
Universitetet i OsloInstitutt for informatikk
Towards integration ofXML in the Creolobje
t-orientedlanguage
Arild Torjusen, OlafOwe, and GerardoS
hneider
Resear
h report 365ISBN 82-7368-323-0
O
tober 2007

Towards integration of XML in the Creol obje
t-orientedlanguageArild Torjusen, Olaf Owe, and Gerardo S
hneiderDepartment of Informati
s, University of OsloPO Box 1080 Blindern, NO-0316 Oslo, Norwayemail: {aribraat,olaf,gerardo}�ifi.uio.noAbstra
tThe integration of XML do
uments in obje
t-oriented programming languages is be-
oming paramount with the advent of the use of Internet in new appli
ations like webservi
es. Su
h an integration is not easy in general and demands a
areful language de-sign. In this paper we propose an extension to Creol, a high level obje
t-oriented modelinglanguage for distributed systems, for handling XML do
uments.1 Introdu
tionXML (eXtensible Markup Language) [?℄ is a �exible and generi
 format for stru
tured dataaimed at being shared on the World Wide Web and intranets. The need of XML do
uments as�rst-
lass
itizens has been identi�ed few years ago both at the a
ademi
 as well as by business-oriented
ommunities [?℄. XML do
uments are ordered labeled tree stru
tures
ontainingmarkup symbols des
ribing their
ontent. The do
ument stru
ture is des
ribed by a do
umenttype -or s
hema- written in a s
hema language. Many su
h languages have been proposed,among them DTD (Do
ument Type De�nition) [?℄ and XML-S
hema [?℄. Unlike other markuplanguages (like HTML), XML has no restri
tions on the tags or attributes used to mark upa do
ument. One remarkable feature of XML is its plain-text-based nature. The advantageis that there is no problem with proprietary nor de
iphering data. The disadvantages are thelarge bandwidth needed for transmission of do
uments and the need of en
ryption be
auseof se
urity issues. Part of the manipulation of XML do
uments in
ludes the retrieval ofinformation through queries. XQuery [?℄ provides a sound foundation for XML query, basedon infosets. The situation is not ideal for developers sin
e they need to know one language foranalyzing the tuples e.g., SQL, another language for the Infoset e.g., XQuery, and a third onefor operating on obje
ts e.g., Java. Some attempts have been done to
ombine obje
t-orientedlanguages and XML, but this turned out to be a
omplex task; this problem is known as theimpedan
e mismat
h [?℄, whi
h arises when trying to
ombine obje
t-oriented programminglanguages and (relational) databases.The integration of XML on
urrent obje
t-oriented languages is far from trivial. The initialapproa
h has been to treat XML through APIs whi
h uses strings for representing literals.One problem of this approa
h is that it limits the use of stati

he
king tools. Furthermore,the representation of programs as text involves potential se
urity risks. See [?℄ for a moredetailed des
ription of the main problems arising with the integration of XML in obje
t-oriented languages. 1

{aribraat,olaf,gerardo}@ifi.uio.no

In addition to the integration of XML do
uments within OOP languages, another questionis what to do with these data, i.e., how easy it is to make queries, getting useful informationfrom su
h XML-do
uments.1.1 CreolIn this paper we are
on
erned with a light-weight integration of XML into the obje
t-orientedlanguage Creol [?,?,?℄. Our motivation for
hoosing Creol may be summarized as follows:
• It supports both obje
t-oriented
lasses, with late binding and multiple inheritan
e, aswell as user de�ned data types and fun
tions. This gives �exibility in our
hoi
es whenrepresenting XML.
• It is oriented towards open distributed systems. Ex
hange of XML do
uments �ts nat-urally in this
ontext.
• It supports
on
urren
y and method
alls based on asyn
hronous
ommuni
ation. Wewish to explore the pro
essing and sharing of XML do
uments in this setting.
• It is strongly typed, supporting subtypes and subinterfa
es, with a type hierar
hy in-
luding both by means of the universal type, Data.
• It has a formal operational semanti
s, de�ned in rewriting logi
s. This enables us toformalize the extension to XML by reuse of the operational semanti
s.
• It has a small kernel with an operational semanti
s
onsisting of only 11 rewrite rules.This makes it easy to extend and modify the language and the semanti
s.
• Creol has an exe
utable interpreter de�ned in the Maude language. This provides auseful framework for implementation and testing of our XML representations.1.2 Related WorkThe list of languages for pro
essing XML do
uments is extensive, so it is not possible to beexhaustive here. We brie�y dis
uss below some of the most in�uential works, namely XDu
e,CDu
e and Cω. We mention other related work as referen
e for further reading, withoutentering into detail.XDu
e XDu
e [?℄ is a fun
tional programming language for XML pro
essing. Its basi
data values are XML do
uments and its types�
alled regular expressions types�
orrespondto do
ument s
hemas. The language is stati
ally typed but it also provides dynami
 type-
he
king. Other interesting feature of XDu
e is regular expression pattern mat
hing whi
hin
ludes tag
he
king, subtree extra
tion and
onditional bran
hing.An XML do
ument in XDu
e is represented as a sequen
e of nodes, and types use similar
onstru
ts as string regular expressions like �*� for representing that zero or more o

urren
esmay happen, �?� for indi
ating an item may be omitted, �+� for one or more time repetition,�|� for alternation and �,� for
on
atenation. The main di�eren
e with string regular expres-sions, is that regular expression types des
ribe sequen
es of tree nodes instead of sequen
es of
hara
ters. 2

The type-
he
king algorithm is based on the following subtype relationship: one type is asubtype of another if and only if the former denotes a subset of the latter. The subtype
he
kermay be used both for
he
king that the a
tual type of a fun
tion's body is a subtype of theprogrammer-de
lared result type and for verifying fun
tion
all arguments against parametertypes given by the programmer. Although the theoreti
al
omplexity of the
orrespondingproblem to subtype
he
king on tree automata is exponential, it is
laimed in [?℄ that it workswell in pra
ti
e.CDu
e CDu
e [?℄ is a typed fun
tional language born from an attempt to solve some of thelimitations of XDu
e [?℄. It extends XDu
e on three areas:Type system In addition to regular expression types and type-based patterns, CDu
e addsre
ursive types and other XML spe
i�

onstru
ts: produ
ts, re
ords (open and
losed),general Boolean
onne
tives (interse
tion, union and di�eren
e) and arrow types. Thisextension takes
are of not breaking down the ni
e subtype relation of XDu
e.Language design The following language
onstru
tions are in
luded in CDu
e: overloadedfun
tions (useful for
ode sharing and reuse), iterators on sequen
es and trees and otherextensions of the pattern algebra. Besides, XML tags are �rst-
lass
itizens and stringsare simple sequen
e of
hara
ters. The language support higher-order programming, soall fun
tions are �rst-
lass
itizens.Run-time system A new approa
h for avoiding unne
essary
omputation at runtime isadded in CDu
e, allowing the programmer to use a more de
larative style when writingpatterns, without degrading performan
e. The underlying theory is based on a new kindof tree automata.CDu
e provides also a tool for translating DTDs into CDu
e's types.Cω Cω [?℄ is a programming language developed at Mi
rosoft Resear
h,
ombining featuresfrom two other resear
h languages: (a) Polyphoni
 C#: a
ontrol �ow extension with asyn-
hronous wide-area
on
urren
y, and (b) Xen [?℄: a data type extension for pro
essing XMLand table manipulation. Besides other interesting features, Cω allows the
onstru
tion ofobje
ts using XML syntax.The Cω type systems
ombines the following three data models: relational, obje
t andXML data-a

ess, and it is more oriented to XML
onstrained using W3C XML S
hema. Thelanguage
overs the following XML and XML S
hema features: do
ument order, distin
tionbetween elements and attributes, multipli
ity of �elds with equal name but di�erent valuesand
ontent models for spe
ifying
hoi
e (union) types for �elds.One of the ni
e features of the Cω type system are streams. It is possible to invokemethods on streams, whi
h are applied to all the elements of the stream; XPath-style queriesover obje
ts graphs are easily written in this way. It also in
ludes the
on
ept of apply-to-allexpressions
onstru
t. Choi
e (union) types allow the programmer to spe
ify one of di�erentpossible values for a
ertain �eld. Moreover, null is a valid value for a type, whi
h have beenproved useful in XML and relational databases. Do
ument order and multipli
ity of equalnames for
hild elements, are solved through the use of anonymous stru
ts. In Cω DTDs (andXML S
hemas) are represented by
ontent
lasses.3

Other languages The following languages try to extend Java with XML pro
essing: XJ [?℄,XACT [?℄, XOBE [?℄, BPELJ [?℄.XL [?℄ is a language whose only type system is the XML type system, and not a languagewhose syntax is des
ribed using XML vo
abulary. It is spe
ially designed for the implemen-tation of Web servi
es. XL is portable and fully
ompliant with all W3C standards su
h asXQuery, XML Proto
ol, and XML S
hema.PiDu
e1 is CDu
e-like language based on the π-
al
ulus. ECMAS
ript for XML (E4X) isa set of programming language extensions adding native XML support to ECMAS
ript. E4Xis standardized by E
ma International in ECMA-357 standard.2See [?℄ for a good survey on stati
 type-
he
king for XML transformation languages.1.3 Our AgendaIn order to integrate XML do
uments in Creol, we intend to follow the following agenda:1. Parsing and well-formedness
he
king. We will enhan
e the language as to be able totake a given XML do
ument as input and generate some internal data stru
ture from it.2. Internal representation of XML in Creol. We aim at extending Creol for supportingXML do
uments with the least possible
hanges to the existing framework. One of thekey features we would like to preserve is Creol stati
 type-safety. In order to make alightweight integration of XML into Creol and keep stati
 type safety we will restri
ttype
he
king of XML in this implementation to only well-formedness of XML values,i.e. that some value of type XMLDo
 (the Creol type for XML do
uments)
he
ks out asan XMLDo
.3. Simple validity-
he
king of XML data-stru
tures. We will validate XML data-stru
turesagainst some s
hema. S
hema is here taken in a broad sense, meaning a formal des
rip-tion of the type of an XML do
ument, without regards to any spe
i�
 s
hema languageas e.g. DTD, XML-S
hema or RELAX NG (
f. Se
 3). Validity
he
king will be doneby fun
tions �on top� of the type system and not within the type system itself.4. More
omplex validity-
he
king of XML data-stru
tures. We will perform more
om-plex validity
he
king after enhan
ing the Creol language with regular expression types,following the work of Hosoya et.al. [?℄.5. Queries. We will also demonstrate how to perform queries and data extra
tion fromXML do
ument instan
es.36. Transformations. We will perform more
omplex operations su
h as
onstru
tion andtransformations on XML do
uments.In this paper, however, we will
on
entrate on items 2 and 3 above. In the next se
tionwe show how XML do
uments are integrated in Creol. In Se
tion 3 we show how s
hemasare represented in Creol after a short dis
ussion on existing s
hema languages. Se
tion 4is
on
erned with the validation of XML do
uments. In Se
tion 5 we
on
lude and presentfurther work.1http://www.
s.unibo.it/~laneve/PiDu
e/2See http://www.e
ma-international.org/publi
ations/standards/E
ma-357.htm.3Cf. e.g. http://www.w3.org/TR/2005/WD-xquery-use-
ases-20050915/ for test use
ases.4

http://www.cs.unibo.it/~laneve/PiDuce/
http://www.ecma-international.org/publications/standards/Ecma-357.htm
http://www.w3.org/TR/2005/WD-xquery-use-cases-20050915/

2 A model for XML in CreolDi�erent XML do
uments may vary in physi
al representation due to synta
ti

hanges per-mitted by the XML standard. W3C has issued a re
ommendation whi
h des
ribes how anyXML do
ument
an be normalized into a
anoni
al form [?℄. The data model de�ned in theXPath 1.0 Re
ommendation [?℄ is the basis for
anoni
al XML and we will use this as thepoint of departure for the internal representation of XML in Creol.2.1 The XPath Data modelXPath models an XML do
ument as an ordered tree
ontaining nodes of seven di�erent types:
• root: The root node is the root of the tree and will
orrespond to an XML do
umentinstan
e. It
ontains a list of pro
essing instru
tions, a list of
omment nodes, andexa
tly one element whi
h is the root element of the do
ument.
• element: The element node has a name (
orresponding to the xml tag for the element)and may have as its
hildren element nodes,
omment nodes, pro
essing instru
tion (PI)nodes and text nodes. It is also asso
iated to a set of attribute nodes and a set ofnamespa
e nodes.
• text: A text node
ontains a string, representing
hara
ter data in the XML do
ument.
• attribute: An attribute node
ontains a name and a value.
• namespa
e: A namespa
e node
ontains a string value for the namespa
e pre�x and avalue for the namespa
e URI.
• pro
essing instru
tions: A PI node has a name identifying the target appli
ation and astring whi
h is to be passed to the appli
ation.
•
omment: A
omment node
ontains a string.To simplify the initial XML implementation for Creol we will leave out the last threekinds of nodes from our model. A

ording to [?℄,
omments �are not part of the do
ument's
hara
ter data; an XML pro
essor MAY, but need not, make it possible for an appli
ation toretrieve the text of
omments.�, we
hoose not to retain
omments in the Creol representationof XML. Pro
essing instru
tions are not relevant for our purpose of demonstrating lightweightintegration of XML in Creol and
an also be left out. As will be explained later we will adoptthe DTD-language for spe
i�
ation of s
hemas; sin
e the DTD does not support namespa
es itis natural not to represent namespa
e nodes in the model. These design
hoi
es also simpli�esthe de�nition of element and root nodes.2.2 The Creol representation of XMLGiven the two-tiered type-system of Creol where obje
ts are typed by interfa
es and lo
al
omputations on terms o

ur in a fun
tional language, we introdu
e XML into Creol byadding type
onstru
tors for a new XMLDo
 type, as a subtype of the universal type Data, aswell as fun
tions on this type. 5

Creol has an operational semanti
s de�ned in rewriting logi
, whi
h is exe
utable withMaude [?℄ and provides an interpreter and analysis platform for system models. So to a

om-modate XML we extend the operational semanti
s with some Maude sorts (type names) and
onstru
tors (Creol de�nitions would be very similar):sorts XMLName ElemNd TextNd AttNd ContentNd XMLDo
 .subsort ElemNd TextNd < ContentNd .introdu
ing sorts for XML names, element, attribute, text and
ontent nodes, letting ElemNodeand TextNd be subsorts of ContentNode.To simplify the writing of XML values in a program we use mix-�x notation (indi
at-ing argument positions by underline) to provide a
ompa
t syntax by adding the following
onstru
tors for attributes, textnodes and elements (with and without attributes).op (_=_) : XMLName String -> AttNd [
tor℄ .op _(_)[_℄ : XMLName AttNdList ContentNdList -> ElemNd [
tor℄ .op _[_℄ : XMLName ContentNdList -> ElemNd [
tor℄ .op tx : String -> TextNd [
tor℄ .where the
lause [
tor℄ after an operator (op) indi
ates that it is a
onstru
tor.Note that there is no spe
i�

onstru
tor for root nodes. Sin
e we leave out pro
essinginstru
tions and
omments, the root node is just the element node o

urring at the root of anXML do
ument tree. Thus, the XML do
ument
onstru
tor is:op xmlDo
 : ElemNd XMLS
hema -> XMLDo
 [
tor℄ .We de�ne the operatorop noS
hema : -> XMLS
hema [
tor℄ .for XML do
uments with no XMLS
hema. Other XMLS
hema
onstru
tors are de�ned furtherbelow.Example The following simple XML fragment,<email><head><sender>Arild</sender><re
ipient mailaddr="vera�foo.
om">Vera</re
ipient><subje
t>Test</subje
t></head><body><message>Hello there, you wrote in an earlier message:<quote>We'll meet again</quote> See you later</message></body></email>has the Creol/Maude syntax:"email"[("head"[("sender"[tx("Arild")℄)("re
ipient"("mailaddr"="vera�foo.
om")[tx("Vera")℄)("subje
t"[tx("Test")℄)℄)("body"[("message"[tx("Hello there, you wrote in an earlier message:")("quote"[tx("We'll meet again")℄) tx("See you later")℄)℄)℄ .As
onventional in Maude, the list
onstru
tor (
on
atenation) is here denoted by white spa
e(blank). 6

3 S
hemas and type
he
king3.1 S
hemas as types vs. s
hemas as valuesStati
 type
he
king of XML do
uments in a programming language
an be a
hieved byintrodu
ing a type for XML s
hemas in the language. Xdu
e and CDu
e mentioned earlierare examples of proje
ts going in this dire
tion.For the
urrent integration of XML in Creol we will take a less involved approa
h byintrodu
ing a data type for s
hemas, together with fun
tions to validate a do
ument against as
hema. This takes pla
e within the existing type system and does not
onstitute an additionto the type system itself.3.2 Expressive power of s
hema languagesThere exists several generally adopted XML s
hema languages with di�erent expressive power.Murata, Lee, and Mani [?℄ suggest a taxonomy of s
hema languages based on the formaltheory of regular tree grammars. Some of the most
ommon s
hema languages
an be rankedin order of in
reasing expressivity thus: The DTD-language, The W3Cs XML S
hema, TheRELAX NG spe
i�
ation. Validation of the �rst two
an be done by simple adaptions of wordautomata, while the last requires a more
ompli
ated tree automaton. However the DTDlanguage is su�
iently expressive for our purpose whi
h is to demonstrate how XML
an beintegrated in the obje
t oriented modeling framework of Creol. Therefore in our model forXML s
hema values in Creol we adapt the restri
tions inherent in the DTD language to a
hievesimple validation, (i.e. only deterministi
 regular expressions is allowed in the de�nition of anelement as explained below).43.3 The s
hema type for CreolA DTD is a list of markup de
larations where markup de
larations are either element typede
larations, attribute-list de
larations, entity de
larations, or notation de
larations.For our purpose we only
onsider element type de
larations and attribute-list de
larations.Entity de
larations may be
onsidered as a kind of ma
ro notation for strings that may appearin a DTD or an XML do
ument, sin
e our fo
us is on internal pro
essing we will assume thatthese already are expanded by the parser and will abstra
t away from them in our model.Notation de
larations are similarly a kind of shorthand for notations and are also left out.A

ordingly the XMLS
hema
onstru
tor is:op xmlS
hema : XMLName ElemDe
lList AttDe
lList -> XMLS
hema .Element type de
larations
onsist of a name referring to an element and a spe
i�
ation ofthe legal
ontent. There are four kinds of spe
i�
ations: either one of the designated keywords�EMPTY� or �ANY�, or the spe
i�
ation of a
ontent model. A
ontent model is a
ontext freegrammar governing the allowed types of the
hild elements and the order in whi
h they areallowed to appear. The fourth kind of
ontent spe
i�
ation is the Mixed-
ontent De
larationwhi
h is of the form:
(#PCDATA | e1 | e2 | . . . | en) ∗Where ea
h ei is an element name and n may be 0 in whi
h
ase the '*' is optional.4Roughly
orresponding to �Lo
al Tree Grammars� in [?℄.7

Example A DTD for the XML fragment given above
ould be:<!DOCTYPE email [<!ELEMENT email (head, body, foot*) ><!ELEMENT head (sender, re
ipient, subje
t?)><!ELEMENT body (message)*><!ELEMENT foot (#PCDATA)><!ELEMENT sender (#PCDATA)><!ELEMENT re
ipient (#PCDATA)><!ELEMENT subje
t (#PCDATA)><!ELEMENT message (#PCDATA|quote)*><!ELEMENT quote (#PCDATA)>℄>The �rst three element de
larations spe
ify
ontent models and the rest are instan
es ofmixed-
ontent de
larations. We model the
ontent models as regular expressions. Let Σbe an alphabet over element names, in
luding the reserved name PCDATA. By in
ludingPCDATA in Σ we
an model a mixed-
ontent de
laration as a spe
ial kind of a
ontent modelspe
i�
ation. The set of regular expressions over Σ∗ are obtained in the standard way: Theempty string ǫ and ea
h member of Σ are regular expressions. If α is a regular expression, thenso are (α), α?, α∗ and α+. If α and β are regular expressions, then so is α β, and α |β. Theoperators ?, ∗, and + has higher pre
eden
e than
on
atenation. Con
atenation has higherpre
eden
e than union (|). The regular expression
ombinators have the expe
ted semanti
s.We model element de
larations as follows:subsort XMLName < RegExp .op elDe
l : XMLName ContentModel -> ElemDe
l [
tor℄ .ops empty any : -> ContentModel [
tor℄ .op elCt : RegExp -> ContentModel [
tor℄ .op PCDATA : -> RegExp .ops _? _* _+ : RegExp -> RegExp [
tor pre
 40 ℄ .op (_�_) : RegExp RegExp -> RegExp [
tor asso
 pre
 42 ℄5op _|_ : RegExp RegExp -> RegExp [
tor pre
 44 ℄The XML spe
i�
ation adds the requirement that the
ontent models must be deterministi
[?, Appendix E℄, i.e. a
ontent model must not allow an element to mat
h more than oneo

urren
e of an element name in the
ontent model. This ensures that when mat
hing anelement name σ with a s
hema we do not have to look ahead beyond the σ in the input string tode
ide whi
h regular expression in the
ontent model mat
hes σ. The requirement is in
ludedin the XML spe
i�
ation to ensure
ompatibility with SGML. For a detailed dis
ussion seee.g. [?℄.Example The maude syntax for the DTD given above is:xmlS
hema("email",(elemDe
l("email",elCt("head"�"body"�("foot"*)))elemDe
l("head",elCt("sender"�"re
ipient"�("subje
t"?)))elemDe
l("body" , elCt("message"*))elemDe
l("foot", elCt(PCDATA)) elemDe
l("sender" ,elCt(PCDATA))elemDe
l("re
ipient" ,elCt(PCDATA)) elemDe
l("subje
t" ,elCt(PCDATA))elemDe
l("message" ,elCt((PCDATA|"quote")*))elemDe
l("quote" ,elCt(PCDATA)),noAttDe
l6) .4 Validating XML in CreolWell-formedness of any value of type XMLDo
 is ensured by Maude type
he
king. The XMLspe
i�
ation de�nes an XML do
ument to be valid �if it has an asso
iated do
ument typede
laration and if the do
ument
omplies with the
onstraints expressed in it� [?℄.5We use '�' as the
on
atenation operator to avoid problems with overloading of ',' or whites-pa
e whi
h might otherwise have been used.6Attribute de
larations are not yet supported. 8

op res : Bool String -> ValResult .eq
ollate(res(b,s) , res(b',s')) = res((b and b') , (s + s')) .eq validate(xmlDo
(elemNd(nm,atts,
ts) , noS
hema)) = res(false,"No S
hema") .eq validate(xmlDo
(elemNd(nm,atts,
ts) , xmlS
hema(nm',elDs,attDs))) =if (nm =/= nm') thenres(false,("Do
ument root-element: " + nm +", must mat
h s
hema type: " + nm' + "\n"))elseval(elemNd(nm,atts,
ts) , elDs)fi .eq val(emp,elDs) = res(true,"") .eq val((
t
ts), elDs) =
ollate(val(
t,elDs),val(
ts,elDs)) [owise℄ .
eq val(elemNd(nm,atts,
ts),elDs) = if
m == undefined thenres(false,("Element-type :" + nm + " must be de
lared.\n"))else
he
k(elemNd(nm,atts,
ts),
m,elDs) fi if
m := getCM(nm,elDs) .eq
he
k(elemNd(nm,atts,
ts),empty,elDs) =if (
ts == emp) then res(true,"Empty elem: " + nm + "n")else res(false,"Elem: " + nm + " de
lared as EMPTY, but has
ontent.\n") fi .eq
he
k(elemNd(nm,atts,
ts),any,elDs) =
ollate(res(true,"Elem: " + nm + " defined as ANY.\n"),val(
ts,elDs)) .eq
he
k(elemNd(nm,atts,
ts), elCt(regexp) ,elDs) =if mat
h(getTokens(
ts), regexp) then
ollate (res(true, nm + ": (" +
tToS(
ts) +") mat
hes [" + reToS(regexp) + "℄n") , val(
ts,elDs))else
ollate (res(false, nm + ": (" +
tToS(
ts) +") does NOT mat
h [" + reToS(regexp) + "℄n"), val(
ts,elDs)) fi .Figure 1: Maude
ode for validation of XML do
uments.The XML do
ument
onstru
tor asso
iates the root element of a do
ument with a s
hema,(whi
h may also be the spe
ial value noS
hema). Hen
e, an XML do
ument is validated by�rst
he
king for existen
e of a s
hema and by
he
king that the root node element namemat
hes that s
hema name. Se
ondly we
he
k that ea
h element node in the tree is validwith respe
t to the element de
larations in the s
hema.Validation on a do
ument is performed by the fun
tionop validate : XMLDo
 -> ValResult .The validate fun
tion
he
ks whether there is a s
hema asso
iated with the do
ument andwhether the s
hema name mat
hes the do
ument root node, if it does, the re
ursive fun
tionval is
alled, otherwise validation stops. A ValResult is a pair of a boolean value and astring, where the boolean value indi
ates whether the do
ument is valid and the string is usedto return an error message or a re
ord of the pro
essing of the do
ument. The helper fun
tion
ollate builds the �nal validation result for a do
ument from validation of its parts. Therelevant parts of the maude
ode are given in �g. 1. The fun
tion:op val : ContentNdList ElemDe
lList -> ValResult .validates a
ontent node list against the element de
laration list de�ned by the s
hema. For alist of nodes, val is
alled re
ursively on ea
h node in the list. For a single node, the elementtype de
laration
orresponding to the node is retrieved (by name) from the list of elementde
larations. If no de
laration exists for a
ontent node, the do
ument is invalid, otherwise9

the node is
he
ked against the retrieved de
laration by a
all to the fun
tion
he
k7:op
he
k : ContentNd ContentModel ElemDe
lList -> ValResult .In the
all to
he
k, the
omplete list of element de
larations is passed on as a parametersin
e any
hild nodes to the node
urrently being pro
essed must be validated.For an element to be valid, a de
laration for the element must exist and the followingshould hold: If the
ontent spe
i�
ation is �EMPTY� the element should have no
ontent.If the
ontent spe
i�
ation is �ANY�, the element
an
onsist of any sequen
e of (de
lared)elements intermixed with
hara
ter data. If the
ontent spe
i�
ation is a
ontent model, thesequen
e of
hild elements must belong to the language generated by the regular expression inthe
ontent model. If the
ontent spe
i�
ation is mixed the
ontent must
onsist of
hara
terdata and
hild elements whose types mat
h names in the
ontent model [?, Se
. 3℄.The fun
tion
he
k has three
ases
orresponding to the four validity
onditions for ele-ments, one
ase for ea
h of the spe
i�
ations EMPTY and ANY and one
ase for a
ontentmodel or a mixed spe
i�
ation. The �rst two
ases are easy to
he
k, in the �rst
ase we mustmake sure that the element de
lared as empty is in fa
t empty, in the se
ond
ase no further
he
king of the element is ne
essary but we still have to
all val for ea
h
hild node of the
urrent node.For the third
ase the
he
k fun
tion will use the fun
tion mat
h to determine whether thelist of a
tual
hildren elements mat
hes the regular expression spe
i�ed in the
orrespondingelement de
laration, in addition val is
alled for ea
h
hild node.The fun
tion getTokens, builds a list of tokens from the element
ontent, i.e. a list ofelement names (in
luding the token 'PCDATA). As tokens we use the Maude built-in sort Qid.The token list and the regular expression from the element type de
laration are pro
essed bythe mat
h fun
tion:op mat
h : TokenList RegExp -> Bool .Mat
hing of a list of element names from Σ against a regular expression is implemented by
onstru
ting a deterministi
 �nite automaton from the regular expression and test whether theautomaton a

epts the string
orresponding to the list of names. See e.g. [?℄ for a des
riptionof how this is done in Maude.
tToS and reToS are just string
onversion fun
tions for
ontentnodes and regular expressions for logging purposes.Example Evaluation of the sample do
ument with the DTD spe
i�ed above gives the fol-lowing result:res(true, "email: (head ,body) mat
hes [head � body � (foot*)℄head: (sender ,re
ipient ,subje
t)mat
hes [sender � re
ipient � (subje
t?)℄sender: (PCDATA) mat
hes [PCDATA℄re
ipient: (PCDATA) mat
hes [PCDATA℄subje
t: (PCDATA) mat
hes [PCDATA℄body: (message) mat
hes [(message*)℄message: (PCDATA , quote ,PCDATA)mat
hes [(PCDATA | quote*)℄quote: (PCDATA) mat
hes [PCDATA℄") .7Note that a

ording to [?℄ an element type must not be de
lared more than on
e so uniqueness of elementde
larations may be assumed.
10

5 Con
lusionIntegrating XML do
uments in obje
t-oriented languages is not easy in general as witnessedby the extensive resear
h
ondu
ted in this area, and ni
ely presented in the survey [?℄. Wehave shown here how to integrate XML do
uments into Creol, an obje
t-oriented languagewith formal semanti
s in rewriting logi
. We have also presented an algorithm for validatingXML do
uments against XML s
hemas, to show that the former are instan
es of the latter.This paper is a �rst step towards a full integration of XML into Creol, and we intend topursue our work as to
omplete our agenda des
ribed in Se
tion 1.3. In parti
ular, we �nd itextremely interesting to be able to manipulate and reason about XML do
uments, to in
luderegular expression types, and to adapt the semanti
 sub-typing algorithm from CDu
e andXDu
e dis
ussed in the introdu
tion.Referen
es

11

	Introduction
	Creol
	Related Work
	Our Agenda

	A model for XML in Creol
	The XPath Data model
	The Creol representation of XML

	Schemas and type checking
	Schemas as types vs. schemas as values
	Expressive power of schema languages
	The schema type for Creol

	Validating XML in Creol
	Conclusion

