implications can be understood by considering all abstraction levels at once. The chal-

lenges for static analysis is that with expressive notions of security contracts, verifying

application-contract compliance is actually as hard as verifying compliance with an

arbitrary specification [16]. Moreover, contracts for applications in the Smart Future

Internet will have a complexity that is comparable to the level of abstractions of current

concurrent models that are used for model checking hardware and software systems (in

1010 states or transitions and beyond).

A standard approach to make program verification and analysis algorithms scale to

large programs is to make them modular of the program independently. This is partic-

ularly hard for application-contract compliance checking, because the security state of

the contract is typically a global state, and the structure of the contract and its security

state might not align with the structure of the application. Annotations are required on

all methods to specify how they interact with the security state, and not only on meth-

ods that are relevant for the contract at hand. This annotation overhead is prohibitive,

so a key challenge is to look for ways to reduce the annotation burden. An interesting

research question is whether a program transformation (similar to the security-passing

style transformation used for reasoning about programs sandboxed by stack inspection

[17]) can improve this situation.

A second approach to address scalability is to give up soundness of the analysis,

and to use the contract as a model of the application in order to generate security tests

by applying techniques from Model Based Testing [20]. Losing soundness is a major

disadvantage: an application may pass all the generated tests and still turn out to violate

the contract once fielded. However, the advantages are also important: no annotations

on the application source code are needed, and the tests generated from the contract can

be easily injected in the standard platform testing phase, thus making this approach very

practical. A challenge to be addressed here is how to measure the coverage of such se-

curity tests. When are there enough tests to give a reasonable assurance about security?

It is easy to automatically generate a huge amount of tests from the contract. Hence it

is important to know how many tests are sufficient, and whether a newly generated test

increases the coverage of the testing suite.

42

Matching Contract and Policy on the Smart Future Internet. We must show that the

behavior described by the contract is acceptable according to our platform policy. The

operation of matching the application’s claim with the platform policy requires that the

contract is trustworthy, i.e. the application and the contract are sealed together with a

digital signature when shipped for deployment or by shipping a proof that can checked

automatically. A simple solution is to build upon automata theory, interpret contract

and policy as automata and use language inclusion . Given two such automata AutC

(representing the contract) and AutP (representing the policy), we have a match when

the language accepted by AutC is a subset of the language accepted by AutP .

Once the policy and the contract are represented as automata then one can either use

language inclusions [12] or simulation [13] to check whether the contract is acceptable

according our platform policy. This solution is only partial because the automata that we

have envisaged do not store the values of the arguments of allowed/disallowed APIs. In

order to do this Contracts and policies for the future internet must be history-dependent:

the arguments of past allowed actions (API calls, WS invocations, SOAP messages)

may influence the evolution of future access control decision in a policy.

Further, in our current implementation of the matcher that runs on a mobile phone,

security states of the automata are represented by variables over finite domains e.g.

smsMessagesSent ranges between 0 to 5. [1, 2]. A possible solution could be to extend

the work on finite-memory automata [9] by Kaminski and Francez or other works [15]

that studied automata and logics on strings over infinite alphabets.

An approach to address scalability is to give up soundness of the matching and use

algorithms for simulation and testing. A challenge to be addressed is how to measure

the coverage of approximate matching. Which value should give a reasonable assurance

about security? Should it be an absolute value? Should it be in proportion of the number

of possible executions? In proportion to the likely executions? An interesting approach

could be to recall to life a neglected section on model checking by Courcoubetis et al

[3] in which they traded off a better performance of the algorithm in change for the

possibility of erring with a small probability.

Inlining a monitor on Future Internet Applications. What happens if matching fails?

or what happens if we do not trust the evidence that the code satisfies the contract? If

we look back at Fig.1 monitor inlining of the contract can provide strong assurance of

compliance. With monitor inlining [7], code rewriting is used to push contract checking

functionality into the program itself. The intention is that the inserted code enforces

compliance with the contract, and otherwise interferes with the execution of the target

program as little as possible. Monitor inlining is a well-established and efficient ap-

proach [6] however a major open question is how to deal with concurrency efficiently.

Servents in the Smart Future Internet will need to monitor the concurrent inter-

actions of tens of untrusted multithreaded programs. An inliner needs to protect the

inlined security state against race conditions. So all accesses to the security state will

happen under a lock. A key design choice for an inlining algorithm is whether to lock

across security relevant API calls, or to release the lock before doing the API call, and

reacquiring it when the API call returns.

The first choice (locking across calls) is easier to get secure, as there is a strong

guarantee that the updates to the security state happen in the correct order. This is much

43

trickier for an inliner that releases the lock during API calls. However, an inliner that

locks across calls can introduce deadlocks in the inlined program, because some of

the security relevant API calls will themselves block. And even if it does not lead to

deadlock, acquiring a lock across a potentially blocking method call can cause serious

performance penalties. A partial solution is by partitioning the security state into dis-

joint parts, and replacing the global lock, by per-part locks. This improves efficiency,

but depending on application and policy, it can still introduce deadlocks. The challenge

is how to inline a monitor into a concurrent program so that it cannot create a deadlock

in future interactions with other unknown programs yet to be downloaded.

The ability to resist to changes in context (i.e. new concurrent programs downloaded

after the inlined program) is essential for usability. The inlined version of 4oD should

not get in the way if later on I want to download a (inlined) role-playing game. It is

possible that two malicious software downloaded at different instants try to cooperate

in order to steal some data. The security monitor should be able to spot them but not

be deadlocked by them. If inlining is performed by the code producer, or by a third

party, the code consumer (client that runs the application) needs to be convinced that

inlining has been performed correctly. Without a secure transfer of the guarantees of

application-contract compliance to the client, it is easy for an attacker to modify either

the application or the contract, or for an application developer to lie about the contract.

Cryptographic signatures by a trusted (third) party is a first solution even if it

transfer the risk from the technical to the legal domain. The trusted party vouches for

application-contract compliance. Note the difference with the use of signatures in the

traditional mobile device security model. In the security-by-contract approach, a signa-

ture has a clear semantics [5]: the third party claims that the application respects the

supplied contract. Moreover, what is important is the fact that the decision whether the

contract is acceptable or not remains with the end user. If an application claims that it

will not connect to the internet and instead it does, at least you can bring the signatory

to the court for fraudulent commercial claims.

Another solution is whether we can use the techniques PCC for this. In PCC, the

code producer produces a proof that the code has certain properties, and ships this proof

together with the code to the client. By verifying the proof, the client can be sure that

the code indeed has the properties that it claims to have.

The difficulty of the endeavour is that the code has not been produced to be verified

compliant against a security property but usually to actually do some business. In other

words, the code producer is not aware of the property and the property producer is not

aware of the code. In this scenario verification is clearly an uphill path.

When we inline a contract we know precisely what code we are inlining and also

what property the inlined code should satisfy. So, we can ask the inliner to do this

automatically for us and ask them to generate the proof directly. This should make it

relatively easy to check that code complies with the contract: the generation of a proof

should be easier, and the size of the proof would also be acceptable for inlined programs.

The challenge is to identify automatic inlining mechanisms that inline a monitor for a

security contract and generate an easily checkable proof for industrial applications in

the Smart Future Internet.

44

References

1. I. Aktug and K. Naliuka. Conspec - a formal language for policy specification. Proc.

of the 1st Int. Workshop on Run Time Enforcement for Mobile and Distributed Systems

(REM2007), 2007.

2. N. Bielova, M. Dalla Torre, N. Dragoni, and I. Siahaan. Matching policies with security

claims of mobile applications. In Proc. of the 3rd Int. Conf. on Availability, Reliability and

Security (ARES’08). IEEE Press, 2008.

3. C. Courcoubetis, M.Y. Vardi, P. Wolper, and M. Yannakakis. Memory-efficient algorithms

for the verification of temporal properties. Formal Methods in Sys. Design, 1(2-3):275–288,

1992.

4. L. Desmet, W. Joosen, F. Massacci, P. Philippaerts, F. Piessens, I. Siahaan, and D. Vanover-

berghe. Security-by-contract on the .net platform. Elsevier Inform. Sec. Technical Report,

13(1):25–32, 2008.

5. N. Dragoni, F. Massacci, K. Naliuka, and I. Siahaan. Security-by-Contract: Toward a Se-

mantics for Digital Signatures on Mobile Code. In Proc. of the 4th European PKI Workshop

Theory and Practice (EUROPKI’07). Springer-Verlag, 2007.

6. U. Erlingsson and F.B. Schneider. SASI enforcement of security policies: A retrospective.

In Proc. of the 1999 New Security Paradigms Workshop (NSPW’99).

7. U. Erlingsson and F.B. Schneider. IRM enforcement of Java stack inspection. In Proc. of the

2000 IEEE Symp. on Security and Privacy, pages 246–255. IEEE Computer Society, 2000.

8. K. W. Hamlen, G. Morrisett, and F. B. Schneider. Computability classes for enforcement

mechanisms. TOPLAS, 28(1):175–205, 2006.

9. M. Kaminski and N. Francez. Finite-memory automata. Theor. al Comp. Sci., 134(2):329–

363, 1994.

10. Y. Karabulut, F. Kerschbaum, F. Massacci, P. Robinson, and A. Yautsiukhin. Security and

trust in it business outsourcing: a manifesto. In S. Etalle and P Samarati, editors, Proc. of the

2nd Int. Workshop on Security and Trust Management (STM’06), ENTCS. Elsevier, 2006.

11. F. Massacci, N. Dragoni, and I. Siahaan. A Security-by-Contracts Architecture for Pervasive

Services. 2007.

12. F. Massacci and I. Siahaan. Matching midlet’s security claims with a platform security policy

using automata modulo theory. In Proc. of The 12th Nordic Workshop on Secure IT Systems

(NordSec’07), 2007.

13. F. Massacci and I. Siahaan. Simulating midlet’s security claims with automata modulo the-

ory. In Proc. of the 2008 workshop on Prog. Lang. and analysis for security, 2008. submitted.

14. CNET Networks. Channel 4’s 4od: Tv on demand, at a price. Crave Webzine, January 2007.

15. F. Neven, T. Schwentick, and V. Vianu. Finite state machines for strings over infinite alpha-

bets. TOCL, 5(3):403–435, 2004.

16. F.B. Schneider. Enforceable security policies. ACM Trans. on Inf. and Sys. Security, 3(1):30–

50, 2000.

17. J. Smans, B. Jacobs, and F. Piessens. Static verification of code access security policy com-

pliance of .net applications. J. of Object Technology, 5(3):35–58, 2006.

18. C. Talhi, N. Tawbi, and M. Debbabi. Execution monitoring enforcement under memory-

limitation constraints. Inform. and Comp., 206(2-4):158–184, 2007.

19. D. Vanoverberghe, P. Philippaerts, L. Desmet, W. Joosen, F. Piessens, K. Naliuka, and

F. Massacci. A flexible security architecture to support third-party applications on mobile

devices. In Proc. of the 1st ACM Comp. Sec. Arch. Workshop, 2007.

20. M. Veanes, C. Campbell, W. Schulte, and N. Tillmann. Online testing with model programs.

In Proc. of the 10th Eur. Software Eng. Conf. held jointly with 13th ACM SIGSOFT Int. Symp.

on Found. of Software Eng., pages 273–282. ACM Press, 2005.

45

�������	�
������	�����	������	������	����������������������

����������������������������������	�������� ����
�

!��
����
��"#�������� ��$�%�����&	�
�

�������������������	�������������

'�	����(��	����'�	����	��������

�)")���*�+,-./�0�����

1��/�#23		��)�)���
�

���������� �	�	$���� 	������	�
��� �� ���� 4	
4�5��	��� 6��	�� ����	���/� ���	������ ��� � �� �������6�

����� ����6�����/� �������	������ �4��
4����4�	��������������	������ ����	�	����� �4������)� ��������� ���

���	��� �4	���� ���/� �4�� 	 6�� �����	��� 	�������� ����������	������������
���	��� ����	�������� ����������

����� ���/� ��	���� ��� �� 6��*� �� 	�	�����	��� ���� ��	����� 6��������)� ��� ���	�	��/� �4�� ���	����� ���

6��	������	����	������	�
���	��������6�	��������������
��	$��	��������	�
����	���� ��	��	�������66�	���/�

�����������*	����#�	��������������� 	������	���������&�)���4�������&��4���������� ���
��������������

�4���*6����������	�	�������4������	�������	�������4��
4��4�)�

�

�4	��6�6��� 6�������� �� �	
4���	
4�� ��������� 	������������ �4����������� ����������	��� ���	��������6��	��

����	�����4��
4��� ���
��������������	���/��� 6�������������� ����&�)��4�� 	���������������������

�� 6�	���� �	��� ����	 �� ���� ���	
���	 �� ��� ����7� 89:� ;����� "��	��� ;�� ����&/� 8<:� ���&� "��	���

;�� ����&/� 8+:�=��&���������	��/� 8>:�0����
	�
� ����	��/� ���� 8-:� �������������0���
� ���� ����	��)�

=	�4����4���� ���������	�
���6�	����� ����	��������� ���
� ���� 	���������/� �4�� 	�������������������

�4�� �*6����	��/� 	���� �����	��� ���� ���	�	���	��� ��� ���������)� ���������� ���� �*6������� 	�� ��� ?0@�

���
�
�� ���	���� ��� �/� �4�	�� 	���� �����	��� 	�� 	 6�� ������ �4��
4� �4��=��� ����	���� �	���	�����

0���
� ���� 8=��0:� ��� ����&/� ���� ���	�	���	��� 	�� ����	��� ��� �4�
4� �� ��	��	��� ����	��/� 6���� ���

0���
� ��������	��)�������	�	������	���������������������������/������	������	�����4����4�������������

	�������������������������������4	
4�����������	����
��� ��������6���������������	���������)�;	�����/����

�� �������4������������ ���
� �������	�������������������������	���
������	�����4����������������

�����6��	�	�����/�����	���0���
� ����6����	���/�������������������4��6��	������	�������	����������)�

�

	
������������
�

�4�����	��������6��	������	����	��������� �#�������	�����������
����� ���)�0����6��	���� 	�	�����	���

 �����	$��	��� 6��
�� �� ���� ���
����� ��� �������� 	�
� ����	�	����� ����	��� ���	����� ��� ��� ����/� ��	�

�4����������4	
4���6�������	$��� ����	���� �4��
4� �	�	$��� �����	���4	6� ���
� �����66����4��)� �4����

 �����	$��	��� �������� ���� �	 ��� ��� ���	�	�����
�	��/� ����� ���	�
�� ���� ���� 	 6��������/� ��� 	������	�
�

�	�	$��������	��
����� ���)���

�

�����������	���4�����4�����4����	�	$����������6���������4������������4����
����� ������ 	� ����

��� 	���� ��	��� 6������	��/� �4	���6����� ��������/� 6�	����� 6��	��/� ������	�	�	��/� ����	��� 6��	��/� 6����

�*6��	�����������4����A9B)�=4	����	�	$��������	����4��	����/�	��	��	��	�������������������4����������4	�����

6��6���	��� ��� ���� ����� �� �66���	�
�
����� ���� 	���	��	���� A<B/� 6���	���� �4��� ��
��	$��	����� ����

6������� ��6����� ��� �4�� �	�	$���
����� ���� 	�������	��� 	�� ���
��� �66��6�	�����)�C������/� ��� ������

4��� ����� �	�	$��� �����	���4	6� 	�� ���
��� ���
����� ���/�
�	�	�
� �	�	$��� ����� 	�� 	 6���	���� �	�4���

����	�
� ��� ��������4�� ����	������������ �66���	�
� ����	��� ���	����� ����
����� �����	�	$���

46

	�������	���� 	��
������)� �4�������/� �	�	$��� ����� ���� ��� 	 6������ ���
�������	�
� 	�� 6���	����� �4��

��������4	����� ��� �4��
����� ���� ���� 	������������ 	�� ��� �� ��� �#��� �	�	$��� ����� �������/� ��4� ���

6�	�������������	��)����A+B/����������	�����4�����	��������������4���� 6�	�
��������� 6�	�
��4���	��

������	�����/����	��������������/����������	�	��/�����������	������������64���)���

�

������	�4	�
���������4	����������������	��6��	������	���������4�	��������	�
����������	���������������

�66���� ����	��� 6���
��� ���� ���
����� ���� �
���	��� ��� �4�	�� �	�	$���� ���� ��� �4�����
	�
� ���� ����

�������)�"�������4� �	���4���� 6��*�����������4����
����� ����	�����������/���6	����������	��	�
����

����	���� 8�)
)� ��4���	���	��/� �	 ����� 6	�
/� ���	�	���	��/� ���&����� ���� ����
	�
:� �*������ 	�� ��

4�����
�������	���	������� 6�	�
����	��� ���/���������	����������
��	$��	���/��	�4��	���������������

��� ����	��� ���
� ���� 8��� ���
���������:)� ��� ���	�	��/� ����	���� ��5������ ��� �	�	$���� ���� ������

	 6�� ������ �4��
4� ��	����� 6��������� �6���	�
� �4�� ������	��� ��� ���	��� �
���	��� ���� 	�����	�
�

��
��	$��	�������	���
����� ���/�����	��������6�	������������������ �	�����������
��	$��	���)�

�

��� �4	�� ��
�	�
� ���&/� ��� �����	��� 4��� D��	��� ��� ����	��� 8D��:� ���������� ���� ��� ���� ��� ���	�� ����

 ���
	�
���������	��6��	������	���	�������������������	$������������4������	������	��������	��� ����

	��
����� ���)� ���6���	����/�����4���4���D���������������������6��	�	��/� ��	���������� ��	����)�

��������� �6��	�	���	��� 	�� �*6������� 	�� �� �	 6��� ?0@� ���
�
�)� �4�� ���
�
�� ������� ����� ��� �6��	���

	����	�	��������6���	����������	��������	����8����66�	���	���:������4���
���������	�
�����������	������D���

6��� �����)� 0��	���	�
� 	�� ����	$��� �4��
4� ���� ����	��� 	���� ��	��	��� 8����	��� 4�������� ��� 6��*	��:�

	 6�� ���	�
� �4��"!����=�������	�����	���	�����0���
� �����6��	�	���	���)�E��	�	���	�������	�������

6������	�
� D��� ���������� ���	���� �������� 6�	��� ��� ����	���� ���� �4�� D����������� 	���� ��	��� 	�� �4��

����	���6���	���F���6����	����������)�0��	��	���	���������������*������6��	�	�����	��������4��������	�
�

6����/��������4������	���6���	���)��4�������	����D������������ ���
� ������6��	�	���	��	 6�� ������

������ �������������0���
� ���� ����� � 	���
�������	�4���4������ ���������� ��������� 	������������

������������	�������� ���/�������6�������4���������������������	����������������'('�����)��

�

�
������������������������������������ ����������
�

@��
��������������6 ����������6��� ���������������	��6��	������	������5	�������	
�	�	�����	����� ����

	�� �4�� ������	�
� ��������� 	�����������/�
	���� �4��� ��4� ��� 	������������ ��� �66���� �4�� ��6	��

������6 ����������6��� ���������4�����	���)�0����������	���	�������������6���	����4������	�����4���

	 6�� ���� ���	�� �������� ���� �������� ��	����� 6�������/� ��4� ��7� ����	��� ���� ��4���	���	��/� ����

6���	�	�
/� ��6�� ���/� ��	�	�
� ���� ���	�	���	��� ����	���/� �������� ���	�	���	��� ���� ��&������
� ���)��

�6��	�	�����/��4������	������������������6�������4�������������	���������������
��	��������� �����A>B7�

�

o ���	
���	 ����� ������������������6����������
o G���	 ����� ������������6���	����4������	������5	����������)��
�

�4����� �������	�������4����� ����&������������6	�
�;�����"��	����������&�"��	���6���������������A-/�HB)�

�4�������������	������=��&���������0����
	�
�����	����A>/�IB/�������������� 6����������7���������	�
/�

6����	�
/���

	�
/�����&	�
�������4���
����	������	���)���� ���
�����4����	
���������	 ����� �����

����4��	�����������/���0���
� ��������	�������	 6�� ���������6��������4������	�������������4	�4�

�� 	�	������ �4�� ���	��� �	��������� ��� 	������������ ��� ����7� ��� � ��
	�����	��� ���� �����6/� �4��
4�

 ��	���	�
������������/�����4�����)�;	
���9�6���	��������4� ��	���	�������4������	������������A.B)�

�

�

47

;	
���97���4� ����������������������

Management
Services

deployment

monitoring

activation

deactivation

testing

Frameworks

back office

workflow

messaging

…

…

S
ervices …

���������
	
�

������

���������
	
�

�������
	
�

��
���
�
��
�
�
��

�
��
�
��
��
�
�

�������
	
�

��������� � !����� �

front office

C
om

ponents

…

notification

tracking

logging

upload

dow
nload

m
essaging

w
orkflow

security

�

�

=�� 6������� 	�� ����5���� ����	���� �4�� ����	��� ��� 4��� �4�� 0���
� ���� ����	��� ��� �4�� ����

��������������� 	�	��������4������ ���������4��	�������������4��
4�D������������)�

�

!
��������� ���������"��#�$����%���#%�������� �
�

!
	
�"��#�$�����&����$�� ��

�

!��� ���� ������������� ��� ����� ������ ���� ����� ��� 	���������7� 89:� ����	����� 	��������� ���� �6��	��	$���

�6����	��������8<:� ���
� ���� 	�������������� ���
���	�	��)�������	�	��/������� 	�	�����	���6�6����/�

��������	������ ������������66��������������	���)��4�/� �4�� 	�	�	���������� ���
� ���� ��5	�� �����

�����
	��������4��=+����������	����	�����������	�	�	����4���������)��

�

;	
���<7�0���
� ����@	��������������������������� �����

�

�

48

�4����5	�� �������������������7�

�

G�5	�� ���� �����	6�	���

��6��� ���� G�
	�����	�����������	�
�6���������� ��������4��	������������

����	�
� ����	�
��4����4����� �����*��������������������4��	������������

!��	���	��� �����	�
�6���
	���������� ���������4��	������������

0��	���	�
� �������	�
��6����	���������������4����� �����������	 ��

0��	��	��� ��������	�
��4����4��	��������� �����������������	�������6����	����������

�����	���	��� ���66	�
��4���*���	����������	���������� 6�������

'���6��� ���� '����
	����	�
��� 6�����������66�	���	������� ��4��	������������

�

������	�	�������4������5	�� ����/��4�� ���
� ��������	���6���	������
	�����	���������4���	���	�������

��	��������	���������66�	���	���/��������������������� ���
� ������������	��������������� ���������

��	�����66�	���	���)��

��� ���66	�
� 	������������ ��� ����� ��� ���� ����	���/� ��� ������� �4�� ���
� ���� ��� �4�� �4����

	�������������4��
4��4��"!����=�������	����	���	�����0���
� ����;�� ����&�8=��0:�AJB�����	���

����6��	�	���	���� ��0���
� ���� '�	�
�=��� ����	���� 80'=�:A9,B� ���� �4��0���
� ���� �	�
�=���

����	���� 80"=�:A99B)� ��� �4�� ������	�
/���� �	����� 4��� �4�� ���	��� ��� ��������� 	�� 	���
�������	�4� �4��

=��0�����������	��� ���
� ��������4������	�����������)�

�

!
�
�"��#�$����'���������

�

!����������������	�4�������� ��������	���4	6���������������� ����6���	����4���������6���	�����������/�

�4���� �	
4��/� ���	
��	���� ���� ��
��	��	��� ����� ����� �4�� ���� ��������� ���� �*6������� A9>B)� ��� �4��

�����*�� ��� �4�� ���� 	�����������/� �� ��������� ��� ����� �������� ���� 	������������ ��� ���� �	�4� ��4���

	��������������� ���������*�����������	����	���4��������������	���6���	������������� ���)�D��	������

����	���8D��:�������������������	�������6��������������	�����4����6����� ����/����	��	�	��/����	���	�	��/�

����	��/��4	�4����������	������	�4��4���6��	��	$�������	����6���	��������4������	��)�

�

D��� ���������� ���	��� �4�� D��� 6��� ������ �
����� 6��� �������� ����	��� ���� ���� ���� 6���	����)�

"��	
��	���� ���	��� �4��
��������/� �������	���/� ���� 6�����	��� ������ ��� �4�� ������ ������� D���

6��� �����/������4�����6��	�	���	���4��D������������)�����4�����������4������������������/��0�����������

������������6����	���������/�	����	�
�D���������4��
4�	��� ��	���	�
�����	��)��

�

!
!
�(������������)������������

�

!�� ����������
�
���4���������6��6����������6��	��	�
�D������������/�����	���������4��=�@!������0�

A9.B�����D0@�A9-B)�������	�	��/����� 6��4���	���D������������ ���
� ������� ����&�����6���������

	�� A9-B/� �4	�4� ����� 6���	���� ��� 	�	�	���
����	�� ���� ��� D��� 6��� ������ ������ ��� �4���� ����
��	��� ���

����	���7����&���	����������	���/� ����
����	����������	������������� 	�
� ��	�)���

�4���	�������������������	���������66�	����������4������	�������������	�����4���������6��	��	$�������	����

�������&����� ���
� ���/����	�	���	��/� ����&	�
� 8���&���	�����:/� 	�����	�	��� ����4�� ����
	�
� ����	��)�

� 6�������
����	�� D��� �4�������	��	��� ������
��� 	�� A9-B� ���� �4���� ���� ����
��	��� ��� ����	���� 	�����7�

��������	�	��/� ���	���	�	��/� ����	����	��	��/� ��	�	���	��/� �����	��/� 	���� ��	��� �������/� 	���� ��	���

49

�4��
46�/� 	���
�	��/� ����
�� �����/� ����
�� ���	�����
�������� ��� ����� ���	�/� ����
�� �6�	���	���

��	 	���	��/� ����
�������	�
������������	 	��)�

����������4����6��� �����/�������	������	 6���?0@����������
�
�������6��	��	�
�D������������)��4��

���
�
����6����������D�������������������������6��������	��	�
������D���6��� ����/�����6��������������

�����	���������)�!�D���6��� ����� ������� ��	�� 8	���
������ ������ ����:/����	���� 8@��/�0��	 /�

C	
4:��������
��	����8�)
)���������;����:)������;	
���+��������������	�
��)��

�

;	
���+7�D�������������6��	�	���	���@��
�
��

�

�

;��� ���
� ����6�6���/� ���4� ��������� 	�� �����	������	�4� �� 6�	����� ���	�	��� ��6������	�
� �4�� ����	���

6���	���������4������	������� ��)���

�

!
!
���������"������#����*�����������

�

0��	���	�
� 	�� ��4	����� ��� 	������6�	�
� ��5���� ��� ������������� ��� ����� ���� ��

	�
� �4�� ���������

�6����	����� 	���� ��	��� ��� �4�� 	�������� ��� ����)� ;��� ��

	�
/� �4�� 0'=�� ���� 0"=�� ���	�	�	����

86��6���	��:� ���� ���� ����	��� ��������� ����� �*������� ��� 	������ 6��6���	��� ���	���� ��� �4�� D���

�6��	�	���	������
�
��	���4��6���	�������	��)�

�

;��� ���	�	���	��/� �6��	�	��� ���������� ���� �4��&��� 6��	��	������ �
�	���� ������ �6����	����� ����� ��

���

�4��
4� �4�� ��	���	�
� ����	��� ��� ����� 	��� ������ 6�	����)� ��� �*��6�	����� �����/� ��6����� ����

����������������������4�� ��	��	�������	��������� ��	��	���������	��)�

�

�4��������	�
�����	��������	�����4��6������6��	 6�� �����	�������4�������������������0���
� ���)�

��

�

50

�

+
����� ���������"��#�$����' ��$���"���,�������')���$)��$�������
��

�4�� �0�� ����� � ����	���� ��� �� ���� �66�	���	��� 8��	���� ���� 4 ��� ���:/� �� ���� �	��� �������� � ���� ��

��� ����&�6���	�	�
�!���������66������ ���
� ��������	����	����	�
�����
	�����	������	������������

��� �����������	������4��&	�
����	���	�	����������	���/���

	�
�8 ��	���	�
:/�����	��	�
�����	��� ���	���8����

���	�	���	��:/�6���	�
��6����	����������8 ��	���	�
:�������4���	���	��)�����4�	��������������� ����	��

�����	������	�4����	5��G����������6�������� ��������������	�
��4����
	�����	�������4����� �������

�4��	�����������)�

�

;	
���>7��0��;�� ����&�!����

�

�

�4�� �������� ��� �4�� G������� ���6����� ��� ���� 	�� ������ ��� �4�� 0'=�� A9,B� ���� 0"=�� A99B�

�6��	�	���	���������6��������	���4����5	�� ����������4������������������� ���
� ���/�6���	�������

	�� �4�� ��6���� ��� D��� ��������� �6��	�	���	��� ���� ���	�	���	��)� � �4�� ��� ����&� !���� 6���	��� �����

����	���� ���� 	 6�� ���	�
����	�� �	���������������� ���
� ���� ����	���� �4��
4� �4���6����	�������

�4��G����������6���	������ ������

�

�4���0��!66�	���	���	����6�������������6	���������66�	���	�������4��!6��4���� ����!66�	���	���������)�

!��� 	��������������� ����������� ���
��������*6����������������	�����4��
4��4���0��C������)��4��

C�������	���������������������	���	���� ��	�����4��� ��������6�������	�4	���4���"!����
	����������

�4������	��������� ���
��)��

�

;	
��� -� �4���� �� �������4��� ��� � �4�� �0�� �66�	���	��� �4��	�
� 4��� ����	���� ���� ��
	������� ��� �4��

	�����������)��4�����4�	��������	������4���0���� 6����������4�������������������	����� ������	��.)�

�

�

�

�

51

;	
���-7��������4�������E	��	�
�����	������6���	���

�

�

-
������ �� �
�

�4	�� 6�6��� �����	���� �� ���&� 	�� 6��
����� ��� �4�� ���	
�� ���� 	 6�� �����	��� ��� �� ��������������� ����

	�����������)� ������������� ��� ����� 6���	��� �6��	��	$��� ����	���� ���� ����� �� ���� ��� ���
� ����

����	���� �����	��	�
� �4�� �������������0���
� ���� ����	��)� �4�� ��������� �6��	�	���	��� ���
�
�� ����

�4�� ��4��	� ������ ��	���	�
/����	�	���	������� ��	��	�����������������������	������	������)�=�������

��	������	��������4��6������6��	 6�� �����	�������4�������������������0���
� ��������	��)�

�

"�� ��	 ����
���� 	�� �4	�� ���&� 	�� ��� ������6� �� �� 6��4���	��� ��������������� ��� ����&� �4	�4� �	���

������	�4����������4	�����4	���8�����6������	��:�����	�&	�
������������6��	�	������ ��������������	����

8������ ��� 6������	�	���/� 6���� ����	�	���� ���� 	����	����:� ��� ���������� ��� �4�� 	������������ ������ 8���

�	�������	���4	��6�6��:������	������������������������	�����6���������	�����������6���	�������������	�
�

������	��������	�������������������������	 �������������	����������8���6����� �����6���
�������	�	$���:)�

�

"�
��	$��	������/� 6�������������� ��� ������6������������ �4�� ��� ����&� ���� 	���
������ 	���� ����	���

 ���
� �����������
����������6����	���K�
����� �����	������������	��	�
�����������4����������	��

����	������	��������	��� ������������	�
��	�	$��F������)�

�

�

�

52

�

�������� �
�

A9B ���
�L��
� ���� @�
����
� C/� �	�	$��F�� ����� 	�� �	
	���� ������ ���/� �������� ��6��� ���� 6��

��	��!� 	�/�G�
���/��4��������'�	����	������(���%�����)�

A<B �4�	����4	�!�
���/�!���������$����	/�!�
��	&	����� ���&�/�(�����G�	�4���/����������	�	$��F��

�����	��
����� ���7������������ ���������	�����	�
�	�����$	�/��������	�
������4��J�4���������������

���	���� 6�	���	��������� 6�����	��������6	�
������	��/����������/�<,,I�

A+B �	��������7���������4���� 6�	�
/�A���	��B����	���������4��67MM���)�	���)�� M���4�	$�

M ��	�M����M<,,<M,9M>J.<H�

A>B "#�/� !)/� %�����&	/� �)/� "���	��/� �)/� ������$/� �)/� ������������� �66���� ���� �������� ���� �� !��

"����	��/���0�����G�6����H/�!
)�<,,H)��

A-B "#�/�!)/��4/��)��)/�"���	��/��)/���/��)��)/�%�����&	/��)/�;�����"��	���;�� ����&������������� ���/�

��0�����G�6����./�!
)�<,,H)�

AHB ������$/��)/�=��/��)/�=��
/��)��)/�"#�/�!)/�"���	��/��)/�����%�����&	/��)/����&�"��	���;�� ����&�����

�������� ���/���0�����G�6����J/�!
)�<,,H�

AIB ������$/��)/�����%�����&	/��)/��*����	����0����
���������������������� ���/���0�����G�6����99/�

!
)�<,,H)�

A.B "#�/�!)/�"���	��/��)/�����%�����&	/��)/� �������������0���
� ��������	���� ������������ ���/���

0��������#����G�6����9</�!
)�<,,H)�

AJB !�� ��������	��� ��� =��0/� �� 	����� �����/� "!���/� !��	������ ���	��� 4��67MM���)���	��

�6��)��
M�� 	�����M��������)646M9HJJ.M��� �9),�	�����6�	 ������,9)���/�;��)��<,,H)�

A9,B =�������	�����	���	�����0���
� ���7�0'=����	 ��/��� 	����������/�"!���/�!��	���������	���
4��67MM���)���	���6��)��
M�� 	�����M��������)646M9I,,,M��� �9),� ���6�	 ������

,9)���/�;�������<>/�<,,H�

A99B =�������	�����	���	�����0���
� ���7�0"=����	 ��/��� 	����������/�"!���/�!��	���������	���
4��67MM���)���	���6��)��
M�� 	�����M��������)646M9I,,9M��� �9),� ����6�	 ������

,9)���/�;�������<>/�<,,H)��

A9<B =��� ����	���� 0���
� ���7� ����	��� @	��� �����/� =+�� =��&	�
� ���6� (���/� !��	������ ���	��� ���
4��67MM���)�+)��
M�GM����M99�;�������<,,>)���

A9+B ������ 	�� !��	��/� ���� C����/� ����	�� � ��	�/� ����
�� ;����	���/� ���	��=	���������/�0���	�
�
������	�4/�<,,+)�

A9>B "������� @�5��� ���� !��*������ �$��#����
/� ���� 	$	�
� �� 6������������ !��4	�������� ���
��������/��� 6��������6��� ���/�66�9.�+>/�<,,>)������;�N�������� %��	� O�	��	���/� �D��	������

����	�����6��	�	���	��� 	���	���	�������#��������� �����	
�)�����������	�
����� �4��>�4������������

���'��(�?���������������"�#����"�	���������4����
	������������ ����E�� ��>�8������;�/�(���

0�*	��/� !6�	�� <I� �� +,/� 9JJ.:)� ����������� ��� "�#����"�	������ ���4����
�� ���� ����� �)� '��(�?�

!����	��	��/����&����/��!/�9�9/�9JJ.)�

A9-B �4��
$4��=��
/��	#��=��
/�C�	5	��=��
/�!�	����4��/�����G�����������	�
�/�D��	����������	���
����������6��	�	���	��/�������	�4 ���/�����0��	���	�
���������	���@�����0���
� ���/�E��)�H/�(�)�

99/��6��	�����������!��������	��D��	����������	���0���
� ���/����� ����<,,I)�

A9HB ��0/�=�������	���@�����!
��� �����8=�@!:����#���/�4��67MM���)�������4)	�)�� M����M�
�

�

�

53

Service Oriented Architectures:

The new software paradigm

W. Reisig

Humboldt-Universität zu Berlin

Abstract:

Service oriented architectures are expected to become the foundational layer for tomorrow's

information systems and are influencing already many application areas. The principles of SOA have

evolved along applications, but the goals of SOA are far more ambitious, requiring a decent formal,

abstract basis, and in particular adequate modelling techniques. This paper surveys some problems,

discusses some elements of an abstract basis of SOA and outlines a generic modelling technique.

1. Introduction

The potential of service oriented architectures (SOA) is widely acknowledged. Recent voices from

industrial labs praise SOA as "THE most relevant emerging software paradigm", "a substantial change

of view, as it happens at most once each decade", "the next fundamental software revolution after OO"

or "much more than just another type of software". These architectures are expected to become the

foundational layer for tomorrow's information systems and are influencing already many application

areas like Enterprise Application Integration, Software Engineering, Systems Management, Data

provisioning, BPI, B2B – to name but just a few. SOAs support the quick and efficient coupling of

encapsulated software components ("services"), as well as flexibility and convenience of interaction.

Historically, SOA has emerged from two very pragmatic sources and backgrounds: business process

technology and Web service technology. So far, SOA is frequently conceived as a means to equip

business processes with web-based communication facilities.

The goals of SOA are however far more ambitious: SOA is the next step in trying to bring some order

(modularization, proper interfaces, standardization) to enterprise computing and enterprise application

integration. In these areas, the state of the art is at the level of spaghetti code. SOA is, in fact, the first

serious attempt at bringing some structure into that world. SOA can be done without web services and

without business processes.

Adequate representation, communication, and analysis of service-oriented architectures require

specific modelling techniques. Many techniques and languages originally focussing on business

processes are increasingly applied to SOA, too. The most prominent ones are BPMN, EPC (event-

process chains), YAWL, ADEPT, and versions of UML (activity) diagrams. Moreover, dedicated

implementation oriented languages such as WS-BPEL are used for human communication about

services. The most promising recent approach is the Business Process Modelling Notation (BPMN),

supported by leading companies of the software industry. Languages such as BPMN support

communication about (cross-organizational) business processes. Each modelling language comes with

a tool or a tool set, supporting graphical representation, translation to executable software, and – to a

minor extent – correctness and consistency tests. However, those techniques and languages appear not

as attractive and are not as widely used as they could and should be. Not only the software industry,

but also textbooks describe SOA usually by means of plain English, informal graphics, pseudo code,

and programs in concrete programming languages. But those means are too often ambiguous, and

concrete programs tend to mix substantial aspects with coincidental ones.

In the rest of this paper we suggest that SOAs can be constructed cheaper, quicker, better

understandable, more reliable, simpler maintainable, etc, by means of models. This applies in

particular to the following problems:

Service Composition: In a common scenario, established business processes are to be composed, in

order to jointly reach their respective business goals. This is usually intended to be achieved by means

of particular software constructs, denoted as orchestrations and choreographies. These notions need to

be disambiguated. Furthermore, it is debatable whether it is a better choice to model business

54

processes together with interacting facilities and to do – on a basic level of argument – without

orchestrations and choreographies.

Semantics of services: A lot of questions arise in analogy to programming languages, including the

fundamental one: What is the semantics of a service, specified in a given modelling language? This is

particular challenging, as some components of languages may not be intended to be implemented and

thus deserve no formal semantics. Nevertheless, a notion of equivalence is required also in this case.

Expressive power of modelling languages: Again, this is a challenging problem, in particular due to

the "always on" principle of services. In this context it is useful to identify the bare minimum of

expressive power needed to specify services (and, consequently, the concepts common to all

modelling languages).

Substitutability of services: This is a hairy problem, because long running processes (e.g. insurance

contracts) must be substitutable during execution.

Brokering: The "SOA triangle" assumes a broker to match offerings of service providers with

requirements of service requesters. This requires abstract information about processes and their

capabilities from a user perspective: Which kind of information should the provider and the requestor

disclose about their offered and requested services? This topic must be discussed on the level of

models before it goes to implementation.

Relation between abstract and implementable processes: This topic has been partly addressed by

extensions such as "BPEL for People", but deserves more investigation on the model level.

Reliability and Correctness: Properties of single and of composed services must be formulated and

verified, to varying levels of rigour, on their models.

Monitoring and conformance: The realization and analysis of SOA is important, but only one side of

the coin. The analysis of services while they are running is at least as important. It is vital to

continuously monitor services to see whether they behave as expected. Moreover, the conformance of

the real-life enactment and the normative models should be measured to detect mismatches and

anomalies.

Discovery and mining: Process and data mining techniques can be used to extract information from

interacting services. Process discovery, protocol mining, network analysis, etc. can be used to extract

models from recorded behaviour.

Design Methodology: Methods and principles of Software Engineering must be adapted to SOA, on

the level of models.

The above questions are both fundamental for SOA and far from being solved.

In the rest of this paper I suggest very first elements of an abstract basis of services. A generic

modelling technique is exemplified in Chapter 3.

2. Some First Assumptions for a Formal Framework

Communication of services is conceptually to be organized as a service composition. Composed

services together behave with regard to their joint environment like one service. For example, a travel

agent composed with a flight carrier and a hotel may jointly offer week-end trips.

Each instance of communication between services may terminate. For example, a travel agent's

communication with a client may terminate either with a contract, or with the understanding that the

travel agent fails to meet the client's requirements. An example for irregular termination was a client's

request never answered at all.

In a more refined setting, one may replace the requirement for termination by some more sophisticated

"beauty predicate", or by additional conditions. Summing up, in the set S of all services we assume a

binary composition operator

�: S x S � S

Furthermore we assume a "beauty" predicate, i.e. a subset p of S.

55

In most cases, p denotes weak termination. This already lays the ground for a canonical, rich theory of

services, covering a wealth of important notions, questions and properties, as they are particular

important in the framework of SOA.

Two services R and S are partners iff their composition meets the "beauty" predicate, i.e. if

R�S is an element of p:

As services are made to communicate, i.e. are to be composed, the semantics of a service S is the set

sem(S) =def {R | R is a partner of S}

of all partners of S.

The fundamental notion of partners of a service S gives rise to a lot of questions:

� Composability: Given another service R, is R a partner of S?

� Controllability: Does S have partners at all?

� Most liberal partner: Is there a canonical partner of S?

� Operation guideline: How characterise all partners of S?

� Adapter generation: Given another service R, construct a service T such that R is a partner of

S�T.

The above definition of the semantics of a service implies a canonical comparison of the

comprehensiveness of the capabilities of services: The capabilities of a services R are at most as

comprehensive as those of S (written R<S) iff each partner of R is a partner of S. Hence,

comprehension is a partial order on the set of all services, defined by

R<S iff sem(R) is a subset of sem(S).

A typical step towards a more comprehensive service was the above travel agent, additionally offering

ship cruises.

Consequently, two services are equivalent iff they comprehend each other, i.e. iff they have the same

partners. This equivalence is in fact the canonical counterpart of functional equivalence in the classical

setting: Two systems are equivalent whenever their environment can not distinguish them.

3. A Modelling Technique for Services

The above considerations provided a conceptual framework which is now to be substantiated by a

concrete modelling technique for services. It seems obvious from the previous considerations that

programming languages are no adequate candidates for this endeavour.

Modelling techniques such as BPMN tend to a maximum of expressivity, for convenience to its users,

resulting in a large number of concepts and graphical symbols. Here we follow the opposite direction,

asking for the bare minimum of notions needed to model SOAs. The resulting generic technique

highlights the characteristics of services and their composition. Furthermore, it is supported by

nontrivial analysis techniques. The most widespread such techniques are based on Petri Nets. This is

motivated by the observation that the communication style of services, i.e. asynchronous message

passing, is perfectly met by the semantics of places of Petri Nets. Consequently, a service S can

be modelled as a Petri Net with distinguished places to model the interface of S.

56

Figures 1 (a) and (b) show tow typical examples of services. Their intuitive meaning is obvious: (a)

describes the service of a vending machine which expects its partners first to drop a coin and then to

press a button, selecting coffee or tea. Finally, the vending machine provides the drink. Figure 1 (b)

shows a corresponding partner. Finally, (c) shows the composition of the vending machine with its

partner. The composed system terminates with tokens in terminal places.

Here we apply the usual conventions for graphical representations for Petri Nets with the interfaces

places on the surface of an enclosing box. For the composition R�S of two nets R and S we assume

w.l.o.g. that R and S are disjoint except for interface places. The sets of places, transitions, arcs and

the initial marking of R�S are just the union of the corresponding sets of R and S. An out-place of R

which is coincidently an in-place of S (and vice versa, an in-place of R which is coincidently an out-

place of S) turns into an inner place of R�S. Figure 1 (c) shows the composition of the two nets as

given in (a) and (b).

Besides the partner shown in Fig. 1 (b) the vending machine has many more partners. Figure 2 (a)

shows the tea-partner; (b) shows the coffee-or-tea-partner, and (c) shows that a partner may swap the

order of dropping a coin and selecting a beverage.

57

There is no need for a service model to do with only one thread of control: Figure 3 shows a partner C

with three threads of control. In fact, C is the most permissive partner of Fig. 1 (a): To derive any other

partner form this one, extend the order in which actions occur in C, and fix one of the alternatives.

The operating guideline OG(S) of a service S describes all possible ways to make use of S. In the

above technical framework this means OG(S) describes all partners, i.e. the semantics sem(S). In fact,

OG(S) can finitely be described for each service S. Essentially, this description is an inscribed version

of the most permissive partner of S.

It is interesting to observe that there exist services with no partners at all: Figure 4 shows a variant of

the vending machine which internally selects either tea or coffee. A partner would have to be able to

correctly "guess"" this selection.

This kind of Petri Net models is expressive enough to define a feature complete semantics of the most

important specification language for services, WS-BPEL [1],[2],[4],[6],[8],[9]. At the same time it is

simple enough for a series of deep analysis techniques. For example, there are algorithmic solutions to

all problems mentioned at the end of Chapter 3 [5].

4. Services with Ports

A theory of services must allow for abstraction. To this end we suggest ports as sets of interface

places. Technically, the ports of a net S define a partition of the interface places of S, i.e. each

interface place belongs to exactly one port. Furthermore, each port is named, with different ports of a

service S named differently. For reasons to become reasonable later, each port is either an in-port or an

out-port.

58

Figure 5 extends two nets of our running example by ports. Payment and choice are names of in-ports

of the vending machine as well as out-ports of the coffee partner. Vice versa, supply is the name of an

out-port of the vending machine, as well as of an in-port of the coffee partner. The composition R�S

of two nets R and S with ports is again a net with ports.

As an example, the composition of the "plain" vending machine and coffee partners in Fig. 3 (b) and

(c) resulted in the net (c) with "tea" an in-place. This is counter-intuitive. In fact, the composition of

the versions with ports, as in Fig. 5, results in the intuitively satisfying open net of Fig. 6.

5. Many Partners

A service (and hence a net) may serve more than one partner. As an example, the vending machine's

partner in Fig. 3 can be dissolved into three partners, as in Fig. 7.

59

They together serve the port equipped version of the vending machine in Fig. 5. Each of the three nets

can be constructed without considering the other two. This is not possible for all open nets with ports.

As an example, Fig. 8 (a).

References

1. Niels Lohmann, Peter Massuthe, Christian Stahl, and Daniela Weinberg. Analyzing

Interacting WS-BPEL Processes Using Flexible Model Generation. Data Knowl. Eng.,

64(1):38-54, January 2008.

2. Niels Lohmann and Jens Kleine. Fully-automatic Translation of Open Workflow Net Models

into Human-readable Abstract BPEL Processes. Modellierung 2008, Proceedings, Lecture

Notes in Informatics (LNI), 2008

3. Wolfgang Reisig, Karsten Wolf, Jan Bretschneider, Kathrin Kaschner, Niels Lohmann, Peter

Massuthe, and Christian Stahl. Challenges in a Service-Oriented World. ERCIM News, 70:28-

2, 2007.

4. Niels Lohmann. A Feature-Complete Petri Net Semantics for WS-BPEL 2.0. WS-FM LNCS,

2007, 5. Niels Lohmann, Peter Massuthe, and Karsten Wolf. Behavioural Constraints for

Services. BPM 2007, LNCS 4714 pages 271-287,

5. Simon Moser, Axel Martens, Katharina Görlach, Wolfram Amme, and Artur Godlinski.

Advanced Verification of Distributed WS-BPEL Business Processes Incorporating CSSA-

based Data Flow Analysis. SCC 2007 pages 98-105, 2007.

6. Wolfgang Reisig, Jan Bretschneider, Dirk Fahland, Niels Lohmann, Peter Massuthe, and

Christian Stahl. Services as a Paradigm of Computation. LNCS 4700 pages 521-538, 2007

7. Niels Lohmann, Peter Massuthe, Christian Stahl, and Daniela Weinberg. Analyzing

Interacting BPEL Processes. BPM 2006, LNCS 2006.

8. Sebastian Hinz, Karsten Schmidt, and Christian Stahl. Transforming BPEL to Petri Nets. BPM

2005, LNCS 3649

9. Niels Lohmann, Oliver Kopp, Frank Leymann, and Wolfgang Reisig. Analyzing BPEL4Chor:

Verification and Participant Synthesis. LNCS 4937

60

� �����������	
��
� �	
 �� ���
�� ���
��	��

���� �������	��
������� ��� ����� ������

�����������	
�������������������������

������ ��� ��� ��������� �� ����

��������

�� ������� � ��	
��� ������� �� �� ��	������ ��	 �������� �� ����� ���������

��� �
�
�� 	����	������� �
� ������� ��� ��
��	 �� 	�	
�� ����� ���������

��� � ��������� ������� ���� ����� ��������� �� ��� �������
��� ��������� �� ��� ����

��
��	 �� 	�������� � ����� �������� �� � ������� ������� ���� �������� �����

��������� �� ��� �������
��� ��������� � �
���� ��	� ����������������	 ����	���

�� 	������� ����� ��������� ��� �������� 	����	������ �� �
� ������	� �� ����

�����	� � ��� �� 	�	
����� �
��� ������������ �����
� ���	� �� ���������� ����
	��� ��

�������� �� �
�
�� 	����	������ ������� ����� ����������

� �������	�
��

�� ������� ��� 	���
	�� �� �	����������� �	����� �
� ���� �
������	��
� �� �����
�
 ���� ��� �	����� �������	�
� ��� �������� �	�
� ��	��! �����
��� "! #!�����
$	� �� 	� 	 �
�����
�! ������� �� ��� �
���� %&�'�'(�)�	��	��	"�� %���!����� 	� ���
)��������!
� *��
 �� +((,�

Announce

game

Register for

game

Play game

Announce

winner

[yes]

Time to start the

game?

Two or more players

have registered for

the game?

[yes]

[no]

Cancel game

There is a

winner?

[no]

[no]

[yes]

�� ��� �- .������! ��	 �	� �
� ��� 	�� �������� �	
�� ����

%� �� ��� � �� 	� 	������! ��	 �	� �
� ��� 	�� �������� �	
�� ����
� ��� 	��
��������� ���� �� 	 �
��/�� �����
�
� ���
�� ��	� 	�� ���������
� ���� �� �+�� ����
�� 	 ������	� 	�� ����� �	0�� ��	�� ������ 	 ���� �
 �	���� 	��	� ��� ��	!��� ��	!
��� 	�� "! ���� ����� �
"��� ��
���� %� ��� ���������!� ��� ��	!��� ���� ��� �
 ����0�

��
���� ��	!��� 	�� �
 �	�� ���������� 	 	���� ����0�� ��
�
������ ��� ��	 �	�
��
�� ��� ��1����� �������� ��	� ��� 	�� �
������
�� �������� ��� �
��
���� �������
�2�	! 	���� ����� ���� "� ��� ��
��
�
�� ����	� �
������ � 3��
�� �� ������� ���
�
��������� ��������
� ���� �
��
���� �������� �� ��� 	 ��
�� ���������
�
� ���
����
���������

61

��� ������� 	
������ ����	 �� ��� �� ��� ���� ������������� �� ������� � ����

�� � ��� �� ��������� �������� ��� ����������� �������� ����������� ���� ��� �����

��� ����� ��� �������������� ��� ����� ���� �� ��� ���� ��� ��� ���������� ���� ����

��� ���� ��� ��!� ������
���� ��� ���� ��� ���� ��������� ��� ������� ��� �� ���

������� 	�������� ��� ����	 �� �������� ��� ��� ����� ��� ������� ��� ��� ��� ����� ���

������������� ��� ���� ���� ��� ��� �� ������ �� �� ������ ��� �� ������ ����� ������

����� ��� ���� ��� ����� �� ��� �������� ���� �� � � �� ���� ������� ���� �����������

"� ���� ��� ���� ��� �� ��������� ��� ��� ���������� ������� ��� ��� ����� ����� ���!�

��� ������� 	#��� ����	 ��� �� ���� ���� ��� �� ��� ������� �� ����� ������ ���� ������

 ��� �� �������� �� ��� ������ ��� �� ��� ���� ����$�� ��� ������ �� ���� ����� �%

���� ��� �������

��� ��������� ������� 	#��� ����	 �������� �� ��� ����� ��� ���������� ��������&

����� �� �	
� � ������ ��� �	
�� � �� ���� ����� �	������ ��� ������ ����	��� �

�����
� ���	�
 ��� ������� �	��	� ��	� ���� ��� ���	� ����	�	�
 ��	���� � �����
�

	� ���� ���� �� ��� ������� �	��	� ��	� ���� ���� ���� ���� ��� ���� ������ ��� ����

����� ��� ���� �	� ��	���� �� �	�
 ��	� ����	�� ������� �� ��� �	�� �� ��� ����

���� ��� ������ �	
��� ��

��� �� ��
�	� �	��
����
 ���
�� ���� ������� ��� ������ ��� ������ �� �������

�	����� �� ���	�
 � � ��	���� ��� ���� �	� ��	���� �� �	�
 ��	� ����	�� �������

�� ��� 	��	�� �����
��� ��	�� �	�� ��
������� ������ ���� �	��� ��� ��� ����	��

�� ��� ��	����

��	��
 � ������ ��� ���	�� �
�	��� �������
	��� ������� ��� � ��� �� ��� ���	�� �	��

������ ��� 	�� 	�	�	�� ������ 	�� ����	�� ��� ��� �	������ ������� ��� ���	��� ���

��� ���	����� � ���	�� 	� ����� 	� ��� ���	���� ������!� ��	��� 	� ������ �� ���� ��

������ ��� ���	��� �	�� ����
�� ��� ���	���� ������!� ��	��� ��� ����� �	� ���	�

��	��� �� ���� ����� ����� ��� ���	� ��	��� ����� 	� ����� �� ��� ����	��� ��	����

��� ���� �	� ��	���� �� �	�
 ��	� ����	�� ������� �� ��� 	��	�� ������ ��	�� �	�� ��

������� ������ ���� �	��� ��� ��� ����	�� �� ��� ���	���

� ������ �	
���

"	
�� # ����� �� ����� �	�
��� �� ������ �� ���
��	�
 ������� �� ����� ������ ���

������ ������	�
 	� ��������� ��� ����� ������ �	��	� ��� ������
��� �����	��� ��� ��$

������ �	���� ������� %��� �� ����� ������ ��� ������� �� ��� ����� �� ��� �� ��� ����	����

��� ���� �� ���� �� ���� ��� 	��	������ ���� ���� �� ��� ����� ������� ���	
�

&� �	� �� ���� � �	�� � ������ ����� ��� � ������	�� ����	��� %��� 	� � �����	����

����� ����� ��� �� ��	�� ����� 	� � ��� �� 	�������	�� �� �������� &� ��� �	���	�� ��	�

�������	�
 �� ��������	�
 ��� ������ ������	�
 �� ��� ������	�� ����	�� 	��� ������

������	�
 ��� 	�� �����	���� ����	���� ��	� ��� �� ���� �� ���
 �� �� ��� ����	��

����� ������ 	� ��� ��� ��
�� � ���	� ����� ��� ��� ������	�� ����	�� �� � ������ ��

�� �	�� ���� ��� �����	���	�
 ������ ���� 	� ���� �� ��� ���� ������ ������ ���� ���

������ ���������� ����	�
 ���� ��� ������ ����� ������� �� ��� ������ ��� �	��

������ �� ������� ��� ������ �� ���� ����� �� �	��	�
	�� ���� ���������	�� ����

��� ����$������� ����	�
 ��� �	������ ���� ���� ���������	�� ���� ��� ����

62

Company profit

”Light up area” profit

”Put up an extra

protective shield” profit

”Strike” profit

Gaming

company

������ �� 	

�� ����� ��� ���
�
���

������ �
���
 ����� ������ ���
 ����� ���
 ���� ���
�������� ��� �������

�����
������ ��� �������� 	
����� ����� �� ���
�� ��� ���������� ����� �
 ������

�� ��� ����� �� ������ �� �� ��� ����� �� ������ � �� ����� �� ��� ������� �� ���

��������� �������� ��������� ��� ���

��� �������
 ��� �����
������� �� �� ���

��
�
 ��� �������
������� � ���! ���

��!����
 "��� ��� �������
 �������

 !�

�"�� �� ����� �� �������� ���
�� � ��������� ��#� �!�� ��� ���������� �� ���

���� ������� �#���� $�� �� ���
 �� �
� ���� �� ��#� �!�� ��� ���������� �� ���

�#��� ��
��� ��� ����� ��� �
 %����� "� ��� ������� �#���� �� ��� ������
����

����� ����� �
 ������� C � T � ����� C �� T �� �������� ��
 ��� ������� &�����

�� "� ��!��' �� ��� �����
������� ��
!����#���� ���
������� ������ �� C�T �
�

[[C � T]] := [[T]]

����� [[C]] �� ��� ������ ����� �� ��!����� ��!��������

���
�(�)�� ��� ������ ����� �� ��!����� ��!��������
) �

��������� �� ��!���

��� �� ����� �� �� �������
 ���������� C �� T ��!��������� ���� �� �� ��� ��� �������

���� C�

��� ����� ����� �� ������ � ����
�
 �� ���
��#��� *+���� �! ��*� ���
 �����

��
���"�
 ��� ��� �����
 ��������		�� �� ������ �� ��!���� #�����"������
 �� ���

�
��� �� ����� �� ������� ��� �����
������ ��

 �������
 	
���� ���� �� ����� 	
������

��� ������ �� �"��� ������� !���� ���������� ���� ��� ��� ��"
�� ����� ���

��������		�� �� �������!� ,-, ��

��
 "������ !����
 �� ���
�
��� �� ��� ���

�� ������� !���� ����������� .� ������� ���������� �� ��� ���������� "���

!����)
 !�
������ �������� !����
 ��
����� #���� ��� �����
������ �� ��� ��

����� �����
������
� ����� ��� �� ��� �� ������� ��������
� ����� ��� ��

��� ��� ������

�� ������ �	 ����� 	�����

��� ������� �������
 &"������ ����� �� �����
������ �� � ������� ����/

����'� ��� �����
������
� ��� ���
 �� �������
 &"������ ��� �����
������
� �� ���

������� �������� �� ��� �� "���' �� ��� ������� ��������
 �� "� ��#�� ������/

����� ��� ���������� �
�����
 �� ��#�� "� ��!��
�����#�
 �� ��� ��
������ ���
 �
�

��� ����� ���!��� �� "
�� �� ��
������ ��� �� �
 �
� ������ �� ������ ���

�������
 &"������ � ������� �������� �� �

��' ���� ���
�0����� #���� "��

��� �
 ��� "��� ���� �� ��� �����
�

 ��� !���� ����
 ��� !�
����� �� �������� !����
 �� ����� !����
 �� �� ��#�

�� ����
������� !����
 �� ��
 �� �� �� �� ���� ����� !����
 ������� ��������

63

�� ��� ���� ��	�
 �� ��� ��	�	 �� ���� ����� � ��� �	��� �����	 �� ����� �� ��� �����

����� ����� ���� ���	� ���� �� ��� �		�� ������ �� 	
�	� �
��
 ��� ������ ��� ��	�

���� ���	�� �� ����� ������	 ����� �� �����	 �� ��� ����
 �� ���	 ��� �� ��� ����� ��

��� ���� ���� ����������� ��� �� ���� ��� ���� ��� ��������� �� ����� ������	 	���� ��

�����	 �� ��� ���� ����� �� ����������� ������� ����� �	 ��� ������ �������� �� ��� ����

���	 �������� �������� ���� ��	� ���	� ���� �� ��� �		��
 �� ��� ������� �� ��	� ����

�� �������� ������ 	������� ����� ��� ���� �� �� �������� �������� ������ ��� ������

�� ���	 	������� � ������ ���� ��������� ��	 �������� ��� ��� ��� �� ��������� ����� ��

�����	 ����� �� ������� ��� �� ���� ��� �	���
 ��	 ������� �������� ����������� ����

��� �������� ������ �� ��� �����	� �	�� ��� ������� �� ����� !�
 ���	 ��� ���� �� ��

�������� �������� ����� ��� �������� ��	 ��� ��� �����	 ��� ��� ��������� ��� ����� ��

��� ����� ����� ����� ���� ���� ��� �		��

�� ����� " �� ���� � ������ ������� ��� ��� 	������ #$�� �� �� ����� ����������

	�����#
 �� ���	 ������� �� ���� � ������ 	������� ����� � ������ ��� ���� �� �		�		����

�� ��� �� 	����� ������� ���	��� ���� � ������ �����	 �� ��� ����� �	�� �� ���� �� ����	

��� ��	����� ��� ��������� �����	 �� ���� ������
 ���	 ���� ���� �� �� �������� ��������

	���� ��� ������ ��� ������� ���	��� ���� ���������� � ��������
 �� ���	 ������� ��

��	� ���� ��� �������� ������ 	�������	 ���� ��� ������� �� ����� %
 ��� ��	� ������

	������� �	 ���� ��� ������ ����	 ���� ���� 	������� ������	
 ���	 ��� ���� �� ����

������� ������ �����	 �� ��� ���� ���	 ������ ��	 �������	�� ��� ����� ����� ���� ���� ��

�� �������� �������� 	���� ��� �������� ������ ���	 ��� ���� �� ������� ���	��� 	���� ��

�	 ��� �� ���	 ���� �������
 �� ��� 	����� ������ 	������� � ������ ��� ������ �������

�������� �� ��� ���� ��	�
 ���	 ���� ���� �� ���� ��� �������� ������ �	 ��� ������� �����

����� ���� ���� �� �� �������� �������� 	���� ��� ������ ������ ��� �� � �������� �����

����� ���� ����� ��� ����� �� ���	 	������
 ��� ����� �������� ������ 	������� �	 ��� 	���

�	 �� ��� ������� �� ����� %
 �� ���	 ��	� ��� �������� �������� �	 ���� ��� ��������

���	 ��� ���� ������ �����	 �� ������ ���	���

��� ��	� ������ �������� ����� �	 ��� ��� 	������ #&�����#� �	 ����� �� ����� !
 �� ���	

������� ��� ������ �	���
 ��� ��� ���� ����� �������� ������ ������������ � �� ���

��	� ������� �������������	 �� ����� �� ������� ��� ������ 	������� ��	��� �
����	� ��	��

����
�	����
 ���	 ��� ����� ���� �� ���� �� �������� ������'	 	���� �	 ��� ��� ���

���������� ����� ����� ��� ���� �� ���� ��� �������� ��	 ��� ������ �����	 �� �������� �

��� 	������ ��� ���	 ���� ����� ����� ��� ����� �� ���	 	������
 (������ ������ 	�������

�� ���	 ������� �	 ���� � ������ ����	 ��� ��	����� �� ��� ������ ���� ��� ����	� 	�����

��� �����	� ����� 	����
 (� ������ �����	� ���	 ������ ���� ���� �� �� �������� ��������

	���� ��� �������� �	 �������� ��� � ����� 	� �� �	�	 �� ����	� ������� ������ �� �����	

�� ������ ��� �� ����	 � ��� �� �����	
 ���	 �������� �������� ���� ����� ��� �		�� ���

�� ��� ��	� ���� �� ������� �������� �������� 	���� ��� �������� ������ ����� ��� ���

����� ����� ����� ���� ����� ��� ����� �� ���	 	������ 	���� ��� �������� ������ ��� ��	�)

�� ��	 �����	 �� ���� �����
 ��� ������� ��	� ���� ��� �������� ������ 	�������	� �����

��� ��� ���� �� ��� 	��� �������� �������� ����� �	 ���� ��� 	����� �	 ���� ��������

��� �� ���� ��� �������� ������ ����� ���	�� �� ��� ������ �� ���� ��� �������� ������

��	 ��� ������ ���� ��� ������ 	���� ��� ��������� ������ ��� ��� ����� �� ��� ����

��	�

64

Service: Light up area

Player moves closer

to other players

[1:18 years]

By cheating the player

can light up the

area more effectively

[1:18 years]

By cheating the player

does not use points to

light up the area

[1:18 years]

Player moves away

from other players

[1:18 years]

1.0

0.33

The attacker cannot light

up an area because he

received too few points

[X:70 years]

”Light up area” profit

Eavesdropper

Hacker

Sell critical player info

to other players

[1:6 years]

[1:20 years]

[1:10 years] Insufficient

read protection

[1:20 years]

System

weakness

The attacked

player’s score is too

low and incorrect.

[X:35 years]

The player attack

without lighting up

the area first

[1:18 years]

Insufficient protection

of SMS connection

Weak admin

password

1.0

0.33

0.33

1.0

0.5

������ �� 	
���� ������ ��� �
� ������� ����
� �� �����

Service: Put up an extra protective shield

The attacker cannot put

up an extra protective

shield because he

received too few points

[Z:70 years]

By cheating the player can

protect himself more effectively

[1:12 years]

”Put up an extra

protective shield” profit

Player moves

away from other players

[X:18 years]

By cheating the player

does not use points to

protect himself

[X:36 years]

The player

attack without lighting

up the area first

[Y:18 years]

Eavesdropper

Hacker

Sell critical player info

to other players

[1:6 years]

[1:20 years]

[1:10 years] Insufficient

read protection

[1:20 years]

System

weakness

Weak admin

password

Insufficient protection

of SMS connection

The player can make

an assesment on how he

should protect himself when

area is light up

[1:12 years]

The attacked

player’s score is too

low and incorrect.

[X:35 years]

1.0

Another player lights

up the area the player

was previously in

[X:36 years]

Another player is

not warned

[Y:18 years]

The other player does

not use points to

protect himself

[Y:18 years]0.5

0.51.0

1.0

0.5 1.0

������ �� 	
���� ������ ��� �
� ������� ���� �� �� ����� ���������� �
����

� ��������	 �
��� ����������

�� ����� ����� � ! "��� �
� #������$ �� �
� �������� �� %&' (� ��� ���� �
� ������
��� �
� ��������� ������� ����� �����) �
�(� �� ������ *) ���� �
� ������� �� �
�
������� ����� �� ������� � �+ 	� ,� �,�� �� ���,��� �
� �
��� ������ ��������� �� ��
����� �
�� �
� ���
� �� ���������� ,��(��� �
� �
��� ������� ��� (���-�����+ ��
(���-����� (� ���� �
�� (
�� (� �����(� ���
 ,��.(��� (� (��� ����� �
� �
���
������� ���� � /���� ���,�� �� �����+

0� ���� ����������) ������ �
� ������� ��

C1 � T1, C2 � T2, C3 � T3

�,����� ���� �
� ������� �� ������� �) � �� �) ������������) ��� �
� ��,����������

{X �→ 1}, {X �→ 1, Y �→ 1, Z �→ 1}, {X �→ 1, Y �→ 1}

1� (��� �� ����

�T1 ∪ T2 ∪ T3

(
��
 ���������� �� �
� ������ �� ������ *+ 2���) (� ��� �������� �
� �����
�������� �� ��������� �� � ������� ���3�������+ 2����) ���� �S1) �S2 �� �S3 (� ���
���� �S1 ∪ S2 ∪ S3) �� �
� ��
�� (�� �����+

65

Service: Strike

Eavesdropper

Hacker

Sell critical player info

to other players

[1:6 years]

[1:20 years]

[1:10 years]

Insufficient

read protection

[1:20 years]

System

weakness

Weak admin

password

Insufficient protection

of SMS connection

Change critical

player information

[1:7 years]

[1:20 years]

Weak admin

password[1:10 years]

Insufficient

write protection

System

weakness

Player attack the target

with the lowest shield and

highest point score

[1:12 years]

The attacked

player’s score is too

low and incorrect.

[1:35 years]
0.2

By cheating the player uses an

almost correct amount of points to

strike and earns a lot of points

[1:12 years]

The player who

cheats wins the game

[1:36 years]

By cheating the player’s

strike is more effective

[X+Y:18 years]

The attacker cannot

strike because he

received too few points

[1:70 years]

”Strike” profit

0.3

Another player

is not warned

[X:18 years]

Player

moves closer to

other players

[Y:18 years]
1.0

1.0

0.5

0.5 1.0

������ �� 	
���� ������ ��� �
� ������� ��������

	
� ������� C2 ��� �� �������� ���� C21� C22 �� C23� �
��� C21 �� ��������
�� ������� �	
��� 	���� �� ���
��
 ��� �	
��� �
� ��������	� ��� C22 �� �������� ��
������� �	
��� �� ��� �
���� �� C23 �� �������� �� ���
��
���� �
���� ��� ��
� ����

���������� ����	� ���
��� �� �������� ��� ��� ������� 	
� ������� C3 ��� �� ��������
���� C31 �� C32� �
��� ���
 C31 �� C32 ��� �������� �� �� ���
��� ��� �	
�����

������ �� ���� ���������

�� ��� ��� �!� " �� � �� ���� �C1 ���� C3 � T3 ����� C1 ⊂ T3 �� ����� C1

��� ��� ���� �� C3� #� ���� �� ��
��� �T1 �� �!� $� ���� �T1 �� ��� ����
�C21� �C22 �� �C32� �� ��� ���� �C32 ���� �C22� �
��
 ����� �
�� ��
���
���� �C3� ��
��� �
�� �T3 �� �!� $� �� ���� �T3 �� ��� ���� �C23� 	
��
����� �
�� ��
��� ���� �C2� �� ��
��� �
�� �T2 �� �!� $ �� �
��
 ���� ��

��� ���� �
� ��!���� �� �
� ������ �� ������ %�

� �������	��

��
��� �������� �
� ���!�� �
���� ���!!��� �������
 ���� &'(�� �� �����!�)�����
������� ��
��� �
��� �
�� �� ��� �������� �
� �
���� ���!!��� �� � ���������
������� ���� �
���� ���!!��� �� ��� ����������� ��������� �� ������ ����������� �����
�
� ������� ���!����� ��
��� �!�� �
��� �
�� �
��� �
���� ���!� ��� �� ������� ��
�
� �� ���� � ��������� �
���� ������ ��� �
� ��������� ��������

	
� �������
 ��� �
�� �����
�� ���� ���� �� �
� *+,+	 -'$..�/0�'.1 ���2��� ��
�
� ������
 3�����! �� 4������

66

The composite service ”Play game”

Eavesdropper

Hacker

Change critical

player information

[1:7 years]

[1:10 years]

Insufficient

read

protection

[1:10 years]

[1:20 years]

Insufficient

protection

of SMS

connection

System

weakness

[1:20 years]

Weak

admin

password

[1:20 years]

System

weakness

Insufficient

write

protection

Sell critical player

info to other players

[1:6 years]

Weak

admin

password

Player moves closer

to other players

[1:18 years]

Player moves away

from other players

[1:18 years]

The player attack

without lighting up

the area first

[1:18 years]

The player can make

an assesment on how he

should protect himself when

area is light up

[1:12 years]

Another player lights

up the area the player

was previously in

[1:36 years]

Another player is

not warned

[1:18 years]

Player attack the target

with the lowest shield and

highest point score

[1:12 years]

The attacked

player’s score is too

low and incorrect.

[1:35 years]

0.5

0.5

0.33

0.33

0.33

1.00.5

0.2

By cheating the player

does not use points to

light up the area

[1:18 years]

By cheating the player

does not use points to

protect himself

[1:36 years]

The other player

does not use points to

protect himself

[1:18 years]

By cheating the player’s

strike is more effective

[2:18 years]

By cheating the player

can light up the area

more effectively

[1:18 years]

By cheating the player

uses an almost correct

amount of points to strike

and earns a lot of points

[1:12 years]

The player

who cheats

wins the game

[1:36 years]

By cheating

the player can

protect himself

more effectively

[1:12 years]

The attacker cannot light up an area

because he received too few points

[1:70 years]

The attacker cannot strike

because he received too few points

[1:70 years]

The attacker cannot put up an

extra protective shield because he

received too few points

[1:70 years]

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

0.3

0.5

0.5

0.5

”Light up area”

profit

”Strike” profit

”Put up

an extra

protective

shield” profit

������ �� 	
� �������� ������� ����� ����

67

����������

��� ���� ��	
���
�� ����� �� �� ����
� ����� �����
� ����������
� ����
����� �
�!�!��� ����
��
� �������� "�#�
�#� $����� %&'()� ��*"�+ ��"� ,))&�

�,� -�����
 �!.�
� /�!�0�0� � ��� �1����/ 2 ��� .��� ,))3� �����������

�	
��
����	����������������	�	������������������	��	��������	����

���	�� ��������� �������

��������

��� ����� 	
� � ��� ��� ���� �� ����� ����� ����������� � ����� ���������� �� �����
����� ��� ���� � ����� �� ���� ��������� ����� ����� ����� �� �� ���� � ����

���� � ���	�
��	�����

C�T C‡T
�T

�� � ���� ������� T ������� C! �� T �� �������� �� C! ��� �
��" ������ T � #��� ��� ����� ������� �� ����� � ���� ����� �� � ����
���� C �� � �����$ � T � %��� ��� &��� ������� ������ T ������� C �
��" ������ T �

���� � �������� ���
����������

C∪C
′
�T C‡C′∪T

C′�T

���� ���� ���� � �� �� ������ � ���� �� ��� ����$� ���� �� �� �������
�� ��� ����� ��� ����� ������� ������� ���� ����� �� � ���� ���� C ��
��� ���� �� ��� �������� '���! ��� �������" �� ��� &��� ������� ���� ��
����� ��� C � ���� ���� ��� �������� �� ���� ������

���� � ������� ���
����������

C�T∪T
′

T
′‡T

C�T

���� ���� ���� � �� �� ������ ���� �� ��� ������ ������� �� ��� �� ��
�� �������� �(��� �� ��� ����$� �� ��� ���� �� ��� ������ � ��
��)���� ��� ����� ������� ������� ���� ����� �� � ���� ���� C �� T

��� T

′� '���! ��� �������" �� ��� &��� ������� ������� ��� �������" �� ���
���������

���� � ���	��
������

C�T �C

�T

�� ��)� ��� �� ��� ����� 	
*! �� �������� ��� ��������! � ���� ���
����� ���� ��� ��� �(��������� '���! �� T ����� ������� C �� ���
�$��� ����� ��� �$������ ����������! �� � �� ���� ��� C! ��� ��
����� � ���� T �

����� �+ ����� 	
� � ��� ��������

68

Service Contracts in a Secure Middleware

for Embedded Peer-to-Peer Systems1

F. Benigni, A. Brogi, S. Corfini, T. Fuentes

Department of Computer Science
University of Pisa, Italy

1. Introduction

Peer-to-peer (P2P) systems are distributed computing systems where all network elements act
both as service consumers and service providers. Most P2P communication mechanisms are not
based on pre-existing infrastructures, but rather on dynamic ad-hoc networks among peers [1].
Embedded Peer-to-Peer (EP2P) systems [2] introduce new challenges in the development of
software for distributed systems. An EP2P system is a P2P system where small, low-powered, low-
cost embedded devices cooperate in exchanging and processing information using wireless
channels. EP2P systems can be employed in a number of different application areas, including
mobile telephony, home systems, or environmental monitoring. EP2P systems present a high
degree of heterogeneity (applications may run on different devices, from PDAs to sensor network
nodes, with quite different network bandwidth and computing power) and autonomy (the devices
enter and exit the system in an independent way, calling for frequent reorganisations of the
system).

One of the keys for the successful development of EP2P systems is the possibility of suitably
abstracting from low level P2P issues (such as the continuously changing network topology, and
the connections and disconnections of peers) by means of convenient middleware. The goal of the
Secure Middleware for Embedded Peer-To-Peer Systems (SMEPP) European Project
(www.smepp.org, [3]) is precisely to develop such a middleware, that will have to be secure,
generic, and adaptable to different devices (from PDAs and smart phones to embedded sensor
actuator systems) and to different domains (from critical systems to consumer entertainment).

One of the objectives of SMEPP is to feature a high-level, service-oriented model to program the
interaction among peers, thus hiding low-level details that concern the supporting infrastructure.
SMEPP services are associated with service contracts - which provide standard descriptions of
SMEPP services - and with service groundings - which provide details on how to interoperate with
services (i.e., communication protocols, message formats, port numbers, etc.). Service contracts
are the key ingredients of the SMEPP mechanisms for service publication and discovery.

In this paper, after briefly introducing the main features of the SMEPP model, we describe the
structure of service contracts that has been defined in the SMEPP project.

2. The SMEPP model

The design of the SMEPP service-oriented model has been driven by a thorough analysis of the
middleware, security, and application requirements that were identified during the first year2 of the
project [4,5,6].

1
 Work partly supported by the SMEPP project (EU-FP6-IST0333563).

2
 The SMEPP project is a 3 year project that started in September 2006.

69

The key features of the model are the notion of group of peers, the notion of service offered by
peers (or by groups), and the concern for security. In short, the model defines a set of security-
aware primitives for peer management (e.g., to create peers), for group management (e.g., to
create, join, or leave groups), for service management (e.g., to publish, unpublish, or discover
services), and for message and event handling (viz., to send or receive messages, or subscribe,
unsubscribe, raise, and receive events), to be implemented by one or more APIs3. Such primitives
are the basic bricks for constructing the code of P2P entities4.

2.1 SMEPP primitives

Because of space limitations, we only list here (Figure 15) the set of SMEPP primitives available to
software developers. A detailed description of the SMEPP primitives and of the SMEPP model can
be found in [7,8]. We only outline here that service management primitives include a publish

primitive (to publish a service contract in a SMEPP group), a getServices primitive (to identify

the published services that match a given contract template), and a getServiceContract

primitive (to retrieve an actual service contract).

// Peer Management Primitives
peerId newPeer(credentials)
peerId getPeerId(id?)
// Group Management Primitives
groupId createGroup(groupDescription,credentials)
groupId[] getGroups(groupDescription?,credentials)
groupDescription getGroupDescription(groupId,credentials)
void joinGroup(groupId,credentials)
void leaveGroup(groupId)
groupId[] getIncludingGroups()
groupId getPublishingGroup(id)
peerId[] getPeers(groupId?,credentials)
// Service Management Primitives
<groupServiceId,peerServiceId> publish(groupId,serviceContract,serviceGrounding)
void unpublish(peerServiceId)
<groupId?,groupServiceId,peerServiceId>[]
 getServices(groupId?,peerId?,serviceContract?,maxResults?,credentials)
serviceContract getServiceContract(serviceId)
sessionId startSession(serviceId)
// Message Management Primitives
output? invoke(id,operationName,input?,returnResult?)
<callerId,input?> receiveMessage(operationName)
void reply(callerId,operationName,output?,faultName?)
output receiveResponse(id,operationName)
// Event Management Primitives
void event(groupId?,eventName,input?)
<callerId,input?> receiveEvent(groupId?,eventName)
void subscribe(eventName?,groupId?)
void unsubscribe(eventName?,groupId?)

Figure 1. The SMEPP primitives.

2.2 SMEPP modelling language

The SMEPP model is equipped with a high-level language (SMoL — SMEPP Modelling Language)
for specifying how to orchestrate SMEPP primitives into peer or service code. The availability of a

3

The reference implementation (currently under development) is Java-based.

4
 We shall use the term “entity” to refer to peers or services.

5
The question mark denotes optional parameters, square brackets represent arrays, and angle brackets

composite data structures.

70

high-level specification language notably simplifies the time-consuming and error-prone task of
specifying the interactions of a complex P2P system. Most importantly, the definition of formal
semantics for such a language [8,9] enables the simulation and the analysis of the behaviour of
peers and services, thus featuring the possibility of developing not only secure, but also a priori
verified SMEPP specifications. Furthemore, the availability of automatic translators (e.g., the
prototype SMoL2Java compiler) greatly simplifies the generation of executable code, which can be
further completed to express data-related details of peer/service behaviour.

SMoL defines the behaviour of the SMEPP entities as compositions of basic commands into
structured ones. SMoL is inspired by version 2.0 of BPEL [10], which recently became the OASIS
standard for describing Web service compositions. A BPEL process describes the behaviour of a
Web service that orchestrates one or more WSDL [11] services, and in turn, it exposes a WSDL
interface to its clients. Similarly to BPEL, SMoL aims to describe both abstract and executable
entity behaviour. The former is an abstract presentation of the service concrete behaviour (e.g., the
abstract behaviour of a Java service), that can be exposed to potential clients. The latter serves to
describe the actual executable behaviour, which can be executed in dedicated SMoL engines.
Since the BPEL semantics [12] is quite complex (e.g., due to synchronisation links and dead-path
elimination), the analysis of (interactions of) BPEL processes is both troublesome and very time
consuming. Furthermore, the SMEPP requirements do not request several BPEL constructs
(concepts). Therefore, SMoL has been designed from BPEL basically by removing the following
BPEL concepts: compensations, synchronisation links (and hence dead-path-elimination), the
forEach construct, serializable scopes, partner links, message properties, and correlation sets.

Because of space limitations, we only list here (Figures 2 and 3) the basic and structured
commands of SMoL. A detailed description of SMoL can be found in [7,8].

primitive invocation

void empty()
void wait(for?, until?, repeatEvery?)
void throw(faultName, faultVariable?)
faultVariable? catch(faultName)
<faultName, faultVariable?> catchAll()
void exit()

Figure 2. SMoL basic commands.

COM ::= BasicCommand |
 Sequence COM+ EndSequence |
 Flow COM+ EndFlow |
 While boolCond COM EndWhile |
 RepeatUntil boolCond COM EndRepeatUntil |
 If boolCond COM Else COM EndIf |
 Assign [Copy FROM TO EndCopy]+ EndAssign |
 Pick [pickGuard COM]+ EndPick |
 InformationHandler COM [infoGuard COM]+ EndInformationHandler |
 FaultHandler COM [catchGuard COM]+ EndFaultHandler
boolCond ::= logicalExpression
FROM ::= variable | expression | literal | opaque
TO ::= variable
pickGuard ::= guard | wait(for?,until?)
infoGuard ::= guard | wait(for?,until?,repeatEvery?)
guard ::= receiveMessage(operationName) |
 receiveResponse(id,operationName) |
 receiveEvent(groupId?,eventName)
catchGuard ::= catch(faultName) | catchAll()

Figure 3. SMoL structured commands.

71

3. SMEPP service contracts

SMEPP services have contracts, groundings and implementations. The contract provides
descriptive information on the service, while the implementation is the executable service (e.g., a
C++ service) exposed to the middleware through a grounding.

A service contract describes “what the service does” (viz., the service signature), “how it does it”
(viz., the service behaviour), and it may include other extra-functional service properties (e.g.,
QoS). The signature provides an abstract description of the operations offered by the service to its
clients, and of the events raised by the service. The signature is necessary for the service
invocation. The behaviour is described by means of a SMoL specification, that is, an orchestration
of SMEPP primitives. The description of the behaviour is optional6 and it serves, on the one hand,
to match service contracts, and on the other hand, to analyse (e.g., to simulate) the functioning of
entities, or their interactions with other entities.

The core of the SMEPP service-oriented model borrows concepts from state-of-the-art Web service
technologies. On the one hand, we model service contracts using XML schemas and, in particular,
we model service signatures similarly to WSDL [11] interfaces, and ontology information using the
Ontology Web Language (OWL [13]). On the other hand, we model service behaviour similarly to
BPEL [10] processes.

Generally speaking, we partition services into two classes: state-less and state-full services. On the
one hand, state-less services do not keep track of their interactions with clients. Clients can invoke
the operations of such services one or more times and in any order. For example, a temperature
monitoring service can be implemented as a simple state-less service that only offers one
operation that returns the environment temperature. Entities can then invoke this operation every
time they wish to get a reading of the temperature. On the other hand, state-full services keep
track of their interactions with clients. We divide state-full services into session-less and session-
full services. Intuitively speaking, session-less (state-full) services are services that feature a single
virtual communication channel, which is shared by all clients, and which is available since the
service is published until the service is unpublished. Session-less services suitably model shared
resources such as a shared whiteboard where every client can sketch at anytime. Session-full
services instead maintain one channel, and one interaction state, per client. For instance, a remote
calculator simultaneously serving several clients can be provided as a session-full service. The
following Figure summarizes how the three types of services can be classified according to the
concepts of interaction state and session management.

 Without interaction state With interaction state

Managed without sessions state-less session-less
Managed with sessions session-full

Figure 4. SMEPP service types.

As we will see next, while contracts always declare the type of behaviour of a service (state-less,
session-less or session-full), the specification of the behaviour via a SMoL specification is optional
in contracts.

6
 We use the term behaviour-less to refer to services that do not expose behaviour information in their

contracts. Dually, we use the term behaviour-full to refer to services that expose behaviour information in
their contracts.

72

3.1 Structure of SMEPP service contracts
According to the SMEPP requirements, SMEPP service contracts must be:

� Multilanguage and multiplatform: The same contract must be consumed by all the SMEPP
implementations (e.g., Java, NesC) and also by all the considered devices (e.g., laptops, PDAs,
smart phones).

� Simple and light: Contracts must be easily downloaded and processed by small devices in
[E]P2P environments.

� Extensible and easy to manage: The contract definition must be easily extensible but at the
same time it should remain compatible with the previous versions. The contract will be used to
discover services, hence it should be easy to manage.

According to the aforementioned requirements, a SMEPP service contract is expressed using XML
and its structure is validated by an XML schema file [7]. The structure of a SMEPP contract
contains the following elements:

� Profile. The profile of the service, which is mandatory, defines basic information on the service,
such as the service name and the service category.

� Signature. The signature of the service is mandatory and it includes:
o Operations description. For each operation provided by the service:

� operation name,
� operation type (one-way, request-response),
� input parameters description (name, type, possibly other extra information),
� output parameters description (name, type, possibly other extra information),
� list of exceptions (faults) possibly raised by the operation.

o Type declarations.
o Optional ontological annotations.
o Possibly other additional information (e.g., other service documentation).

Signature information is expressed with a reduced version of WSDL 2.0 [11]. SMEPP supports
two types of operations: one-way (corresponding to the wsdl:in-only message exchange pattern)
and request-response (corresponding to the wsdl:in-out message exchange pattern).

� Behaviour. The service behaviour specifies the interaction protocol that the service follows, in
order for the client to correctly interact with it. The service behavior must at least specify the
service type (state-less, session-less, session-full), and it can set an upper bound to the
number of running sessions (in the case of a session-full service). The service behaviour
optionally includes a (possibly partial) specification of the workflow representing the service
execution, presented using SMoL. The SMoL service behavior specification is included in the
contract by means of an XML schema plugged-in into the basic Contract.xsd.

� Properties. Optionally the service contract can include additional information helping to
categorize the service according to different criteria (e.g., geographical, business type etc.).
Supplementing the service contract with these values provides useful metadata and context that
can be exploited to discover and consume the services. The categorization of a service is
expressed with a list of properties, each specifying category, name, and value of the property.
The category can be a reference to a taxonomy defined in a separate file.

� QoS. Optionally the contract can include information describing the Quality of Service (QoS)
offered by the service. The QoS information must be expressed in a machine understandable
format, so that the middleware can include QoS monitoring tools to verify how the service is
fulfilling the expected QoS. Contract express QoS with a fixed XML schema that defines some
QoS parameters and the relations among them, and it also allows the use of optional ontological
annotations to improve the semantic information related to the QoS. For each QoSParameter
the following information can be processed:

� Name: The name of the QoSParameter
� Domain: The domain or classification of the information contained in by the QoSParameter

(e.g., Runtime-related, Transaction-Support, Security-Level, Cost-related, etc.).
� Nature: The way in which the value is computed (viz., Dynamically, Statically).

73

� QoSImpact: Describes the way in which a variation or unfulfillment of the QoSParameter
would affect the performance and QoS of the service. In general it describes the influence
(impact) that the QoSParameter produces over the whole service.

� QoSMetric: Describes the unit of measure and the way in which the QoSParameter can be
measured. For example, the value ‘50’ can be defined as a numeric type (e.g., xs:int), but
the numeric value ‘50’ may represent diverse concepts (percent, megabits per second,
etc) and then QoSMetric can add some semantic meaning to ‘50’ by means of the
definition of its associated metric.

� RelationShip: Describes how this QoSParameter can affect other QoSParameters.
� Aggregations: Describes some compositional rules applied to the QoSParameter. Used to

describe compound QoSparameter.
� Optional ontological annotations.

3.2 A simple example

The following is a very simple example illustrating the (friendly) syntax of the contract for a
TemperatureReader service featuring the operation getTemp() which returns the current
termperature.
:

Begin_Contract:

Profile:
ServiceName: TemperatureReader
ServiceCategory: EnvironmentMonitoring

Signature:
Request-response operation temperature getTemp()

Behaviour:
ServiceType: state-less
Process:

Sequence
<callerId> = receiveMessage("getTemp")
t = opaque // measure ambient temperature
reply(callerId, "getTemp", t)

End Sequence

Properties:
[Geography::Location] = “Italy”;
[Business::Functionality] = “Environmental Sensor”

QoS:

- [Transaction_Support::integrity] = 100‘%’

- [Runtime_Related::latency] = 5‘sec’
latency produces an inverselyProportional impact over performance

- [Runtime_Related::throughput] = 1000‘request per hour’
throughput produces a proportional impact over performance

- [Runtime_Related::performance] = 100‘%’
performace is a compound QoSParameter composed by latency and throughput

End_Contract

Figure 5. Friendly representation of a SMEPP service contract.

Note that – for exemplification purposes – the above contract includes a SMoL specification of the
service behaviour, even if the considered service is state-less. Note also that, for readability, we
employed a friendly syntax for properties. For instance [Geografy::Location]=“Italy” should
be read as “the property named Location corresponding to the category Geography has the string
value Italy”. Similarly, [Runtime_Related::latency]=5‘sec’ should be read as “the

74

QoSParameter named latency corresponding to the QoSDomain Runtime_Related has the
numeric value 5 and is measured in seconds (‘sec’).”

4. Service grounding

The service grounding must include some metadata needed to correctly interoperate with the
service. To let the SMEPP middleware use services which can be implemented in different ways
using different platforms and architectures, we need to define a structure of grounding satisfying all
the possible services architectures and implementations (e.g., component model, web services,
remote objects, RPC, etc.). This section describes the service grounding specification for third
party services, whilst SMEPP services will be accessed by the middleware by means of a standard
interface which is part of the SMEPP API implementation.

The SMEPP middleware controls the instantiation and invocation of services into the [E]P2P
environment, while SMEPP clients can interact with SMEPP services only through primitives (e.g.,
getServices, invoke, etc.) which do not allow the reception of any information about grounding
(e.g., address, port number, etc). SMEPP grounding information is only managed in the provider’s
middleware, thus it cannot be used by clients to directly connect to SMEPP services. The XML
schema of service groundings for third party services, sketched in Figure 6, is defined in the file
Grounding.xsd.

Figure 6. Representation of the Grounding.xsd schema.

The binding element of a SMEPP grounding is equivalent to the binding element of a WSDL
document.

75

5. Concluding remarks

The way in which SMEPP contracts have been defined obviously bring similarities with other
definitions of contracts that have been proposed in other research projects. For instance, signature
information in SMEPP contracts is expressed with (a simplification of) WSDL 2.0 [11], while service
behaviour is specified with SMoL, which is a simplification of BPEL [10]. While OWL-S [14] process
models can be used to describe service behaviour, SMEPP does not employ OWL-S to represent
service behaviour since OWL-S does not allow one to naturally model exception and event
handling (which are instead a central part of SMoL and SMEPP, especially important for
verification and analysis purposes). SMEPP instead shares with OWL-S the use of OWL ontologies
to annotate concepts in contracts. SMEPP definition of QoS is instead borrowed from the Amigo
project (“Ambient intelligence for the networked home environment”) [15].

The SMEPP service discovery mechanism relies on service contracts. Queries (issued via the
getServices primitive) employ partial contract specifications – also named contract templates –to
restrict the set of candidate contracts to be retrieved. The current prototype implementation of the
service discovery component of the SMEPP middleware supports syntactic queries – taking into
account ontological annotations, if any - that can involve all parts of contracts but SMoL
behavioural descriptions.

Immediate future activities are going to be devoted to experiment the resource requirements for the
different types of devices participating in SMEPP applications, with the purpose of devising
different types of matching for the different middleware configurations. Future work will also have to
be devoted to develop tools for analysing the compatibility of behavioural descriptions, and to
identify a suitable, less expressive language (e.g, behavioural types or even FSMs) to represent
service protocols, in order to make their inclusion in the matching feasible in the context of SMEPP.

References

[1] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, “A scalable content addressable
network,” in Proceedings of SIG-COMM’01, 2001, pp. 161–172.

[2] P. Costa, G. Coulson, C. Mascolo, G. P. Picco, and S. Zachariadis. The runes middleware: A
recon�gurable component-based approach to networked embedded systems. In Proceedings of the
16th Annual IEEE International Symposium on Personal Indoor and Mobile Radio Communications
(PIMRC’05), Berlin (Germany), Sept. 2005.

[3] M. Albano, A. Brogi, R. Popescu, M. Diaz, and J. Dianes. Towards secure middleware for embedded
peer-to-peer systems: Objectives and requirements. In Proceedings of RSPSI’07, 2007,
http://www.igd.fhg.de/igd-a1/RSPSI2/papers/Ubicomp2007_RSPSI2_Albano.pdf.

[4] SMEPP Coalition. D1.1: State of the art and generic middleware requirements. http://www.smepp.org/.
[5] SMEPP Coalition. D1.2: Security Requirements of EP2P Applications. http://www.smepp.org/.
[6] SMEPP Coalition. D1.3: Application requirements. http://www.smepp.org/.
[7] SMEPP Coalition. D2.1: Service model description. (Second version.) http://www.smepp.org/.
[8] A. Brogi, R. Popescu. Workflow Semantics of Peer and Service Behaviour. In J. Davies and X. Li

(editors), Proceedings of the 2008 2nd IFIP/IEEE International Symposium on Theoretical Aspects of
Software Engineering, pages 143-150, Nanjing, China, June 17-19, 2008.

[9] A. Brogi, R. Popescu, F. Gutierrez, P. Lopez, E. Pimentel. A service-oriented model for embedded peer-
to-peer systems. Electronic Notes in Theoretical Computer Science, 194(4):5-22, 2008.

[10] OASIS.BPEL v2.0. http://www.oasis-open.org/committees/download.php/23974/wsbpel-v2.0-primer.pdf.
[11] W3C. Web Services Description Language (WSDL) Version 2.0 Part 1: Core Language.

http://www.w3.org/TR/wsdl20.
[12] A. Brogi and R. Popescu. From BPEL processes to YAWL workflows. In M. Bravetti, M. Nunez, G.

Zavattaro, editors, Proceedings of the 3rd International Workshop on Web Services and Formal
Methods (WS-FM 06), LNCS vol. 4184, pages 107-122, 2006.

[13] D. McGuiness and F. van Harmelen (Eds). Web ontology language (OWL) overview, 2004. Web guide.
http://www.w3.org/TR/owl-features.

[14] OWL-S Coalition. OWL-S 1.1 release, from http://www.daml.org/services/owl-s/1.1/.

[15] Amigo project, Deliverable 3.1b “Detailed Design of the Amigo Middleware Core: Service Specification,
Interoperable Middleware Core”. http://www.hitech-projects.com/euprojects/amigo/deliverable.htm

76

� ��������	
�� ������������ ����������

�������� ��� ����������

������ ���	
�	 �	� ���		� ����

���������	
���� �������� �������

�������� �� ����� �� ��� ���������� � ��!����" �� ��������#$���� ��������% ����!����&���
�!��% ������ $' � ������ � $������� ��� � ������ � ��!�������� � ��� $�������()�� ��!
�� �� �������� �*���*' $������ ���������� � ��������� ��� ��� �����+� �� � %���� ��!����" ���
���������� ��� ���*' �� �� ������ �*��� � ��������#$���� ����+������ ��!����"�(�� �������*���
�� ���" ��� ��������� � ,��������*'- �����*�� ��������% �� � %������ �������' ��� �� ��������*
��� ���*��% ��� ���������(.� ������� ��� �*��!� �� ������� ��� �������*�� �������������� �
��� ��!����" ��� ��� ������� ��! �/� ��� ����(0� ��� ��� �!������� ����*�� ��������� ��
���� ������ ��� ������ �����1������ � �� �������� ����	
�
� �������' � ��� ��!����"(2��� �
��� ��� ������ ���� �� $�*����� �*�����(0� �*�� $�*���� ��� ��� � !�����*�%' �!������
������������% � ��������(�� �������*��� � �����*�� ��������% �� ��� ����� �� � %���� ��!����"�
���� ��� ��� �������3 ����� ��� ��� ��� �� �����%��� �� ��+������ � ��+��!��� �� � �����4�
�� ��� �� �� !���+�� ��!����" �����*�� ��������% �� �����(

� �������	�
�� ��� ������ ����

������
��	�� �������
��	 � 	������
� ���� �������
��	 �������
� �
�� �� ����
���� ��������
��
�	� �����
����� �������� � ���� �����	
�� ����	�	! "#$%& ����� ������ ����� ��
���
��

�����
� ������ � �
�� ' ���	�� � � ������
��	 �� �����	�	
 ' �� "(& ������	!
�� !�����
������
� � � ������
��	 �� ����� ������
�� �	� ")& �������	!
�� ����� ������
�� �	 �	��������
�����	�	
*
���	! �	
� �����	
 ��� ����
��	 �	
���� �	����	��	

��
 ��
 �� �����	
� �����

+	
�� ��	
��
 �� �
�� ���!	* ������
��� ���	�� ����� ��
�� �����	�	
 ��� 	�
 �� ���������
�
 �����
�!� �� ���������	
* �	� �	� ��� ��	

� ����	 ����
 ����
��	 �	� ������
�� �	���
,� �	
������ ���
��
 ������ � 	�
��	 �� ��	
���
 ����� ��
�	!���� �������
�� � ��	
���	
 �	
��
�������� ��
�� �	����	��	
 ' ������ ����
��	* � ��	
���	
 �	
�� �������� ��
�� �����	�	
 �	���
��	�����
��	 ' ������ !����	
�� "�� ������& �	� � ������
��	 �����
�� γ ���	�	! ���
�� ��������
��
�� �����	�	
 �	� �
 �	����	��	
 ��� �	
�	���
� �� �������� -�
���
��
 �	 ��
 ���������*
γ � �������
�� ���	�� ��
�� ������� ����������

+	 #.%* � 	�
��	 �� �	
������ �������
��	 �� ���	 �	
������� �	
��� �� + � ��
���
�* �����

�� ��	
���	
 ������� �	 ������ � �	
�����
�� �
�� ��������	�*
�� ��	
���	
 �	 ��
��
 �
��

�������� "�	���
�� !���	 ����
��	&* �	� γ �
�� �	
����
��	 �� �����������
����� ,��	 �����	!
��
� ��� ��	
���
* ������	
 	�
��	 ���
��� �� 	��	�������� �	� 	����������� �� �
 �� ��	
���

�	� �� ��������� ��
���	 ��	
���
� �	��	�������� � � ������ �	
��
�� ���
����	 �	 �	
������ �	�
	����������� ������
�� ���

��

���� ���
 �	 �	����	��	
 �����	
�	!
�� ������
��	
� �	
��
��� ������	�� ���	�
�
�� /�	����* �	
�� ��	
��
 �� ��	
���
* ��������� � ���
��� ��� ������
�	������ #)%* �	� � ���	�� ��	
���
 � � ��	
���

��
 ��0���� ���� ����
�� �������	
�
��	 �	�
�� ����
�� �	����	��	
�

������
��	 ��
���	 ����
��	 �	� !����	
�� �� ���	 ������� �	 #1% ����� �	
������ ��
���
�
���� ���	 �	������ ��
� ������
�� �	 #((%� +	 #(2% �� ���� ����	
�� � ��������� !�	�����3�	!
���
�	
������
������ �� ����	! �
���
���� ���

� ��	
���
 � ������	�� ����� "
�� ������
��	 �����
��
γ&� 4�� ������
��	 �����
�� �	�
���� ������
��	 ��� ���	�� ��	!
�� �	
����
��	 ����� ��
�� 5+6
��������� #7*(*2%�

4�� ��������� 5+6 "5�������* +	
����
��	* 6�����
�& �� ���	 ������� ��� �����	�	
����� ���!	
�	� �������
��	� +	 5+6*
�� ��	���
 �� �	��
 ��
��
����� �	
����
��	 � �������� ��
�� ���� !�	����

77

������� �� �	
������� ���������� �����

��� ��� �� ��� ����
��� ���������� ������� �� ������
���������� �� ���� ��� ���������� �� ��� �
�� �� ��	� ���� ��� ���	��� ���	� ����
��������
��� ����� ��������� � ������ �� �������� ������������� �� ��� ������ �� ���� ����� ������ �	�
�� �� ���

 ��
���� �� ��� �������� ��� ��	����	����� �������� �����

��� �� � ! ��������"�
 ��� �� ������������ E ��� ����� ��� ����������� γ(K, E) �� ����������� ��� ��� ���
��������� �� �#!
����� ��� ����� γ(K, E) �	������ ��� K ������ � �������� �� ���� �������� B ����� B ��
�$����� �������� �������� ��� �%& ������� ������������ ����

��� �������� �
��
 ����������
�� �������� ������ �� �����������
 ������ � ��

 � ��������� �� ��������� ��� ��	���
���
�� ��
����� �� �����������

��� ��������� ��� ��� 	�� �� ��� �%& ���������� ����
� � �	�� �� ����� �$���������� ' � �����
�� ()*� ��� �%& ���������� ����
 �� � �$�������� � �� ��� �� ����������! +,+ �	
�� ' �� �����������
���������� �� ��� ����������� �� ���������� ����
� ��	�� � ����������� � ����� �� -��	�� !� ����
��

 ���
� 	� �� �������� �����������	� ��������� �������� 	���� ���� ������	� �� �����������
��������� ���� ���������	� �� �	

� ���������	� ������������ �� ����� �� ��� ������ �� �������
������������� �� ���������

%� (.*� � �� (/*� �� �
��
� ������ ��	������� �� �	������� ����� �� ��������� ���� ����
�����

��� ��	�� �� ��������� �� ��0����� ������� �� �������� ������ 	����������� �� ���
����������
����� �� ������� ������� ��������� �� ��� ������������ 1� �� ��� �$�
���� ��� ��
������� �� �������� ��������� ��� ���� ��� ��0����� ��������� ��
����� �
���� ��0����� ��
��
�� ��� ���������� ������� �����2 ��� �$��
�� �� ������������ ���������� ������� �
��� ���
��

����� ������� �� ��������� ������� ��� �������� B1 �� B2 ��� �� �� ����������2 B1 ������ B2

�� � ����� 	��
��
� B1 ������ B2 �� ��� 	��
��
� �� B1 ������ B2 �� B1 �� B2 �� 	���� �
���
3���� �� �� ��� ������	�� ��������� ������� �
���� �������� � �� �� ���������� �� ���������
����
������ ��������� ������� �
���� ������� �� �����������
 ��� ���4	������� �	� ��� ���������
�

%� ���� ����� �� ���� ��� 	���	
���� �� ��� �����
 �������� ��� ������������ �������� ���
����	��� �� (.*� �� ������� ��� ���� ������������ �������� �� (/* �� (* �� ������� ��������
�� ��� 1� �� ������ �
��
� ������� ���������� �� �������� ��� �� ������� �� ����� ��������
�� ���������� ��� ��
� �� � ������ �
�� �� ������������ ���������� ��������� ��� �����	
�
����	
� ��������!� �� �� �
� �� ���� ��� �������� ���	
�� ��������� �� ����� ����� �� ������ ����
���	����� �� ��� 	��	���� �������� �������� �� �	� ��������� &����� �� ��	� ������� ��� �� ��
�����
�
����� 5�
�� ��
���� ��� �	�� �������
��� �������� 	����������� �� ��������� -�� �$��
�� ��
����	
� �������� �� ��� ��	�� �� �����	
� ��������� ��� �� ������ ��� 	�� ��� �� ���������� ���
��������� �� ��������� �� �����$� �� ��� �� ��� ������� �������� ����	
� �������� �� ��	���

��� ���� �� �����"�� � ��

���2 �� ������� #� �� ���� � �������� �� ��� �������� ��� ��������
���� �������� �� (.*� %� ������� .� �� ���� ��� ������ �������� %�, 	���� ���� �	� ��������
���� ������ ������� �� �
����� %� �������) �� �$�
�� ��� ����� ������
 ���������� �� ��������
���
 	���� � �� (* �� �� ���� ��	�

� ������ �	� ��������� 5� ���� ����
	�� �� �$�
�����
��� ������� ��� �� �$���� ���� 	���� �	� �������� � ������ �������
����

� � ������	�
 �	� �	���������� ��������	�

%� ���� �������� �� ���� ���� � �������� �� ��� �%& ��������� 5� ���� ������� ��� ��������� ��
	��
��	
����� �����	�
��� ��������� �� (.*� �� ������� �	6����� ��������� ��� �������� �������
���������

��� ��� ��	
������
�� ����

�%& (7� �.* �� ��������� �������� ��� ������	����� ������� �� ��������� �$�
����
� ��� ������

�������� �� �������	
 ���������� ���� � ��
���	
��� ����� ������� ��� ��� ��

���� �����������
�� ��� �� �$����� ��
�"�� �� ����� �� ������
� �������� ������� ��������� ������� ���
��
������������ ���� ���
��� �
�� �������� ������� �������� �� 	�����
���
��	
���� 1�
����

78

������� ��	
� ������ ������ �� ��������� ���������
�� ��
������
��� �����
�� ����
��
�� �� ����
������� �� ���� �� ��������� ��� ������������ ��������

�� ����
�� �� ������� ���
�� �� ��	 �
����� ��
���� �������� �� ��������� �� �
�
�
��� ���

������� �� � ���������
� � ��� �� ����� ��� � ������
�
�� ������ γ
� ������ �� � ��� �� �����

������
��� ����
������ ����!�����" �
��� �� � ��� �� ��������� �� ��� ������ AC(P)
��������
�
#$%� �� �� ���
������� ��� ��	
������
�� ����
� ����
�� ��
�
� ��� � ���&�
�
� �� ���������
��
��
� ����� �� ������ �� ������� ���� ���� ��� ������� ��
������
��� ����
�� ���� ���� �� �����

������
��� �� ����������� �� � �
������������ �������� ���� ��
�� ���� ���� ���� ����
������
��
������ ������ �	
���
�� �� ��������� �� � �
���������� �������� ���� '��
�� ���� � ��������
����
��
�� ���� �� �	
���
� �������� �� ���� ����!������

��� �����
��� ������
�� �� �� ������ γ ������� �� ��� ���������
�� �� �����
��� ��� ���
������
�
�� �� ���� γ
� ���
��� ������ �
��
� ��� ��	 ������(���
�
� ����
��
�� ��� ��������
���
��
� ����� ����
�
� ������ ����
��� �� ������� ������
�
�� ������� �� ������� � ��� �� ����������

� ��� ����)� ��������
�)
��� *� ��� ������
�
�� �� B1� E1 ��� E2
� ���������
� ��� ����
��� �� ��� ���� �� γ1(B1, γ2(B2, B3)) ���
� ���
��� ��� �� γ3(γ4(B1, B2), B3))� ��� ������
�
��
�� ��	
������
�� ������ ��� ���� �
������� ��� ������� �� �����
� #+%�

=
B2 B3B3

B2 B1B1

�������� ��� ������	
	��� ��
� ���
 ������ �	�
� ���
� γ1 ������ γ3� 	� ��������
�� �� ���� �	��� �	

����� ������
�� ���� ��� γ2 ������ γ4� �� ����� �	��� �	
 �	
� ������
�� �����

��� ������� 	
	�	������� ��	������ ��� ������	���

�������� � �����	���	��� ������	��� ��	�������� � ���������	�
�� ���������� ���������
�
 � ����� (B,P, Γ, ‖ . ‖, θ)� ������

� B �
 �
�� �� 	������
� ���� 	������ B ∈ B ��
 �
 ��������� �
�� �� ����
 ������� PB�
� P =

⋃

B∈B
PB�

� Γ �
 �
�� �� ��� �����
����� ��������
 ������ ��
�	
��
 �� P�
� ‖ . ‖ : Γ × 2B −→ B �
 � ������� �������� ������� � 	������
�������
 ��� ��� �����
����� ��

	������
� ��
����� �

�������� ��� ����������� �� ��� �����
����� ��������
 �
 ������ �� !"#�
$�� γ ∈ Γ ��� B1, ... , Bn ∈ B� ‖(γ, (B1, ... , Bn))‖� ������� γ(B1, ... , Bn)� �
 ������ �% γ �
 ������
��

⊔
n

i=1
PBi

�
� θ : B × Γ −→ 2B×B �
 � ������� �������� ���� �
 ����
��	� ����
� ������	
	�� �
 ������ 	�����

$�� ���� ���� (E, γ)
��� ���� γ �
 � �����
����� �������� ������ �� PE � PB ���
���
�� ��
����
 PB� θ(E, γ)� ������� �E,γ � �
 � �������� &� ��'�(�� ��� ����
���� 	���� ��������) ��� ���

�� �� 	������
 ���� �

�������
�� �� ����
 PB� θ �
 ������ ��������
 	� � ���
��
�

�� ���
�
 B ∈ B 	� � ��� 	�� �� P ��� PB = P� ��
� ������	��� �� ������� � ���
���
!�����
 ��	���
	�� ��������� (B,P, Γ, ‖ . ‖, θ)
� �� �	 ���

�������� � ������ ��� 	� �����	���� *�� P ∈ 2P 	� �� ���������� � �����(� ��� P �
 � ����
(E, γ) ����� E �

��� ���� P ∩ PE = ∅ ��� γ �
 � �����
����� �������� ������ �� P � PE�

��
	� ����	
	��� γ ����
	
�
��
� �
���
���� ���
 ��
� ���
��
 ��� E 	� 	
� ��� 	���� ���
�

79

��������� � 	
������� ��� ������������ θ �� ��������� �	
	�	 ����������� �� �� ���������
����������� ������ ����	 ��� P ∈ 2P �� �� ����
����	 ��� (E, γ) �� � ������� ��
 P 	 �� ��
� ����� γE

�� PE ��� E1, E2 ��� ��� PE = PE1
� PE2

��� E = γE(E1, E2)� ��� ��
 ��� B1� B2 ������
� ��
P �

B1 �
γE(E1,E2),γ

B2 =⇒ γ1(B1, E1) �E2,γ2
γ1(B2, E1)

��
� γ1 ��� γ2 �
� �� ����������� ���
���
� ���������� �
�� γ ��� γE ���� �� ��

����������� P �PE1

��� P � PE1
� PE2

	

��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������

���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������

��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������

=⇒
E2E1

E1

E2
E1

��� ������	
	�� ���� γ ������ γ2� �� ������ 	� ����	
	�� � 	�
��������
�� 	�
�� ��
 ������ �	��
� ���
 �� �� 	��� �	
� ����
������
�� ����� ��	� γE ������ γ1� 	� ����� �� ��

�� 	��� �	
�
��	
� ������
�	� �����

B1

B2

B1

B2

�������� �������� �� ��	��
����

	�
����� � ���
�������� !�� ��
 ��� E, γ� B1 �E,γ B2� �� ��� ��� B1
�"��� B2 �� ���
��������� �
 ������ B1
�"��� B2� ��� �� ��� �� �������� B1 � B2	

�������� �� ������� B1 ��� B2 ����� ��� �
��
��������� �� ��������� B1 �E,γ B2 ��� ��
���������� �� �������� ����� �� B1 �� �� �
��
�������� ��� B2 �� � ������� ��
���� ���� B1 �������
B2 �� ��� ������� (E, γ)� �� ���� ��� �������� ���� ��
���� ���� B1 �
���� B2 �� ��� ������� (E, γ)�
����� �� ���� ��� �
��
��������� B1 �E,γ B2
���� ���� B1 ��	��� B2 �� ��� ������� (E, γ)� ��
������ ��� ���
 ��	��
����

	�
����� � �������� �� �� ����������� ��� P ∈ 2P �� �� ����
����	 # ����
��� C ��
 P ��������
���

� � ������� E = (A, γ) ��
 P � ��
� A �� ������ �� ����
����
� � ������
 G �� P ������ �� ���������

!� �
��� C = (A, γ, G)
���
 ��� C = ((A, γ), G)	

����
����� ��� ���������� ��� ��	��� �� ��� ���� ���� �� ����� !� ��
� ���� �� � ��������
���������� �� � ��
����� "������� ��� ���������#� ��� ����
���� �� �� ����������� �� ��� ��$����
���
��� ��� ��������� �� ����������� �� ��� ��
������ %��� ������ ������ ����������� �� ��
������� ��
����� ���
 �� � �������� ��$����
��� ��&����� ���� ��
����� ��� ����
����� �� ��� ���� � ����$���
B �����"�� � �������� C = ((A, γ), G)� ������� B |= C� ���� B �A,γ G� %��� ��� ������������ ��������
�� � ���
���� �� ��� $���	������ ���
����' �� �� ���������� �������� �� $���	������ �� � ��������

	�
����� � �	��������� ��� {Pi}
n

i=1 �� � ������ �� ���
���� ���$���� ���� �� ��
��� ��� P =
⊔

n

i=1
Pi	 ��� C �� � ����
��� ��
 P � ��� ��
 ��� i = 1..n� Ci �� � ����
��� ��
 Pi	 ��� γ �� � �����������

���
���
 �� P 	 !� ��� ��� C ��������� {Ci}i=1..n �	
	�	 γ �� ∀B1, ... , Bn ∈ B�

(∀i, PBi
= Pi ∧ Bi |= Ci) =⇒ γ(B1, ... , Bn) |= C

80

� �������� C ��	
����� � ��� � �������������� {Ci}i=1..n ����� � ��	���
�
�� �������� γ
 ��� ���
� ��	������� ���
��
�� ��� ������������� ���� ��	����� ��
�� γ� 	���� � ��	������ ���
��
�� C�
�� ����
������ �� n = 1� � �������� C ��	
����� � �������� C′
 ����� ��	������ ���
��
�� C′ ����
���
���� C� ���
�� ���� ��� ��	
����� �����
��
� ��� ������ ������� ��� ���������� ��� ������� �
�������� �� ��
������� P ��� � ��� � ��������� �� � ����
�
�� � P � ���� �����
� �� ���� �� �
���
�� � ����� �������� ���������
�� � ��	���
�
�� � ����������

����� ��� ��� ��� ���
��� �� �
��� �� ��� ��������!����� ���
����
�� ��	������ "� ��� ���� ��
� ����
�� �������� ����
��� �������� �� ���� � ��	������ ��	��� ��������� � �
������ ������
��� ���

�� ����� �������

��� � �����	

���		�� ��� ���	���
�

����		�� � ������������
	�
���� ������	���� � ��������	 (B,P, Γ, ‖ . ‖, θ) �

��� �������
�����
�� ������� �� �� �� ���� ����� ���� � �������� P ∈ 2P � ���� � �������� B � P � � ������

(E, γ) ��� P �� � ������� C = (A, γ, G) ��� P � ��� ��

���� �������� ��
���

B �A,γ G ∧ E �G,γ A =⇒ B �E,γ G

��
� 	���� ���� ����� ��	������ �
�� � �������� (A, γ, G)�

���������
��� �� ���
���	��� ����
�
��	���
��� �
�� γ ��� ���� ������� A� ��� �� ��������
� ��� �����	 �� � ��	������ �
�� ��� ��	�

������� ��� �
�� G #�� ��� �����	��� �
�$ �� �����
��� %������
�� ���� ��� �� ������
� ��� ���
�����	 ��� ���� �� ������
� ��� ��
�
��� �����	�

"� ���� �����
� &'() �� �*�	��� � ���� � ��	����� �
�� �����
��� �*������� �� 	���� �����
�
��
�����	� #&+)$� "� ����
��������� ��� �����
�� ���� ���� ���� ��� �� ���� �� ����� ��	
����� �������
� �������� ��� � ��� � ������������ �������� ��� ��	����� ������ �
������ ������
���

������� �� ��� (B,P, Γ, ‖ . ‖, θ) �� � ��������	 �

���� �����
�� �������� ��� {Pi}
n

i=1 �� � ����
�

�� �������� ������� ���������� ���� P =
⊔

n

i=1
Pi� ��� C = (A, γ, G) �� � ������� ��� P � �� ��� ����

i = 1..n� Ci = (Ai, γi, Gi) �� � ������� ��� Pi� ��� γI �� � ���������� �������� � P � ��� ���

��

���� �������� ��� �� ���� �� ����� ���� C �������� {Ci}i=1..n ������ γ�

{
γI(G1, ... , Gn) |= C
∀i, γ(A, γ

I\i
(G1, ... , Gi−1, Gi+1, ... , Gn)) |= C−1

���� γ

I\i
������ ��� ��� ���������� �� γI �� P\Pi �� C−1 = (Gi, γi, Ai)�

� ���������	
 �	 �
������ �
���������� ���	����

"� �*���
� ���� ���� ��� ������ ��
������� �����,-����� ����	��� ���������
� &.)
� ��
������
��
��
� ��� ��������!����� ���
����
�� ��	����� �����
���
� &'()� �� ����
������ ������	� (��� / � ���
��
�
��� ����� ��� �
���� ����� ������ � ��� ��� ���� ��� ��	����� ����������
�� ��
������� �,-
����	��� ������ �
������ ������
���

��� �������	�� ��� ���	������

��
������� �� � ��	������
� &.)� ��
�� ����������� �� ��� ���
�� � ��������� ����
��� � ��� �,-
����	���� �� ����	��
�� #������ ��� ��������$ �����
��� �� ��� ����� � ��� ���
���	��� ���
� ��������� #������ � �����!�����$ �� ��� ����� � ��� ��	������� 0������� �� ��� ��������� ���

�������
�� 	���� ������� ��� ��	������ ���
�� ���
���	���
� ���������� �� �� ��� �*��
�
����
�*����� ��� ��� ��	������
������� �
�� ���� ������ �� �� ��� ���� �� �
��
���
�� �������
����� ���
�������
� ��� �����
����� ���� ��
�� ����� 1�2�
������ � �,- ����	���� -�� ���
�� � �����	���

� � �����*�
� ������ ���
�������� �� � �������� ��� ������� E |= B ≤ G �� B �E,γ G�

81

��� �����	
�� ��
����
�

�
 �����
����
��� ������
���� 	�
������

�� ����� ���� � 	
����	������ �����	���
� ������
�� (B,P, Γ, ‖ . ‖,�) ���� 	
�����
��� �
 �������	�
��� ���
�����

� B �� � ���
� ����� �
� ��	� ��� B� ��� ���
� ��� �� � �� ���
��� PB �
� P =

⋃

B∈B
PB�

� Γ �� ��� ���
� 	
��
����
�
�����
�� ��	� ���� ����! 	
���	�
� ��� �� �
��
�� ���""���
� ‖ . ‖ �� ��� �������� #�$ 	
��
����
� �������	� �
� �����
� �
� E, B1, B2 ∈ B ��	� ���� PB1

= PB2
��� γ ∈ Γ ������
� PE �PB1

� B1 �E,γ B2 �� ������ ��
Tr(γ(B1, E)) � γ ⊆ Tr(γ(B2, E)) � γ� ����� Tr(B) ���
��� ��� ���
� ���	��
� B ��� � γ �� ���
��
%�	��
�
� � ���
� ���	��
��
 γ�

��� 	
��
����
� ������ ���� �� �
�� "����� ���� ���
�� ��
�
��� �� &'(� ���	� �� �
 �
� ��)����
���� �� �
�� ��
 	
��
����� ����� �� �	��
�� �� �
 �
� ��� ! �����"� �� �� �� � ��!� �
��� � �
 	
���	�
� ��� 	
��
���� �
 � 	
���	�
�� ��
� ! ����
�� ���� � 	
���	�
� ��� �� �
��
�� ���""�� *
�����
�
��+� ��� ��
%�	��
� � γ
��
 ��� ���
� ������	��
�� ������ ��� 	
��
���� ��� ��� �����
�����
�
�� �
� �
 ���� ������� �	��
�� ���
 �		
��� ���� 	
��������" ����������

��
���� �
 ��� !
�� ����
�

"!� �� ���� �
 ��
�� ���� (B,P, Γ, ‖ . ‖,�) �� ������ � 	
����	��
���� �����	���
� ������
��� ��� ����! �� ���
� �E,γ ��
��
�� ! ���������� ��� ��,�-��� �
� ��!
E ��� γ� .� �� ��� ��� �������� #�$ 	
��
����
�
� ����� �� � �
 ��
� ���� ���
	�������! ���
	
����������! ��� ����������

������� � �����
���� ��!"� � �� ������ ���� 	�
����	��� �	��
����	�	���

������
B1 �

γE(E1,E2),γ
B2 ⇐⇒ Tr(γ(B1, γE(E1, E2))) � γ ⊆ Tr(γ(B2, γE(E1, E2))) � γ

⇐⇒ Tr(γ2(γ1(B1, E1), E2)) � γ ⊆ Tr(γ2(γ1(B2, E1), E2)) � γ

⇐⇒ γ1(B1, E1) �E2,γ2
γ1(B2, E1)

���� ��

� �� � ����	� 	
���)���	�
� ��
�������
� 	
��
����
�
� #�$ 	
��
����
�
�����
��� �����
� ��� 	
�����
�� ���
���
� 	
����	������ �����	���
� ������
��� �
 �� �� �
� �
	��
� 	��	� ��
����
���"�

������� � ������
� ��
�����#"� ��� ��������� (B,P, Γ, ‖ . ‖,�) ������
	�
���� ������	���

������ ��� �� ����
�� ���� B �A,γ G ��� E �G,γ A� ���� ��� ���� */+ Tr(γ(B, A)) � γ ⊆ Tr(γ(G, A)) �

γ ��� *0+ Tr(γ(E, G)) � γ ⊆ Tr(γ(A, G)) � γ� �� ���� �
 ��
�� ���� B �E,γ G� ���� ���� Tr(γ(B, E)) �

γ ⊆ Tr(γ(G, E)) � γ� ���� ��

� �� ����
� ��� ��	� ���� �� ���� ������
�� � ��������
�� ��� 	
���
 ��
! �-�	� !
�� 	
��
�����

�� �-����� � 	
��
� ����- p
� ���	�� Tr(γ(B, A)) � γ� Tr(γ(G, A)) � γ� Tr(γ(E, G)) � γ ���
Tr(γ(B, E)) � γ� �� ��
� ���� ��! �
��� � 	
��������
�
� p �� Tr(γ(B, E)) � γ �� � �
 � 	
��������
�
�� ���
���� ���	��� . ��������
� α = αB |αE ���� 	�� �
��� ! �-���� p �� Tr(γ(B, E)) � γ� �� ������
	
���
 �� ! B�
� ! E� �� ��� �
���� 	���� ����� �� � 	
�����
����" ��������
� αB |αA �-������" p ��
Tr(γ(B, A)) � γ� ��� ��
� */+� �� ��
� ���� αB |αA � �
 �-����� p �� Tr(γ(G, A)) � γ� ��
� *0+� ��
"�� ���� ��� �����
�� ��
������� ��� ���� �
� αA = αE � 1��	� ��� ���� �� ��� ��

� �
� ��� ����� 	���
�� ���� ���

�� ��
� �
� �
� ���
��� 2 ��� 3
� &'(��� ����	� 	
���)���	��
� ��� �	���
�
� 	��	� �� ����
���"�

������� $ �������� � �	 %&'"�

∀I1, I2, I1 �E1,γ1
S1 ∧ I2 �E2,γ2

S2 =⇒ γE,2(E, I2) �I1,γ1
E1 ∧ γE,1(E, I1) �I2,γ2

E2

	� ���	������ ��

γE,2(E, S2) �S1,γ1
E1 ∧ γE,1(E, S1) �S2,γ2

E2

82

������ ��� ��������	
���
��
���
��
� �	
�
�� �
��� S1 �E1,γ1
S1 ∧S2 �E2,γ2

S2 ��� ��	 ��� E, γ,�E,γ
�
	����
���� ��� ��� �� ����� ���� ��� ������
�� 	��	�
�� �����

⎧
⎪⎪⎨

⎪⎪⎩

γE,2(E, S2) �S1,γ1
E1 (1)

γE,1(E, S1) �S2,γ2
E2 (2)

I1 �E1,γ1
S1 (3)

I2 �E2,γ2
S2 (4)

�� ���� �� 	��� ���� γE,2(E, I2) �I1,γ1
E1 ∧ γE,1(E, I1) �I2,γ2

E2� �� ���
�� �
	����	 	�����
�� ��
(3) ��� (1)� ��� �� (4) ��� (2)� �� ��� ��� ������
��

{
I1 �

γE,2(E,S2),γ1
S1 (5)

I2 �
γE,1(E,S1),γ2

S2 (6)

����� !� �����
!
�
�� �� � �
�� �����
�
��� �� ��� �	�� (5) ��� (6)
{

γE,1(E, I1) �S2,γ2
γE,1(E, S1) (7)

γE,2(E, I2) �S1,γ1
γE,2(E, S2) (8)

"
������ �� �S2,γ2
��� �S1,γ1

�	� �	���
�
��� (1) ��� (8) �� ��� ��� ����� ��� (2) ��� (7) �� ��� ����	
�����
��� ��� 	������

������� � �	
����� ������
��
��
��
����������
���������

����

γE,2(E, S2) �S1,γ1
E1 ∧ γE,1(E, S1) �S2,γ2

E2

���	�
�

∀I1, I2, I1 �E1,γ1
S1 ∧ I2 �E2,γ2

S2 =⇒ γ1,2(I1, I2) �E,γ γ1,2(S1, S2)

������ ��
� ����	�� ��	����� ��� ��#�
��� ����
�
�� ��	 ���
����� 	��
���
� $%&' ���	� ���	�
�	� ���� ��� ��������� �
�� ����	���� (E1, γ1, S1) ��� (E2, γ2, S2)� ��� ���	� ��� ���!�� ����	���
�
(E, γ, γ1,2(S1, S2))� ��� ��������� �
��
� ��� ����	�� �!��� ��� γ1,2(S1, S2) �E,γ γ1,2(S1, S2) �
��
��
!� 	����
�
�� �� �E,γ� ��		������ ������� �� ��� 	�����
�
�� �� ��	 ��#�
��� ����
�
�� ��	 ���
�����
���� ����	�� %�� (���� (E, γ, γ1,2(S1, S2)) ���
����� {(E1, γ1, S1), (E2, γ2, S2)}� ��
��
� ������� ���
	
�������� �
�� �� ���
��
���
���

��� 	���� �
���
� $%)' ����� �� ��� ��	���
�� �� *+, ��������� ���	��� ��	 	���� �� ���� ����
�	� ���� �����	 ��� ���� ���� �� ����	������ *� �	�
����	� ��� �����	� ���� ��� ���
�
�� �� ���
	 ����	��
& -��	� ��	������.� ��
�� ��
�
� � ����	�� �����/����� �� �
	����	 	�����
��� �� !��
��� ���� ��0�
��
� ����	�� �	�����	1 ��� �� ���� ����
� $%&'� ��� ���
��
� ����	��	�� �� �	�
����	 �	�����	1� ���
����
� ��
� ��	� ���� !����	 ����	�����
�� �� ��� 1�� �����	�� �� � �
��� �	�����	1�

� ���������	
 �	 �	��� �� ���	���� �	� �
������� �
� ��	���� ��
�
���	����

$%%' 	��
��� � ��
0��
���	���� ����	� ��	 ���� ������ ��� ����� �	���
�
�� �������� 2��� ������
���
�� ��� ��� �����	 ���	 �	���
�
���� ��
�� ����� �	���
�
�� ������� ����� �� �����
��� ����
��
��
�� ����� �	� ������� ��� ��
�� ����� �	� 	�/�
	��� ��� �����	� ���� ���� ����	��
���	���
��

� ������
�� �� �����
�
���� 	�����
�� ��� ���� !�
�� ��
���	���� ����	� !���� �� ����� ��������
��	
���� �
�� *+,
���	���
��� �� ����	� �� ��
� �
��� 3��� ��
� ��	 �	�����	1 ����	��
���	���
��
�
� 0	�������� ���
��� ���	�
� �� ���� ��	 �� �� ��0�� � ��� ��� �� !����
�	� ���� �� ����� *+, ��������
�� �
��� ��� ����� ��������� ��� ��� ���
���	���
�� �!���
���� ��� ������ �� ���
���	���
����
����	� ����� ��� �����
���	���� ����	� ��������
� $%%'
� �
��� � ��!����� �� ��� �	�����	1 	�������
�� �� ������
� $%&'� ���	� !����
�	� �	� ����� �	���
�
�� �������� ��� �����
�
��
� ��� 	���	
����
�� ��������	� �
�� �� ���� ��� �	
���	 ���		�����
�� �� ��� ������� 4��	��
�� !������ !����
�	
���
���	���
��
� 	���	���
� � ����	�� ���� *� ���
�
��� �� 1�� ������
�� ��� ���	����� ���	����
��
��
� � 1�� �����	� ��	 	����!
�
�� �� ����������

83

� �������	��
�� ����� ����

�� ���� ����	
��
 ���	 � ������
����� ��������� �	 �����
� ���	� �	 �	
������
����� �����
������	 �	
�� ��� ���	�
��	�� 	������ ��� ���
 �������	
�
��	 �� ��������� ������ �� ����� ���
���
���� ��������� ������ �� ��������� ��� ���
 ���	���	
 �	 � ��	
�
 ���	�! "���� ���	�
��	�
������ �� ������� ��������� �	 �����
� �	����
�� ������
��� � ���
�� ����
�� ���������� �!! ��������
�����	�	!

�� ���� �����
��
��
��� ����� �� ��������	
�� ������ ����� �������� �����	�	 �� �
�	������ ����
��
���
 	���	 �
�
��� ����	
�� ����	 ������� ���� ��#���

� �	����
�	�!

$�� �� ��� ������
����� ��������� ������� �������	�
��
 ��� ��
�	 �������
 �	�
��
 ��
��	�
������ �� ���� � �����
! %	 ���
������� �� �������� �����	�	 �� 	�
 ���	� �	 � ���
������ ����������

���� ���
�� ���������
���& ��
��� 	�
 ��� �
� �� �	� �	�
��� ���	�
��	 �� ���	���	
 �	 � ��	
�
 ����

��
 �	
�� ������� ��������� �������� �����	�	 �� ���	� ��	� �	���
�	�
��� 	�
 ������
�� ��� '��(�!
)��� � ������ ������ �� ���� ��������� ������� �
 ��� � �
��	 �	*��	�� �	
�� �����+��	
 �������
��	
��
����
� �� ����!

��
��	�
��
 �	 �	
����
�	 �������
��	 ��
��� ���� ����� ��
� �
 ��	����	��� ����������
��� ��	
���
,����� �������
��	 �	
� ��� ���������! �� �������
��
 ���	 � �	���� ��������� ���
�������	 	������� �	
������
������� ������ �����
� ��
��
 ���� ��� ������
��� ��
����
��������
�	�
��� ���� ����	 �� 	�� �	��!

����������

�� �� ����� 	� �
���� �� �� �������� 	
����� �����
���
�� ��������� ������� � ���� � ��� ���� ���
��	�
����
 �����	���� �� �����
	� �������	���
�� ��	�
 ������� ��������� ������� �
�� �� ���!�	
""�"#� $���� %&��� '�"$� � !�

�� ������ ��"������ ��
#� $�������� �� %
����
 &�����
�� � �����' �
���
� '
���'�� �
� ��������
�������� ��((� ���() !��*+!� �)�

,� ���
 ������� �� �
���� �������� -�� �������
� '
�'�
��. ����'����� �����'��
 � ���� � ���)�*�
����� ��/� � �)�

*� ���
 ������� �� �
���� �������� �
��

� ���� �0������"���� �
� '
��
�������� �������� �
�)+�,(� ����� + 1/+��� � 1�

+� 2�'� �� �����
 �� -�
��� �� 3������� ������'� ���
����� � %	��- �� ��� .�� /��&
 �0� ���&� ��
��&��
����� �� �����
	� �������	���� ���1�"� �$	 &����� � ��

!� 4������&��� �� %
�"��� 5��� �� �
��� 6���'� 3����� �
��� 3

��� 7����� 2����'�� 	���
&
��� �� �
� 89����� ����&		���0 2�	�3�
����4 ���	��&����� �� ��� �������

�� +����� �������

�������� :����� +* � $�������� -��'�� � -��
����'�� $
������ �'��'�� $�������� 6�"������ &�����
$��������� 6;� :
"����� � ��

)� <� <
������ �� �� �������� $
��
����
 �
� '
��
�������� �
������ ������� �� ��� &��	 %	��	
������
����� �!�/�1,� 	��'� � +�

1� ;�� <�������� 2����� 	
��� ���'�='���
�� �/&���
��� 2�	�3�
���� ������� ��	 ������ ��
�� �0������
����� �,�/�*!� �>1>�

>� ;�� <�������� 2����� 6���� :���� �� �����? 4��
9���� ������'� ����(
����� ���
����� �
�� $���4 ��	�
 �������� "��� ����	�
����
 �0� ���&� �� ��	�
 �������� 5
������ �
�
�
� /&�&��
$"�$6� $���� %	���������� "
���� * 1+
� 7���&	� +���� �� ��� &��	 �������� ����� 1�/>)� � !�

� � ;�� <�������� 2����� 6���� :���� �� �����? 4��
9���� ������'� ����(
����� ���
����� -�'��'��
���
��� �%�$�� � !�

��� ;�� <�������� 2����� 6���� :���� �� �����? 4��
9���� 	
��� �(
 ���
���� �
� ������'� �� ��
��
�'� ��� ���
����� � %	��	
����� 7
��&
���
�� �0������ "��� �&	� �
� �0� ���&� �� %	��	
������
��)% $��6� 5��
� %
	� �� ��� 8���� �&	� �
� �����	����� �� *���	0
�� %	
����� �� �����
	�� �*/%�
$��6� 9	
�
� %�	�&�
� �
	�� $� � / 	� "� $��6� %	���������� "
���� **��
� 7���&	� +���� �� ��� &��	
�������� ����� !*/)>� �)�

��� &����'� 	����� $
��
����
�� '��'���� ��������������� ����� '�
� �� �
�� �� '
������� �����
���
����� ,*,/,+)� � ,�

�,� �
���� @���
 �� ����� <���� $
���'������� "���='���

� ������'��'�� �������
� '
��
���� �
���� ����	�
����
 �����	���� �� �����
	� �������	���
�� ��	�
 ������� ������:�� � 1�

84

An Aspect-Oriented Behavioral Interface

Specification Langauge

Takuo Watanabe∗

Department of Computer Science

Tokyo Institute of Technology

Kiyoshi Yamada

Research Center for Information Security

National Institute of Advanced Industrial Science and Technology

Abstract

We have designed and developed a behavioral interface speci cation lan-

guage Moxa. that provides a modularization mechanism for contracts based

on assertions. The mechanism, called assertion aspect, can capture the cross-

cutting properties among assertions. In this paper, we briefly explain the

notion of assertion aspects and the design of Moxa. By comparing the spec-

i cation to its JML counterpart, we show that the use of assertion aspects

clari es the large, complex speci cation and greatly simpli es each assertion

in the speci cation.

1 Introduction

Design by Contract (DbC) is a software development method that utilizes assertions

in a principled manner. In DbC, the “contract” between a class and its clients is a

set of conditions (pre-/postconditions of the methods and a class invariant) typically

represented as assertions embedded in the source code. The contract provides the

detailed interface speci cation of the class.

DbC is especially bene cial for developing reliable software systems. The au-

thors have experience in applying DbC to the actual development of a working

application in which reliability is the prime factor to be considered. The appli-

cation — AnZenMail client — is a secure and reliable e-mail client implemented

in Java. It is a part of the AnZenMail system [8], an experimental testbed for

cutting-edge security enhancement technologies. The AnZenMail system has been

developed by a group of researchers involved in the research project “Research on

Implementation Schemes for Secure Software” supported by Japanese Ministry of

Education, Culture, Sports, Science and Technology.

The primary purpose of applying DbC was to ensure the code quality of the

AnZenMail client. To ensure the code quality of the AnZenMail client, we rst

wrote a formal speci cation of its important component, called the Maildir Provider,

that should handle received e-mails and mail folders in a reliable way. We used

the Java Modeling Language (JML) [6] to describe its speci cation with DbC-style

∗
takuo@acm.org

85

assertions. With this speci cation, we checked the component thoroughly using

the JML tools and then we could nd bugs in the code (including Sun’s JavaMail

components) and the assertions. This process, which was actually performed in-

crementally and repeatedly, enabled us to gradually obtain solid code and the rm

speci cation of the component. The nal speci cation consists of approximately

3,500 lines of assertions.

While we were carrying out the above process, we often observed the following

problem: changes made to an assertion in a class caused the propagation of changes

in the assertions within other classes. In principle, DbC assertions in a class are

independent from ones in other classes. But in real life, while we were working

with some large, seemingly unrelated classes, we often encountered the above phe-

nomenon. This can be a serious obstacle for developing, maintaining or extending

a large-scale software with DbC. We have observed that there are properties that

span over the assertions in several program modules (classes or methods). The

problem comes from the fact that the coverage of such properties does not t the

inherent structure made from the program modules. In other words, they crosscut

the modules.

To overcome the problem, we introduced a new modularization mechanism for

assertions that aims to separate the crosscutting properties. The mechanism is

based on assertion aspect, a new notion in aspect-oriented technology. So far, we

have designed a new behavioral interface speci cation language Moxa, an extension

of JML, that provides the mechanism[10].

The rest of the paper is organized as follows. In the next section, we introduce

the notion of assertion aspect and our behavioral speci cation language Moxa.

Then, in Section 3, we compare Moxa to JML by using the same example. Section 4

mentions the related work. Section 5 o ers a discussion of the results.

2 Assertion Aspects in Moxa

2.1 Crosscutting Properties

As a part of the AnZenMail[8] client (mentioned in the previous section), we de-

veloped the Maildir Folder Service Provider (Maildir Provider for short), a Java-

Mail [9] component. It speci es the structure for directories of incoming e-mail

messages and can provide reliable hierarchical mailboxes by using sophisticated

algorithms for handling message les.

We used the Java Modeling Language (JML) [6] to describe the speci cation of

the Maildir Provider. In the speci cation we wrote, however, assertion expressions

become complicated and bulky. The size of the nal Java code of the Maildir

Provider and its JML speci cation (without the code) are about 2,500 and 3,500

lines respectively. This makes it di cult to develop the code and the speci cation

incrementally with keeping the consistency of assertions and code.

The source of the problem is the mismatch of modularization structures between

the assertions and the Java code. In JML, we write assertions as annotations

associated to classes and methods. This forces that assertions are grouped into the

modules enforced by the language — in this case, classes and methods. But this is

not always appropriate for the modularization of assertions.

86

1 public spec S {

2 public behavior

3 requires Pre1;

4 ensures Post1;

5 Ta C1.m1(T1 x1, ...);

6 Tb C2.m2(T2 x2, ...);

7

8 public behavior

9 requires Pre2;

10 ensures Post2;

11 Tc C3.m3(T3 x3, ...);

12 Td C4.m4(T4 x4, ...);

13 }

Figure 1: An Assertion Aspect in Moxa

2.2 Aspects in AspectJ

Aspect-oriented Programing (AOP) [5] is a programming technique for modulariz-

ing concerns that cross-cut the modules in programs. Some kind of code fragments

related to concerns such as logging, synchronization, exception handling or perfor-

mance optimization, are mingled within functional modules. In other words, they

cross-cut the modules. AspectJ [4] is an extension of Java that provides a mech-

anism for modularizing such tangled code. The key notions of the mechanism are

pointcut and advice. A pointcut is a set of join points that are particular locations

on the control ow of the program. An advice is a pair of pointcut and a code

fragment executed at the location selected by the pointcut. An aspect consists of

a set of advice.

2.3 Assertion Aspects in Moxa

The notion of aspect in Moxa is di erent from the one in AspectJ. The di erence

is that an aspect in Moxa is applied to speci cations (logical expressions written

as annotations), while an aspect in AspectJ is applied to code. We call aspects in

Moxa assertion aspects to avoid confusion with aspects in AspectJ.

Figure 1 shows that how an assertion aspect is de ned. In this de nition, S is

the name of this assertion aspect, C1 · · · C4 are class names, m1 · · · m4 are method

names, x1 · · · x4 are identi ers (arguments) and Ta · · · Td, T1 · · · T4 are type

descriptors. Pre1 and Pre2 (Post1 and Post2) are pre-conditions (post-conditions)

respectively.

An assertion aspect is a collection of advice (as in AspectJ). Figure 1 has two

advice: lines 2–6 and lines 8–12. The advice is a pair of a pointcut and an assertion

condition. The pointcut is a set of join points that are locations on the control

ow of a program. The location on the control ow where we want to test the

pre- or post-condition of the constructors or the methods, pre- and post-condition

location respectively and we call them assertion locations. Because the assertion in

Moxa is based on DbC, a join point is normally identical to the assertion location.

A descriptions of pointcuts (e.g., lines 5–6) consists of a set of method signatures

and positional keywords requires (or ensures). The rst advice (lines 2–6) in

Figure 1 describes two pointcuts at once that show the pre-condition location of

method m1 and m2, and the post-condition location of these methods.

87

public spec FolderState {

public behavior

requires chkState_connected(...)

ensures chkState_eq(...)

public int Folder.getMessageCount()

throws MessagingException;

public behavior

requires chkState_open(...)

ensures chkState_eq(...)

public Message Folder.getMessage(int msgnums)

throws MessagingException;

public behavior

requires chkState_closed(...)

ensures chkState_open(...)

void Folder.open(*) throws MessagingException;

public behavior

requires chkState_open(...)

ensures chkState_closed(...)

void Folder.close(*) throws MessagingException;

...

}

Figure 2: An Assertion Aspect Specifying State Transition of Folders (abridged)

A join point in Moxa corresponds to a location in the ordinary assertion declara-

tion technique where the assertion declaration is inserted. In the ordinary assertion

declaration technique, when we want to describe the same assertion in two or more

assertion locations, we have to describe assertions for each of those assertions loca-

tions. On the other hand, in Moxa, we can describe the condition of these assertions

only once by an advice whose pointcut selects these assertion locations.

2.4 Example

Figure 2 shows an assertion aspects that speci es the state transition of the class

Folder. This assertion aspect captures and modularizes a concern on the states of

folders. In this example, the logical expression in each pre-/post-condition consists

of the invocation of a method such as chkState_open. These methods are de ned

in actual classes (thus they are implementation dependent) and provide actual

state information. This makes the assertion aspect FolderState implementation

independent.

3 Evaluation

In this section, we compare Moxa to JML by using the same example. The target of

the speci cations is a part of the Maildir Folder Service Provider (Maildir Provider

88

Table 1: Comparison of the Two Speci cations

JML Moxa

Service Store Service Store

of Modules 1 1 3 5

of Assertions 42 53 13 18

of Lines 190 149 152 286

of Lines / Module 190 149 51 57

for short) that is a part of the AnZenMail client mentioned in Section 1. The Maildir

Provider is a JavaMail [9] component that manages maildir style mailboxes on le

systems. We compared the speci cations of two classes Store and Service that are

de ned in the abstract layer of JavaMail . The items of comparison are the number

of modules (the number of classes in JML and the number of assertion aspects in

Moxa), the number of assertions (the number of pre- and post conditions in JML

and the number of advice in Moxa), and the number of lines (comments included).

The result of comparison is shown in Table 1, and its characteristics are described

below.

Number of Modules: In the case of JML, the number of modules for each

class is 1 because a modularization unit of JML must be matched to the class or

interfaces. In the case of Moxa, the number of modules are 3 and 5 for the class

Service and Store, respectively. This is because, each crosscutting condition of

assertion can be split into di erent assertion aspects.

Number of Assertions: In the case of JML, the number of assertions are 42 and

53 for the class Service and Store, respectively. In the case of Moxa, the number

of assertions are 13 and 18 for the class Service and Store, respectively, and each

number is smaller than the case of JML. This is because crosscutting conditions

over the assertions includes the same logical expressions, and they can be organized

into an advice in Moxa.

Number of Lines in Assertions: The number of lines in assertion descriptions

in JML are 190 and 149 for the class Service and Store respectively. On the other

hand, the total number of lines in assertion aspects of the Moxa speci cation are

152 and 286, for the class Service and Store respectively. Thus, we can see that

the average number of lines in an assertion aspect is much smaller than the average

number of lines in the JML speci cation. This comes from the fact that the same

logical expression of assertions for some join points are merged into one advice in

Moxa using pointcuts.

This result shows that using Moxa, the size of each module in a speci cation will

be reduced. We can also expect that this can clarify large and complex speci cations

by modularizing crosscutting properties that span over the program modules.

Locality of Changes: Table 2 shows the e ect of a simple change in the

code. Here, we replace the method boolean Service.isConnected() to boolean

Service.notConnected(). The table summarizes the e ect of this change on the

speci cations: the number of the modules (classes in JML and assertion aspects in

Moxa) we should x and the number of lines possibly to be a ected. In the Moxa

speci cation of the class Service (Store), we should only change 6 (4) modules.

Please note that we don’t need to examine the rest of the modules. The number

89

Table 2: Number of Changes in the Speci cations

JML Moxa

Service Store Service Store

of Changes 42 53 6 4

of Lines in Changes 190 149 54 40

of assertions and the number of lines to be changed dramatically decreases, be-

cause of aspect-orientation. This result shows that Moxa provides higher locality

in speci cation.

4 Related Work

Injecting assertion validation code into application modules is a typical application

of AOP. There have already been several proposals on describing assertions using

AspectJ [7, 2, 3]. They point out the problems of embedding assertions in the pro-

gram code and propose ways to describe assertions separately from program code.

Especially, Lippert and Lopes [7] investigate that global properties on exception

detection and handling can be systematically represented using AspectJ.

Though writing validation code in AspectJ is one possible way to modularize

assertions, it is generally complex and error prone task. Moreover, this style of

assertion description is specialized to runtime validation. This means that using

assertions with other analysis/veri cation tools is di cult.

Since Moxa has a dedicated syntax, speci cations written in this language can

be used not only for runtime validation, but also with other tools. Currently we

are implementing Moxa processor as a translator to JML. Thus, it is possible to

use existing JML tools.

Contract4J [1] is another tool that supports DbC in Java. This tool provides

annotation based syntax for assertions and uses AspectJ for injecting validation

code.

Pipa [12] is an extension of JML whose target language is AspectJ. With this

language, we can describe assertions for the AspectJ constructs such as advice or

introduction. However, as in JML, assertions in Pipa are modularized within target

language (AspectJ) modules; i.e., classes or aspects. This means that Pipa does

not provide modularization of crosscutting properties. Extending Moxa to support

AOP languages is future work.

5 Discussion

5.1 Modularization of Assertions

The simple assertion description technique for object-oriented programming lan-

guage based on DbC such as JML has no mechanisms to control the mapping

between assertions and methods. So, specifying pre- and post-conditions are per-

mitted at most once a method, and they must be modularized by the unit of classes.

On the other hand, Moxa enables us to describe assertions independently of the

program structure considering assertion assignment location consists of a class, a

method, and pre- or post-condition locations as pointcut and assertion description

90

as advice. In the technique, for example, the following style of assertion declarations

are permitted.

• Specifying assertions to a class from one or more assertion aspects.

• Specifying one or more assertions to an assertion location (logical expression

of these assertions are associated with logical product).

• Specifying assertions to one or more classes from one assertion aspect.

Using Moxa, we can split the behavior of object or object group into several

independent sides, and we can describe each side of behavior into separated as-

sertion aspects. This feature holds the scale and complexity of assertion aspects

small. Moreover, the viewpoint of each assertion aspect becomes narrowed to some

simple side. Hence, expressing and understanding the meaning of an assertion as-

pect becomes easy. Also, the maintainability and quality of assertion aspects and

corresponding programs are improved.

5.2 From Incremental Re nement to Model-Driven Devel-

opment

In Moxa, we can describe JML annotations along with assertion aspects, because

Moxa is an extension of JML. Therefore, Moxa enables us not only to modularize

assertions as assertion aspects independent of the programs structure, but also to

specify assertions as annotations embedded into the program. Such a feature is

favorable for the incremental development. Concretely, we can specify assertions

using in-place annotations for the program code at the early stage of development

or modi ed rapidly. Then, the code becoming stable and crosscutting properties

are unveiled, we can extract assertion aspects from annotations. This process can

be used for incremental re nement of existing code.

For example, suppose that we can extract an assertion aspect (say A1) from

a speci cation of an existing system. And suppose that A1 captures the state

transition of modules in the system (as in Figure 2) If A1 can be re ned to A2 that

represents a more reliable state model1, the we can re-apply A2 to the original code

and validate it to re ne the code itself. This process can gradually improves the

reliability of existing code.

Moreover, assertion aspects may represent other models. A sort of model-

driven development (as in [11]) might be possible by using appropriate tools that

generate a code skeleton from an assertion aspect. We have been extending Moxa to

include the support of protocol-oriented aspect description. The extension provides

convenient way to describe, test and verify speci cations that are described based

on method invocation sequence.

6 Concluding Remarks

This paper presented the notion of assertion aspects and a new behavioral interface

speci cation language Moxa that provides a modularization mechanism for asser-

tions. The mechanism enables us to separate crosscutting properties spanning over

multiple assertions. It can clarify a large, complex speci cation and also can greatly

1
Here, the term model denotes the notion in MDD.

91

simplify the assertions in the speci cation by eliminating common logical subex-

pressions. Assertion aspect broadens the scope of AOP by providing the separation

of speci cation concerns, instead of code concerns.

References

[1] Aspect Research Associates, Contract4J, http://www.contract4j.org.

[2] Diotalevi, F., Contract enforcement with AOP: Apply design by contract

to Java software development with AspectJ, IBM developerWorks (2004),

http://www-106.ibm.com/developerworks/library/j-ceaop.

[3] Ishio, T., T. Kamiya, S. Kusumoto and K. Inoue, Assertion with aspect, in:

International Workshop on Software Engineering Properties for Aspect Tech-

nologies (SPLAT2004), 2004.

[4] Kiczales, G., E. Hilsdale, J. Hugunin, M. Kersten, J. Palm and W. G. Griswold,

An overview of AspectJ, ECOOP 2001, LNCS 2072, 2001, pp. 327–355.

[5] Kiczales, G., J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M. Loingtier

and J. Irwin, Aspect-oriented programming, in: ECOOP ’97: Object-Oriented

Programming, LNCS 1241, 1997, pp. 220–242.

[6] Leavens, G. T., A. L. Baker and C. Ruby, JML: A notation for detailed design,

in: H. Kilov, B. Rumpe and W. Harvey, editors, Behavioral Specifications for

Businesses and Systems, Kluwer, 1999 pp. 175–188.

[7] Lippert, M. and C. V. Lopes, A study on exception detection and handling

using aspect-oriented programming, ICSE 2000, ACM, 2000, pp. 418–427.

[8] Shibayama, E., S. Hagihara, N. Kobayashi, S. Nishizaki, K. Taura and

T. Watanabe, AnZenMail: A secure and certified e-mail system, in: Software

Security: Theories and Systems, LNCS 2609 (2003), pp. 201–216, 2003.

[9] Sun Microsystems, JavaMail API, http://java.sun.com/products/javamail.

[10] Yamada, K. and T. Watanabe, An Aspect-Oriented Approach to Modular Be-

havioral Specifications, ENTCS, 163 (1), pp. 45–56, Sep., 2006.

[11] Zhang, J., J. Gray and Y. Lin, A model-driven approach to enforce crosscutting

assertion checking, in: Workshop on Modeling and Analysis of Concerns in

Software (MACS 2005), 2005.

[12] Zhao, J. and M. Rinard, Pipa: A behavioral interface specification language

for AspectJ, in: Fundamental Approach to Software Engineering (FASE 2003),

LNCS 2621 (2003), pp. 150–165.

92

Treaty - A Modular Component Contract

Language

Jens Dietrich, Graham Jenson
School of Engineering and Advanced Technology (SEAT)

Massey University, Palmerston North, New Zealand
Email: j.b.dietrich@massey.ac.nz,grahamjenson@maori.geek.nz

Abstract

In recent years, dynamic component-based systems such as OSGi and
its derivatives have become very successful. This has created new chal-
lenges for verification. Assemblies are created and modified dynamically
at runtime, but many existing techniques such as unit testing are designed
for buildtime verification. Runtime verification is usually restricted to
type checks. We propose a simple component contract language that is
powerful enough to represent different types of complex contracts between
collaborating components, including contracts with respect to component
semantics and quality of service attributes, and contracts that refer to
resources other than programing language artefacts. These contracts can
then be used for runtime verification of assemblies. Contracts are based on
a pluggable contract vocabulary. We present a proof of concept implemen-
tation of the contract language proposed for the OSGi/Eclipse component
model.

1 Introduction

Component-based systems have become very popular in the last decade. While
initially used mostly in desktop application, component-based software engi-
neering is now used in many different areas including server-side and ubiquitous
computing. This has created a number of new challenges for component models
with respect to component lifecycle and resource management. Traditionally,
component models focus on one particular aspect to describe the relationship
between collaborating components - interface compatibility. This relationship
is defined by a contract that is usually expressed by means of programming lan-
guage artefacts like Java interfaces, or by using a dedicated interface definition
language (IDL). However, modern component models have to address use cases
where other types of contracts are involved. For instance, server applications of-
ten require a high level of reliability, and applications running on mobile devices
have special requirements with respect to the (hardware) resources components
can use. If components are dynamically discovered, it might not be enough to
know that these components provide the right interface, they must also have
the expected behaviour. Beugnards at al. [BJPW99] have investigated types of
component contracts and have classified contracts into four layers:

93

1. Basic syntactic contracts expressing interface compatibility.

2. Behavioural contracts specifying component semantics.

3. Synchronisation contracts describing dependencies between components.

4. Quality of service contracts describing requirements with respect to re-
sponse times, quality of results etc.

Beugnards at al. have also discussed several technologies that could be used
to express contracts for the various layers. This includes the use of IDLs for
layer 1 and design by contract [Mey92] for layer 2. Other types of contracts not
covered by this classification include aspects related to security, trust and licens-
ing. For instance, an organisation might want to prevent the use of components
with contagious licenses, or configurations where components with incompatible
licenses are linked together.

In some modern component frameworks even basic layer 1 contracts can
be rather complex. A good example is the successful component model used
by Eclipse [Ecl]. Based on OSGi [OSG] bundles, Eclipse plugins use exten-
sion points and extensions to define required and provided resources. Often,
these resources are Java types - plugins define extension points using Java
interfaces, and require other plugins providing extensions to these extension
points to supply classes implementing the respective interfaces. However, in
general these contracts are highly polymorphic. An example for this is the
org.eclipse.help.toc extension point. In order to extend it, applications
have to provide help resources and a table of content XML file instantiating a
given document type definition. Moreover, many extension points use complex
logical expressions. An example for this is org.eclipse.ui.actionSets. Here,
the value of the attribute class must be a name of a class that implements an
interface. Which interface this is depends on the value of another attribute
(style).

In this paper, we introduce Treaty, a component contract language designed
to address these issues. The paper is organised as follows: In section 2, we
summarise the Treaty contract language, we use an Eclipse-based example ap-
plication for this purpose. This application contains polymorphic and disjunc-
tive contracts, and uses unit test cases for layer 2 and layer 4 contracts. We
then discuss contract instantiation and verification. In section 4 we show how
contract vocabularies can be organised in a modular manner. In section 5 we
explore the use of unit test cases in contracts in more detail. We then discuss the
architectural aspects of Treaty, focusing on the relationship between contracts
and the underlying component model. A discussion of related work and open
questions concludes our contribution.

The Treaty framework and the example used throughout this paper are both
accessible on Google code1, the code is licensed under the Apache open source
license.

1http://code.google.com/p/treaty/, the Eclipse update site URL is
http://treaty.googlecode.com/svn/trunk/treaty-eclipse-updatesite/site.xml. The Treaty
plugin requires JDK 1.6 or better.

94

2 Formalising Contracts

Components collaborate in different ways. When designing component-based
systems in an object-oriented language, the most common way of collaboration
is that one component provides an abstract type, while another component pro-
vides (an instance of) an implementation class of this abstract type. The use
of abstract types decouples the collaborating components. As mentioned in the
introduction, modern component-based systems like Eclipse use also different
types of contracts. For instance, components have to supply XML documents in-
stantiating document type definitions (DTDs) or XML Schemas. In general, we
can consider the artefacts provided and consumed by components as resources
identified by uniform resource identifiers (URIs). These resources are typed,
examples for types are instantiable Java classes, Java interfaces, IDL interfaces,
XML instances, XML Schemas, XSL files, DTDs, property files, and CSV files.
Relationships associating resources are defined for certain resource types only,
for instance Java classes implement Java interfaces, XML documents instantiate
DTDs, or style sheet transformations applying to instances of a certain XML
Schema.

In [DHG07] it has been proposed to use the semantic web standards RDF[KC04],
OWL[MvH04] and SWRL[HPSB+04] to model component contracts in a platform-
independent manner. While this has some obvious advantages, including the ex-
istence of a formal semantics for SWRL, the resulting rules are too complex and
do not support a compact representation of contracts. Furthermore, these con-
tracts have restricted expressiveness. In particular, complex constraints using
exclusive disjunctions cannot be represented. For this reason, we have developed
a custom XML vocabulary that supports the compact definition of component
contracts. This vocabulary is part of Treaty, the contract framework we propose.
Contracts define the relationship between two parties: consumer and supplier.
Treaty as a framework abstracts from the concrete nature of these entities. For
the example used here we use the proof of concept implementation of Treaty
for the Eclipse component model. Here, the consumer and supplier roles are
mapped to extension points and extensions, respectively.

Figure 1 shows such a contract 2. The respective example is implemented
as a set of Eclipse plugins. In this contract, the relationship between a com-
ponent that prints dates (clock view) and a component that provides a date
formatting service (date to string) is defined. The contract is attached to the
Eclipse component that has the extension point as an XML file in the component
meta-data folder (META-INF). The name of this file is defined by the following
naming convention: the name of the extension point followed by the extension
‘‘.contract’’. This mechanism is non-invasive - contracts can be added to
plugins without modifying existing plugin resources. Treaty does not modify
the Eclipse plugin registry either - it is only queried through public interfaces
and if there are no contracts found for an extension point it is interpreted as
empty contract.

A Treaty contract has three parts:

1. In the consumer section (lines 3-19), the resources of the extension point
are defined. The resources defined are constants identified by name and
type. The types are defined in an (external) ontology and represented by

2The package names are abbreviated

95

URIs. This information can be used by the component to load resources
if needed, for instance by using the component class loader.

2. In the supplier section (lines 20-27), the resources of the extension are
defined. This is where a component provides resources to be consumed by
a consumer. These resources are also typed. Resources are now variables,
the ref element is used to define a variable that can be used to query
for the resource once a concrete extension is known. This reflects the
support for dynamic component models that use late binding. Details of
this mechanism are discussed further below.

3. In the constraints part (lines 28-45), the relationships between resources of
both sides are specified. The schema supports the use of standard logical
connectives such as AND, OR and XOR to define complex conditions.
In addition to relationships, value properties and existence conditions are
supported as well.

In the example shown in figure 1, the clock component that has the extension
point provides the following resources (package names for classes omitted):

1. The interface DateFormatter (id ‘‘Interface’’) that describes the in-
terface of the date formatter service.

2. The dateformat.xsd (id ‘‘DateFormatDef’’) schema that describes the
interface of an alternative service by means of an XML schema. Instances
of this schema define date formatting string templates.

3. The class DateFormatterFunctionalTests (id ‘‘FunctionalTests’’) de-
fines some JUnit functional test cases. The test cases check whether the
strings produced by a date formatter contain at least the day, the month
(as number or using the English name of the month) and the last two
digits of the year. They define the minimal information content of strings
rendering dates.

4. The class DateFormatterPerformanceTests (id ‘‘QoSTests’’) defines
JUnit quality of service tests. It checks whether a date formatter needs
less than 10ms to render a date.

The extending component must provide one of two resources: a Java class or
an XML document. The contract conditions state that a valid extension must
either provide an XML instance that is valid with respect to the schema, or an
instantiable class that implements the interface and passes additional functional
and performance tests.

Conditions in contracts can be either atomic or complex. To build complex
conditions, the usual logical connectives with their standard semantics can be
used. Three types of atomic conditions are supported: relationships between
resources, resource properties, and conditions that a resource must exist. Rela-
tionships and properties are equivalent to object and data properties in RDF.
The mustExist constraint is weaker - this merely asserts that the respective
resource must exist and must be of the declared type.

96

1 <?xml version=” 1 .0 ” encoding=”UTF−8”?>
2 <cont rac t>
3 <consumer>
4 <r e s ou r c e id=” I n t e r f a c e ”>
5 <type>ht tp : //www. t r ea ty . org / java#AbstractType</ type>
6 <name>c l o ck . DateFormatter</name>
7 </ r e sou r c e>
8 <r e s ou r c e id=”QoSTests”>
9 <type>ht tp : //www. t r ea ty . org / j un i t#TestCase</ type>

10 <name>c l o ck . DateFormatterPerformanceTests</name>
11 </ r e sou r c e>
12 <r e s ou r c e id=” Funct iona lTests ”>
13 <type>ht tp : //www. t r ea ty . org / j un i t#TestCase</ type>
14 <name>c l o ck . DateFormatterFunct ionalTests</name>
15 </ r e sou r c e>
16 <r e s ou r c e id=”DateFormatDef”>
17 <type>ht tp : //www. t r ea ty . org /xml#XMLSchema</ type>
18 <name>/dateformat . xsd</name></ r e sou r c e>
19 </consumer>
20 <s upp l i e r>
21 <r e s ou r c e id=”Formatter ”>
22 <type>ht tp : //www. t r ea ty . org / java#In s t an t i a b l eC l a s s</ type>
23 <r e f>/ s e r v i c e p r o v i d e r /@class</ r e f></ r e sou r c e>
24 <r e s ou r c e id=”FormatString ”>
25 <type>ht tp : //www. t r ea ty . org /xml#XMLInstance</ type>
26 <r e f>/ s e r v i c e p r o v i d e r /@formatdef</ r e f></ r e sou r c e>
27 </ s upp l i e r>
28 <c on s t r a i n t s>
29 <xor>
30 <and>
31 <r e l a t i o n s h i p
32 r e sou rc e1=”Formatter ” r e sourc e2=” I n t e r f a c e ”
33 type=” ht tp : //www. t r ea ty . org / java#implements ”/>
34 <r e l a t i o n s h i p
35 r e sou rc e1=”Formatter ” r e sourc e2=” Funct iona lTests ”
36 type=” ht tp : //www. t r ea ty . org / j un i t#v e r i f i e s ”/>
37 <r e l a t i o n s h i p
38 r e sou rc e1=”Formatter ” r e sourc e2=”QoSTests”
39 type=” ht tp : //www. t r ea ty . org / j un i t#v e r i f i e s ”/>
40 </and>
41 <r e l a t i o n s h i p
42 r e sou rc e1=”FormatString ” r e sourc e2=”DateFormatDef”
43 type=” ht tp : //www. t r ea ty . org /xml#i n s t a n t i a t e s ”/>
44 </xor>
45 </ c on s t r a i n t s>
46 </ cont rac t>

Figure 1: XML Contract Example

97

condition semantics
property comparison of a property of a resource with a literal using

a comparison operator
relationship establishes whether a relationship exists between resources
mustExist true if the referenced resource exists

Table 1: Basic contract condition types

3 Contract Lifecycle and Verification

The sample contract is still abstract since it references resources (the resources
of the supplier) that are not yet known at the time the contract is written. The
supplier is only known later at runtime when late binding occurs. Only then the
contract can be instantiated. Contract instantiation is the creation of a deep
copy of the contract, and the instantiation of all resource proxies in this copy.
A resource proxy is a resource that has a ref attribute but no name attribute.
The ref attribute is a reference to the components meta-data. The Treaty
framework contains an interface ResourceManager that is used to resolve those
proxies. The details of resolving are component-model specific. In the Eclipse-
based implementation of Treaty, the ref values are XPath expressions and the
ResourceManager uses them to query the plugin meta-data (plugin.xml). In
an implementation of Treaty for pure OSGi the attribute values could just be
simple strings representing keys of properties defined in the bundle manifests.

Once an instantiated contract exists, verification can be performed. This is
the checking of conditions according to their semantics. When complex con-
ditions are present, this is usually done using a top-down strategy. This is
a simple process: once all resources are instantiated, contracts are essentially
statements of classical propositional logic. The question is how the basic con-
ditions are checked. This requires the resources to be loaded. For instance, to
check properties of a resource of the type AbstractType, the respective class
must be loaded so that it can be analysed using the Java reflection framework.
This is done with a ResourceLoader. Again, on the framework level this is an
interface that must be implemented when adapting Treaty for a particular com-
ponent model. In case of Eclipse, the loader uses the OSGi bundle classloader
to load resources.

4 Contract Vocabularies

Contracts reference types and properties. Both can be formally defined in a for-
mal ontology language, but this alone does not define their semantics [Usc01].
For instance, the semantics of the (Java) implements predicate (figure 1, line
33) is the set of pairs of concrete Java classes C and Java interfaces I such
that C implements I. In other terms, the semantics can be defined by a func-
tion that takes two resources C and I and can compute a boolean indicating
whether (C, I) ∈ implements is the case or not. This particular function is
easy to provide: if C and I can be loaded and are available as instances of
java.lang.Class, the method isAssignableFrom can be used to check this
condition. In a similar manner, a validating XML parser can be used to check
the instantiates property associating XML instances and XML schemas.

98

A possible solution to this problem is to define a fixed type system that
contains a set of commonly used resource types, and implements some classes
that represent the semantics of their properties and relationships. However,
there might be very project-specific types and relationships to be used in con-
tracts. Consider a scenario where a company has a product with a reporting
extension point. This offers customers the option to plug-in their own reporting
templates with customised layouts and data aggregation. The resource type to
be provided by these components could be VelocityTemplate[Vel]. Or even
better, a project-specific MyReportTemplate type that represents velocity tem-
plates that use only a fixed set of variables which the host component can bind.
Then the component itself would make contributions to the contract vocabulary
in order to enable verification. There is a clear business use case for this: it
safeguards the company against faulty third party plugins which would result
in customers blaming the company for the malfunctioning of their software.

Therefore, the vocabulary should be kept open and extensible. This can
be achieved by using the component model itself to build modular contract
vocabularies. Each vocabulary component must provide the following:

1. A list of defined types (URIs) contributed by the component.

2. A list of defined properties (URIs) contributed by the component.

3. A list of defined relationships (URIs) contributed by the component.

4. A method to load a resource given a reference and a resource type. For
instance, this method is used to load resources of the type Java class
defined by an attribute in plugin.xml as Java classes using the plugin’s
class loader.

5. A method that can be used to check the properties and relationships
contributed by the component.

In the Treaty implementation for Eclipse, this functionality is defined through
the extension point net.java.treaty.eclipse.vocabulary. To extend this
extension point, plugins must implement an interface that has the methods to
load resources and check conditions, and have to provide an OWL resource that
defines the vocabulary extensions. Treaty merges the ontology contributions
into a central merged ontology. This ontology contains all contributed types,
properties and relationships, plus annotation indicating which component con-
tributed the respective artefacts.

The reporting template example shows the benefits of using formal ontolo-
gies. For instance, assume that the reporting template type MyReportTemplate
subclasses VelocityTemplate, and that the contract requires only the existence
of a reporting template. Because of the semantics of rdfs:subClassOf the veri-
fier could than first check whether the resource is of the type VelocityTemplate
by using the Velocity parser. If this fails, the resource cannot be an instance of
MyReportTemplate either. That is, the formal semantics of OWL can be used
to optimise verification.

For this reason, in the proof of concept implementation all components mak-
ing vocabulary contributions have access to a central singleton Vocabulary that
maintains the virtual merged ontology. This allows them to use ontology rea-
soning when checking contributed properties and relationships. The ontology

99

can be accessed as unparsed stream or as java object representing the parsed
ontology.

5 Unit Testing at Runtime

The example contract (figure 1) uses the verifies property to express min-
imum requirements with respect to functionality and performance for classes
implementing the DateFormatter interface. This relationship is based on JU-
nit, that is, the test resources are JUnit 4 test cases, and their semantics is
defined by means of a JUnit test runner. JUnit test cases are defined in the
same component that defines the date formatter interface. These tests check
whether date formatter implementations can convert dates in less than 10ms,
and whether the generated strings contain at least tokens representing date,
month and year.

Unit testing is particularly useful here as it stands in the tradition of design
by contract - describing the semantics of methods through a description of the
state changing effects of the methods expressed by pre- and post conditions. The
main weakness of unit testing when compared to other verification methods is
that verification is based on selected specimen objects. Tests are not sufficient
to prove or ensure correctness, they can only be used to approximate it. The
main advantage of unit tests is that they are widely acceptance by programmers.
Also, it is easy to assess the degree of approximation (coverage metrics), and
there are well-established development processes to improve test cases when it
is necessary to improve the approximation.

Unfortunately, JUnit has been built for design and build time verification.
As a consequence of this it is assumed that the classes to be tested are known
when the test cases are written and can be directly referenced by test cases. On
the other hand, our approach supports late binding at composition time, that
is, test cases can only reference abstract types and the actual objects have to be
injected if the respective classes become available at runtime. Therefore, JUnit
needs to be modified to fit into Treaty. More precisely, support for dependency
injection mechanism must be added to JUnit. This is achieved by designing
test cases that have constructors with parameters that can be used to inject
the tested objects before the test case life cycle starts, and a special test runner
that can instantiate test cases using this constructor. Such a test runner is part
of the Treaty component that makes the JUnit vocabulary contributions.

6 The Bigger Picture - Adding Contracts to Com-
ponent Models

Treaty is implemented in Java and provides support for contract definition and
verification for the Java-based Eclipse component model. However, Treaty is
largely independent of the underlying component model and could also be used
to describe contracts in other component models even if they are not Java-based.
Treaty itself can be seen as a combination of three separate subsystems:

1. The Contract Definition Language (CDL), a formal language used to de-
fine contracts in a platform-independent manner. In this paper we have

100

proposed to use XML (constraint by the treaty.xsd schema) for this pur-
pose.

2. The Contract Execution Environment (CEE), a system that reads con-
tracts defined in the CDL and can instantiate and verify the contracts
against components of a host component model. The CEE proposed here
is implemented in Java and consists of two parts - an abstract contract
framework and an implementation of the abstract concepts in the frame-
work for the OSGi/Eclipse component model.

3. The Contract Vocabulary (CV), an ontology that defines the types and
properties that are used in contracts.

The CEE must reference the CM to instantiate resource references using the
reflective features of the CM (such as access to meta-data). It also uses the
CM to load resources needed to verify constraints. Finally, the CEE provides
the semantics for the (data and object) properties used in the vocabulary. The
CEE has access to the merged ontology and can use it for ontology reasoning.

Our Eclipse-based implementation adds two more relationships: both the
CV and the CEE take advantage of the CM to define both the vocabulary and
the parts of the CEE providing the semantics for the vocabulary in a modular
fashion.

7 Discussion

We have presented Treaty, a component framework that supports the easy defi-
nition of complex and polymorphic contracts. Our main contribution is the con-
tract language, and the modular design of the contract vocabulary. We believe
that using such a language adds value to environments that use late binding,
such as ubiquitous or mobile computing applications where new components are
discovered and integrated at runtime. The types of requirements that need to
be expressed in environments like this are somehow unpredictable. We therefore
think that using any fixed contract language is not appropriate. Instead, what
is needed in an extensible contract language based on a platform-independent
description of resource types and their relationships. This allows components
to plugin vocabulary extensions that can then be used by verification tools.

Treaty is still rather simple, and simplicity was one of the major design goals
when designing Treaty. One reason for this is of course the fact that much of the
work is delegated to the vocabulary contributions. However, in many cases it is
rather easy to write these contributions, and the level of reuse for vocabulary
elements would be much higher than the level of reuse of the actual application
components. The main advantage is that such an open framework supports a
consistent representation of different contract types by using a common meta-
model (OWL). To the best of our knowledge, no existing (academic or industrial)
component models or architectural description language achieves this.

In the prototype we have presented, verification is used as a central service
that checks the integrity of the entire system. It might be more useful in many
circumstances to check only contracts between certain components, for instance
in response to lifecycle events such as component activation. An interesting issue
is whether contracts should be attached to components consuming resources (as

101

we have done this), to components providing resources or should be detached
from either (“contracts as entities in the middle”, as proposed in [Szy00]. On the
framework level, Treaty does support contracts on both sides and in the middle,
and the aggregation of multiple contracts. The proof of concept implementation
based on Eclipse however only support contracts on the consumer side at the
moment.

References

[BJPW99] Antoine Beugnard, Jean-Marc Jézéquel, Noël Plouzeau, and
Damien Watkins. Making components contract aware. Computer,
32(7):38–45, 1999.

[DHG07] Jens Dietrich, John Hosking, and Jonathan Giles. A Formal Con-
tract Language for Plugin-based Software Engineering. In Pro-
ceedings of the 12th IEEE International Conference on Engineer-
ing Complex Computer Systems (ICECCS 2007), pages 175–184,
Washington, DC, 2007. IEEE Computer Society.

[Ecl] Eclipse. http://www.eclipse.org.

[HPSB+04] Ian Horrocks, Peter F. Patel-Schneider, Harold Boley, Said Tabet,
Benjamin Grosof, and Mike Dean. SWRL: A Semantic Web Rule
Language Combining OWL and RuleML. W3C member submis-
sion, W3C, May 2004. http://www.w3.org/Submission/SWRL/.

[KC04] Graham Klyne and Jeremy J. Carroll. Resource Description Frame-
work (RDF): Concepts and Abstract Syntax. W3C recommenda-
tion, W3C, February 2004. http://www.w3.org/TR/2004/REC-
rdf-concepts-20040210/.

[Mey92] Bertrand Meyer. Applying ”Design by Contract”. Computer,
25(10):40–51, 1992.

[MvH04] Deborah L. McGuinness and Frank van Harmelen. OWL Web On-
tology Language Overview. W3C recommendation, W3C, February
2004. http://www.w3.org/TR/2004/REC-owl-features-20040210/.

[OSG] The OSGi Alliance. http://www.osgi.org.

[Szy00] Clemens Szyperski. Components and contracts. Dr Dobbs, May
2000. http://www.ddj.com/architect/184414613.

[Usc01] Michael Uschold. Where is the Semantics in the Semantic Web? In
Workshop on Ontologies in Agent Systems, Montreal Canada, May
2001.

[Vel] The Apache Velocity Project. http://velocity.apache.org/.

102

