
Universitetet i OsloInstitutt for informatikk
Towards integration ofXML in the Creolobjet-orientedlanguage
Arild Torjusen, OlafOwe, and GerardoShneider
Researh report 365ISBN 82-7368-323-0
Otober 2007

Towards integration of XML in the Creol objet-orientedlanguageArild Torjusen, Olaf Owe, and Gerardo ShneiderDepartment of Informatis, University of OsloPO Box 1080 Blindern, NO-0316 Oslo, Norwayemail: {aribraat,olaf,gerardo}�ifi.uio.noAbstratThe integration of XML douments in objet-oriented programming languages is be-oming paramount with the advent of the use of Internet in new appliations like webservies. Suh an integration is not easy in general and demands a areful language de-sign. In this paper we propose an extension to Creol, a high level objet-oriented modelinglanguage for distributed systems, for handling XML douments.1 IntrodutionXML (eXtensible Markup Language) [?℄ is a �exible and generi format for strutured dataaimed at being shared on the World Wide Web and intranets. The need of XML douments as�rst-lass itizens has been identi�ed few years ago both at the aademi as well as by business-oriented ommunities [?℄. XML douments are ordered labeled tree strutures ontainingmarkup symbols desribing their ontent. The doument struture is desribed by a doumenttype -or shema- written in a shema language. Many suh languages have been proposed,among them DTD (Doument Type De�nition) [?℄ and XML-Shema [?℄. Unlike other markuplanguages (like HTML), XML has no restritions on the tags or attributes used to mark upa doument. One remarkable feature of XML is its plain-text-based nature. The advantageis that there is no problem with proprietary nor deiphering data. The disadvantages are thelarge bandwidth needed for transmission of douments and the need of enryption beauseof seurity issues. Part of the manipulation of XML douments inludes the retrieval ofinformation through queries. XQuery [?℄ provides a sound foundation for XML query, basedon infosets. The situation is not ideal for developers sine they need to know one language foranalyzing the tuples e.g., SQL, another language for the Infoset e.g., XQuery, and a third onefor operating on objets e.g., Java. Some attempts have been done to ombine objet-orientedlanguages and XML, but this turned out to be a omplex task; this problem is known as theimpedane mismath [?℄, whih arises when trying to ombine objet-oriented programminglanguages and (relational) databases.The integration of XML on urrent objet-oriented languages is far from trivial. The initialapproah has been to treat XML through APIs whih uses strings for representing literals.One problem of this approah is that it limits the use of stati heking tools. Furthermore,the representation of programs as text involves potential seurity risks. See [?℄ for a moredetailed desription of the main problems arising with the integration of XML in objet-oriented languages. 1

{aribraat,olaf,gerardo}@ifi.uio.no

In addition to the integration of XML douments within OOP languages, another questionis what to do with these data, i.e., how easy it is to make queries, getting useful informationfrom suh XML-douments.1.1 CreolIn this paper we are onerned with a light-weight integration of XML into the objet-orientedlanguage Creol [?,?,?℄. Our motivation for hoosing Creol may be summarized as follows:
• It supports both objet-oriented lasses, with late binding and multiple inheritane, aswell as user de�ned data types and funtions. This gives �exibility in our hoies whenrepresenting XML.
• It is oriented towards open distributed systems. Exhange of XML douments �ts nat-urally in this ontext.
• It supports onurreny and method alls based on asynhronous ommuniation. Wewish to explore the proessing and sharing of XML douments in this setting.
• It is strongly typed, supporting subtypes and subinterfaes, with a type hierarhy in-luding both by means of the universal type, Data.
• It has a formal operational semantis, de�ned in rewriting logis. This enables us toformalize the extension to XML by reuse of the operational semantis.
• It has a small kernel with an operational semantis onsisting of only 11 rewrite rules.This makes it easy to extend and modify the language and the semantis.
• Creol has an exeutable interpreter de�ned in the Maude language. This provides auseful framework for implementation and testing of our XML representations.1.2 Related WorkThe list of languages for proessing XML douments is extensive, so it is not possible to beexhaustive here. We brie�y disuss below some of the most in�uential works, namely XDue,CDue and Cω. We mention other related work as referene for further reading, withoutentering into detail.XDue XDue [?℄ is a funtional programming language for XML proessing. Its basidata values are XML douments and its types�alled regular expressions types�orrespondto doument shemas. The language is statially typed but it also provides dynami type-heking. Other interesting feature of XDue is regular expression pattern mathing whihinludes tag heking, subtree extration and onditional branhing.An XML doument in XDue is represented as a sequene of nodes, and types use similaronstruts as string regular expressions like �*� for representing that zero or more ourrenesmay happen, �?� for indiating an item may be omitted, �+� for one or more time repetition,�|� for alternation and �,� for onatenation. The main di�erene with string regular expres-sions, is that regular expression types desribe sequenes of tree nodes instead of sequenes ofharaters. 2

The type-heking algorithm is based on the following subtype relationship: one type is asubtype of another if and only if the former denotes a subset of the latter. The subtype hekermay be used both for heking that the atual type of a funtion's body is a subtype of theprogrammer-delared result type and for verifying funtion all arguments against parametertypes given by the programmer. Although the theoretial omplexity of the orrespondingproblem to subtype heking on tree automata is exponential, it is laimed in [?℄ that it workswell in pratie.CDue CDue [?℄ is a typed funtional language born from an attempt to solve some of thelimitations of XDue [?℄. It extends XDue on three areas:Type system In addition to regular expression types and type-based patterns, CDue addsreursive types and other XML spei� onstruts: produts, reords (open and losed),general Boolean onnetives (intersetion, union and di�erene) and arrow types. Thisextension takes are of not breaking down the nie subtype relation of XDue.Language design The following language onstrutions are inluded in CDue: overloadedfuntions (useful for ode sharing and reuse), iterators on sequenes and trees and otherextensions of the pattern algebra. Besides, XML tags are �rst-lass itizens and stringsare simple sequene of haraters. The language support higher-order programming, soall funtions are �rst-lass itizens.Run-time system A new approah for avoiding unneessary omputation at runtime isadded in CDue, allowing the programmer to use a more delarative style when writingpatterns, without degrading performane. The underlying theory is based on a new kindof tree automata.CDue provides also a tool for translating DTDs into CDue's types.Cω Cω [?℄ is a programming language developed at Mirosoft Researh, ombining featuresfrom two other researh languages: (a) Polyphoni C#: a ontrol �ow extension with asyn-hronous wide-area onurreny, and (b) Xen [?℄: a data type extension for proessing XMLand table manipulation. Besides other interesting features, Cω allows the onstrution ofobjets using XML syntax.The Cω type systems ombines the following three data models: relational, objet andXML data-aess, and it is more oriented to XML onstrained using W3C XML Shema. Thelanguage overs the following XML and XML Shema features: doument order, distintionbetween elements and attributes, multipliity of �elds with equal name but di�erent valuesand ontent models for speifying hoie (union) types for �elds.One of the nie features of the Cω type system are streams. It is possible to invokemethods on streams, whih are applied to all the elements of the stream; XPath-style queriesover objets graphs are easily written in this way. It also inludes the onept of apply-to-allexpressions onstrut. Choie (union) types allow the programmer to speify one of di�erentpossible values for a ertain �eld. Moreover, null is a valid value for a type, whih have beenproved useful in XML and relational databases. Doument order and multipliity of equalnames for hild elements, are solved through the use of anonymous struts. In Cω DTDs (andXML Shemas) are represented by ontent lasses.3

Other languages The following languages try to extend Java with XML proessing: XJ [?℄,XACT [?℄, XOBE [?℄, BPELJ [?℄.XL [?℄ is a language whose only type system is the XML type system, and not a languagewhose syntax is desribed using XML voabulary. It is speially designed for the implemen-tation of Web servies. XL is portable and fully ompliant with all W3C standards suh asXQuery, XML Protool, and XML Shema.PiDue1 is CDue-like language based on the π-alulus. ECMASript for XML (E4X) isa set of programming language extensions adding native XML support to ECMASript. E4Xis standardized by Ema International in ECMA-357 standard.2See [?℄ for a good survey on stati type-heking for XML transformation languages.1.3 Our AgendaIn order to integrate XML douments in Creol, we intend to follow the following agenda:1. Parsing and well-formedness heking. We will enhane the language as to be able totake a given XML doument as input and generate some internal data struture from it.2. Internal representation of XML in Creol. We aim at extending Creol for supportingXML douments with the least possible hanges to the existing framework. One of thekey features we would like to preserve is Creol stati type-safety. In order to make alightweight integration of XML into Creol and keep stati type safety we will restrittype heking of XML in this implementation to only well-formedness of XML values,i.e. that some value of type XMLDo (the Creol type for XML douments) heks out asan XMLDo.3. Simple validity-heking of XML data-strutures. We will validate XML data-struturesagainst some shema. Shema is here taken in a broad sense, meaning a formal desrip-tion of the type of an XML doument, without regards to any spei� shema languageas e.g. DTD, XML-Shema or RELAX NG (f. Se 3). Validity heking will be doneby funtions �on top� of the type system and not within the type system itself.4. More omplex validity-heking of XML data-strutures. We will perform more om-plex validity heking after enhaning the Creol language with regular expression types,following the work of Hosoya et.al. [?℄.5. Queries. We will also demonstrate how to perform queries and data extration fromXML doument instanes.36. Transformations. We will perform more omplex operations suh as onstrution andtransformations on XML douments.In this paper, however, we will onentrate on items 2 and 3 above. In the next setionwe show how XML douments are integrated in Creol. In Setion 3 we show how shemasare represented in Creol after a short disussion on existing shema languages. Setion 4is onerned with the validation of XML douments. In Setion 5 we onlude and presentfurther work.1http://www.s.unibo.it/~laneve/PiDue/2See http://www.ema-international.org/publiations/standards/Ema-357.htm.3Cf. e.g. http://www.w3.org/TR/2005/WD-xquery-use-ases-20050915/ for test use ases.4

http://www.cs.unibo.it/~laneve/PiDuce/
http://www.ecma-international.org/publications/standards/Ecma-357.htm
http://www.w3.org/TR/2005/WD-xquery-use-cases-20050915/

2 A model for XML in CreolDi�erent XML douments may vary in physial representation due to syntati hanges per-mitted by the XML standard. W3C has issued a reommendation whih desribes how anyXML doument an be normalized into a anonial form [?℄. The data model de�ned in theXPath 1.0 Reommendation [?℄ is the basis for anonial XML and we will use this as thepoint of departure for the internal representation of XML in Creol.2.1 The XPath Data modelXPath models an XML doument as an ordered tree ontaining nodes of seven di�erent types:
• root: The root node is the root of the tree and will orrespond to an XML doumentinstane. It ontains a list of proessing instrutions, a list of omment nodes, andexatly one element whih is the root element of the doument.
• element: The element node has a name (orresponding to the xml tag for the element)and may have as its hildren element nodes, omment nodes, proessing instrution (PI)nodes and text nodes. It is also assoiated to a set of attribute nodes and a set ofnamespae nodes.
• text: A text node ontains a string, representing harater data in the XML doument.
• attribute: An attribute node ontains a name and a value.
• namespae: A namespae node ontains a string value for the namespae pre�x and avalue for the namespae URI.
• proessing instrutions: A PI node has a name identifying the target appliation and astring whih is to be passed to the appliation.
• omment: A omment node ontains a string.To simplify the initial XML implementation for Creol we will leave out the last threekinds of nodes from our model. Aording to [?℄, omments �are not part of the doument'sharater data; an XML proessor MAY, but need not, make it possible for an appliation toretrieve the text of omments.�, we hoose not to retain omments in the Creol representationof XML. Proessing instrutions are not relevant for our purpose of demonstrating lightweightintegration of XML in Creol and an also be left out. As will be explained later we will adoptthe DTD-language for spei�ation of shemas; sine the DTD does not support namespaes itis natural not to represent namespae nodes in the model. These design hoies also simpli�esthe de�nition of element and root nodes.2.2 The Creol representation of XMLGiven the two-tiered type-system of Creol where objets are typed by interfaes and loalomputations on terms our in a funtional language, we introdue XML into Creol byadding type onstrutors for a new XMLDo type, as a subtype of the universal type Data, aswell as funtions on this type. 5

Creol has an operational semantis de�ned in rewriting logi, whih is exeutable withMaude [?℄ and provides an interpreter and analysis platform for system models. So to aom-modate XML we extend the operational semantis with some Maude sorts (type names) andonstrutors (Creol de�nitions would be very similar):sorts XMLName ElemNd TextNd AttNd ContentNd XMLDo .subsort ElemNd TextNd < ContentNd .introduing sorts for XML names, element, attribute, text and ontent nodes, letting ElemNodeand TextNd be subsorts of ContentNode.To simplify the writing of XML values in a program we use mix-�x notation (indiat-ing argument positions by underline) to provide a ompat syntax by adding the followingonstrutors for attributes, textnodes and elements (with and without attributes).op (_=_) : XMLName String -> AttNd [tor℄ .op _(_)[_℄ : XMLName AttNdList ContentNdList -> ElemNd [tor℄ .op _[_℄ : XMLName ContentNdList -> ElemNd [tor℄ .op tx : String -> TextNd [tor℄ .where the lause [tor℄ after an operator (op) indiates that it is a onstrutor.Note that there is no spei� onstrutor for root nodes. Sine we leave out proessinginstrutions and omments, the root node is just the element node ourring at the root of anXML doument tree. Thus, the XML doument onstrutor is:op xmlDo : ElemNd XMLShema -> XMLDo [tor℄ .We de�ne the operatorop noShema : -> XMLShema [tor℄ .for XML douments with no XMLShema. Other XMLShema onstrutors are de�ned furtherbelow.Example The following simple XML fragment,<email><head><sender>Arild</sender><reipient mailaddr="vera�foo.om">Vera</reipient><subjet>Test</subjet></head><body><message>Hello there, you wrote in an earlier message:<quote>We'll meet again</quote> See you later</message></body></email>has the Creol/Maude syntax:"email"[("head"[("sender"[tx("Arild")℄)("reipient"("mailaddr"="vera�foo.om")[tx("Vera")℄)("subjet"[tx("Test")℄)℄)("body"[("message"[tx("Hello there, you wrote in an earlier message:")("quote"[tx("We'll meet again")℄) tx("See you later")℄)℄)℄ .As onventional in Maude, the list onstrutor (onatenation) is here denoted by white spae(blank). 6

3 Shemas and type heking3.1 Shemas as types vs. shemas as valuesStati type heking of XML douments in a programming language an be ahieved byintroduing a type for XML shemas in the language. Xdue and CDue mentioned earlierare examples of projets going in this diretion.For the urrent integration of XML in Creol we will take a less involved approah byintroduing a data type for shemas, together with funtions to validate a doument against ashema. This takes plae within the existing type system and does not onstitute an additionto the type system itself.3.2 Expressive power of shema languagesThere exists several generally adopted XML shema languages with di�erent expressive power.Murata, Lee, and Mani [?℄ suggest a taxonomy of shema languages based on the formaltheory of regular tree grammars. Some of the most ommon shema languages an be rankedin order of inreasing expressivity thus: The DTD-language, The W3Cs XML Shema, TheRELAX NG spei�ation. Validation of the �rst two an be done by simple adaptions of wordautomata, while the last requires a more ompliated tree automaton. However the DTDlanguage is su�iently expressive for our purpose whih is to demonstrate how XML an beintegrated in the objet oriented modeling framework of Creol. Therefore in our model forXML shema values in Creol we adapt the restritions inherent in the DTD language to ahievesimple validation, (i.e. only deterministi regular expressions is allowed in the de�nition of anelement as explained below).43.3 The shema type for CreolA DTD is a list of markup delarations where markup delarations are either element typedelarations, attribute-list delarations, entity delarations, or notation delarations.For our purpose we only onsider element type delarations and attribute-list delarations.Entity delarations may be onsidered as a kind of maro notation for strings that may appearin a DTD or an XML doument, sine our fous is on internal proessing we will assume thatthese already are expanded by the parser and will abstrat away from them in our model.Notation delarations are similarly a kind of shorthand for notations and are also left out.Aordingly the XMLShema onstrutor is:op xmlShema : XMLName ElemDelList AttDelList -> XMLShema .Element type delarations onsist of a name referring to an element and a spei�ation ofthe legal ontent. There are four kinds of spei�ations: either one of the designated keywords�EMPTY� or �ANY�, or the spei�ation of a ontent model. A ontent model is a ontext freegrammar governing the allowed types of the hild elements and the order in whih they areallowed to appear. The fourth kind of ontent spei�ation is the Mixed-ontent Delarationwhih is of the form:
(#PCDATA | e1 | e2 | . . . | en) ∗Where eah ei is an element name and n may be 0 in whih ase the '*' is optional.4Roughly orresponding to �Loal Tree Grammars� in [?℄.7

Example A DTD for the XML fragment given above ould be:<!DOCTYPE email [<!ELEMENT email (head, body, foot*) ><!ELEMENT head (sender, reipient, subjet?)><!ELEMENT body (message)*><!ELEMENT foot (#PCDATA)><!ELEMENT sender (#PCDATA)><!ELEMENT reipient (#PCDATA)><!ELEMENT subjet (#PCDATA)><!ELEMENT message (#PCDATA|quote)*><!ELEMENT quote (#PCDATA)>℄>The �rst three element delarations speify ontent models and the rest are instanes ofmixed-ontent delarations. We model the ontent models as regular expressions. Let Σbe an alphabet over element names, inluding the reserved name PCDATA. By inludingPCDATA in Σ we an model a mixed-ontent delaration as a speial kind of a ontent modelspei�ation. The set of regular expressions over Σ∗ are obtained in the standard way: Theempty string ǫ and eah member of Σ are regular expressions. If α is a regular expression, thenso are (α), α?, α∗ and α+. If α and β are regular expressions, then so is α β, and α |β. Theoperators ?, ∗, and + has higher preedene than onatenation. Conatenation has higherpreedene than union (|). The regular expression ombinators have the expeted semantis.We model element delarations as follows:subsort XMLName < RegExp .op elDel : XMLName ContentModel -> ElemDel [tor℄ .ops empty any : -> ContentModel [tor℄ .op elCt : RegExp -> ContentModel [tor℄ .op PCDATA : -> RegExp .ops _? _* _+ : RegExp -> RegExp [tor pre 40 ℄ .op (_�_) : RegExp RegExp -> RegExp [tor asso pre 42 ℄5op _|_ : RegExp RegExp -> RegExp [tor pre 44 ℄The XML spei�ation adds the requirement that the ontent models must be deterministi[?, Appendix E℄, i.e. a ontent model must not allow an element to math more than oneourrene of an element name in the ontent model. This ensures that when mathing anelement name σ with a shema we do not have to look ahead beyond the σ in the input string todeide whih regular expression in the ontent model mathes σ. The requirement is inludedin the XML spei�ation to ensure ompatibility with SGML. For a detailed disussion seee.g. [?℄.Example The maude syntax for the DTD given above is:xmlShema("email",(elemDel("email",elCt("head"�"body"�("foot"*)))elemDel("head",elCt("sender"�"reipient"�("subjet"?)))elemDel("body" , elCt("message"*))elemDel("foot", elCt(PCDATA)) elemDel("sender" ,elCt(PCDATA))elemDel("reipient" ,elCt(PCDATA)) elemDel("subjet" ,elCt(PCDATA))elemDel("message" ,elCt((PCDATA|"quote")*))elemDel("quote" ,elCt(PCDATA)),noAttDel6) .4 Validating XML in CreolWell-formedness of any value of type XMLDo is ensured by Maude type heking. The XMLspei�ation de�nes an XML doument to be valid �if it has an assoiated doument typedelaration and if the doument omplies with the onstraints expressed in it� [?℄.5We use '�' as the onatenation operator to avoid problems with overloading of ',' or whites-pae whih might otherwise have been used.6Attribute delarations are not yet supported. 8

op res : Bool String -> ValResult .eq ollate(res(b,s) , res(b',s')) = res((b and b') , (s + s')) .eq validate(xmlDo(elemNd(nm,atts,ts) , noShema)) = res(false,"No Shema") .eq validate(xmlDo(elemNd(nm,atts,ts) , xmlShema(nm',elDs,attDs))) =if (nm =/= nm') thenres(false,("Doument root-element: " + nm +", must math shema type: " + nm' + "\n"))elseval(elemNd(nm,atts,ts) , elDs)fi .eq val(emp,elDs) = res(true,"") .eq val((t ts), elDs) = ollate(val(t,elDs),val(ts,elDs)) [owise℄ .eq val(elemNd(nm,atts,ts),elDs) = if m == undefined thenres(false,("Element-type :" + nm + " must be delared.\n"))elsehek(elemNd(nm,atts,ts),m,elDs) fi if m := getCM(nm,elDs) .eq hek(elemNd(nm,atts,ts),empty,elDs) =if (ts == emp) then res(true,"Empty elem: " + nm + "n")else res(false,"Elem: " + nm + " delared as EMPTY, but has ontent.\n") fi .eq hek(elemNd(nm,atts,ts),any,elDs) =ollate(res(true,"Elem: " + nm + " defined as ANY.\n"),val(ts,elDs)) .eq hek(elemNd(nm,atts,ts), elCt(regexp) ,elDs) =if math(getTokens(ts), regexp) thenollate (res(true, nm + ": (" + tToS(ts) +") mathes [" + reToS(regexp) + "℄n") , val(ts,elDs))elseollate (res(false, nm + ": (" + tToS(ts) +") does NOT math [" + reToS(regexp) + "℄n"), val(ts,elDs)) fi .Figure 1: Maude ode for validation of XML douments.The XML doument onstrutor assoiates the root element of a doument with a shema,(whih may also be the speial value noShema). Hene, an XML doument is validated by�rst heking for existene of a shema and by heking that the root node element namemathes that shema name. Seondly we hek that eah element node in the tree is validwith respet to the element delarations in the shema.Validation on a doument is performed by the funtionop validate : XMLDo -> ValResult .The validate funtion heks whether there is a shema assoiated with the doument andwhether the shema name mathes the doument root node, if it does, the reursive funtionval is alled, otherwise validation stops. A ValResult is a pair of a boolean value and astring, where the boolean value indiates whether the doument is valid and the string is usedto return an error message or a reord of the proessing of the doument. The helper funtionollate builds the �nal validation result for a doument from validation of its parts. Therelevant parts of the maude ode are given in �g. 1. The funtion:op val : ContentNdList ElemDelList -> ValResult .validates a ontent node list against the element delaration list de�ned by the shema. For alist of nodes, val is alled reursively on eah node in the list. For a single node, the elementtype delaration orresponding to the node is retrieved (by name) from the list of elementdelarations. If no delaration exists for a ontent node, the doument is invalid, otherwise9

the node is heked against the retrieved delaration by a all to the funtion hek7:op hek : ContentNd ContentModel ElemDelList -> ValResult .In the all to hek, the omplete list of element delarations is passed on as a parametersine any hild nodes to the node urrently being proessed must be validated.For an element to be valid, a delaration for the element must exist and the followingshould hold: If the ontent spei�ation is �EMPTY� the element should have no ontent.If the ontent spei�ation is �ANY�, the element an onsist of any sequene of (delared)elements intermixed with harater data. If the ontent spei�ation is a ontent model, thesequene of hild elements must belong to the language generated by the regular expression inthe ontent model. If the ontent spei�ation is mixed the ontent must onsist of haraterdata and hild elements whose types math names in the ontent model [?, Se. 3℄.The funtion hek has three ases orresponding to the four validity onditions for ele-ments, one ase for eah of the spei�ations EMPTY and ANY and one ase for a ontentmodel or a mixed spei�ation. The �rst two ases are easy to hek, in the �rst ase we mustmake sure that the element delared as empty is in fat empty, in the seond ase no furtherheking of the element is neessary but we still have to all val for eah hild node of theurrent node.For the third ase the hek funtion will use the funtion math to determine whether thelist of atual hildren elements mathes the regular expression spei�ed in the orrespondingelement delaration, in addition val is alled for eah hild node.The funtion getTokens, builds a list of tokens from the element ontent, i.e. a list ofelement names (inluding the token 'PCDATA). As tokens we use the Maude built-in sort Qid.The token list and the regular expression from the element type delaration are proessed bythe math funtion:op math : TokenList RegExp -> Bool .Mathing of a list of element names from Σ against a regular expression is implemented byonstruting a deterministi �nite automaton from the regular expression and test whether theautomaton aepts the string orresponding to the list of names. See e.g. [?℄ for a desriptionof how this is done in Maude. tToS and reToS are just string onversion funtions for ontentnodes and regular expressions for logging purposes.Example Evaluation of the sample doument with the DTD spei�ed above gives the fol-lowing result:res(true, "email: (head ,body) mathes [head � body � (foot*)℄head: (sender ,reipient ,subjet)mathes [sender � reipient � (subjet?)℄sender: (PCDATA) mathes [PCDATA℄reipient: (PCDATA) mathes [PCDATA℄subjet: (PCDATA) mathes [PCDATA℄body: (message) mathes [(message*)℄message: (PCDATA , quote ,PCDATA)mathes [(PCDATA | quote*)℄quote: (PCDATA) mathes [PCDATA℄") .7Note that aording to [?℄ an element type must not be delared more than one so uniqueness of elementdelarations may be assumed.
10

5 ConlusionIntegrating XML douments in objet-oriented languages is not easy in general as witnessedby the extensive researh onduted in this area, and niely presented in the survey [?℄. Wehave shown here how to integrate XML douments into Creol, an objet-oriented languagewith formal semantis in rewriting logi. We have also presented an algorithm for validatingXML douments against XML shemas, to show that the former are instanes of the latter.This paper is a �rst step towards a full integration of XML into Creol, and we intend topursue our work as to omplete our agenda desribed in Setion 1.3. In partiular, we �nd itextremely interesting to be able to manipulate and reason about XML douments, to inluderegular expression types, and to adapt the semanti sub-typing algorithm from CDue andXDue disussed in the introdution.Referenes

11

	Introduction
	Creol
	Related Work
	Our Agenda

	A model for XML in Creol
	The XPath Data model
	The Creol representation of XML

	Schemas and type checking
	Schemas as types vs. schemas as values
	Expressive power of schema languages
	The schema type for Creol

	Validating XML in Creol
	Conclusion

