
UNIVERSITY OF OSLODepartment of Informati
s
Components, Obje
ts,and Contra
tsResear
h Report No.363Olaf OweGerardo S
hneiderMartin Ste�en
Isbn 82-7368-321-4Issn 0806-3036
August 2007



Components, Obje
ts, and Contra
ts∗Olaf Owe, Gerardo S
hneider, Martin Ste�enDept. of Informati
s, Univ. of OsloP.O. Box 1080 Blindern, N-0316 Oslo, NorwayE-mail: {olaf,gerardo,mste�en}�i�.uio.noAugust 2007Abstra
tBeing a 
omposite part of a larger system, a 
ru
ial feature of a
omponent is its interfa
e, as it des
ribes the 
omponent's intera
tionwith the rest of the system in an abstra
t manner. It is now 
ommonlya

epted that simple, fun
tional interfa
es are not expressive enoughfor 
omponents, and the trend is towards behavioral interfa
es.We propose to go a step further and enhan
e 
omponents withdeonti
 
ontra
ts, i.e., agreements between two or more 
omponents onwhat they are obliged, permitted, and forbidden to do when intera
ting.This way, 
ontra
ts are modeled after legal 
ontra
ts from 
onventionalbusiness or judi
ial arenas. Indeed, our work aims at a framework fore-
ontra
ts, i.e., �ele
troni
� versions of legal do
uments des
ribing theparties' respe
tive duties.We take the obje
t-oriented, 
on
urrent programming languageCreol as starting point and extend it with a notion of 
omponents.We then dis
uss a framework where 
omponents are a

ompanied by
ontra
ts and we sket
h some ideas on how analysis of 
ompatibilityand 
ompositionality 
ould be done in su
h a setting.1 Introdu
tionEven without general agreement about what 
on
retely 
onstitutes a 
om-ponent, one thing is for sure: 
omponents are intended for 
omposition.
∗Partially supported by the Nordunet3 proje
t Contra
t-Oriented Software Develop-ment for Internet Servi
es, and the EU-proje
t IST-33826 Credo: Modeling and analysisof evolutionary stru
tures for distributed servi
es.1



When
e the 
entral role of interfa
es as an abstra
tion me
hanism for hidinginternal details. The interfa
e des
ription is the basis for 
omposition bothfrom a theoreti
al point of view � to semanti
ally understand 
ompositionand to formally reason about 
omponents � as well as a pra
ti
al 
on
ern� only when agreeing on well-de�ned interfa
es, there is hope to separatelydevelop and deploy software that works together.But then again, within this general pi
ture, there is a large design spa
ewhat exa
tly 
onstitutes a good interfa
e abstra
tion, and the 
hoi
e dependson the underlying language, the 
ommuni
ation model, and the propertiesof interest. At any rate, it is now 
ommonly a

epted that simple, fun
-tional interfa
es, listing the method signatures, are not expressive enough for
omponents, and the trend is to de�ne 
omponents together with behavioralinterfa
es.We propose to go a step further and enhan
e 
omponents with 
ontra
ts,i.e., agreements between two or more 
omponents on what they are obliged,permitted and forbidden to do when intera
ting. This way, 
ontra
ts aremodeled after legal 
ontra
ts from 
onventional business or judi
ial arenas.Indeed, our work aims at a framework for e-
ontra
ts, i.e., �ele
troni
� ver-sions of legal do
uments des
ribing the parties' respe
tive duties. They gobeyond standard behavioral interfa
e des
riptions, whi
h typi
ally des
ribesets of intera
tion tra
es. Contra
ts, in the intended appli
ation domain,involve a deonti
 perspe
tive, speaking about obligations, permissions andobligations, also 
ontaining 
lauses on what is to happen in 
ase the 
ontra
tis not respe
ted.We take the obje
t-oriented, 
on
urrent programming language Creol asstarting point and extend it with a notion of 
omponents. We then dis
ussa framework where 
omponents are a

ompanied by 
ontra
ts and we sket
hsome ideas on how analysis of 
ompatibility and 
ompositionality 
ould bedone in su
h a setting.Outline of the paperThe paper is organized as follows. In the next se
tion we further elaborateon the motivation of our work. In Se
tion 3 we des
ribe the obje
t-orientedprogramming (and modeling) language Creol. In Se
tion 4 we expand on thede�nition and the use of 
ontra
ts in other domains not ne
essarily relatedto 
omponents. Se
tion 5 is the main part of this paper and 
onsists on twoparts. We �rst show how Creol may be extended to be used as a programminglanguage for 
omponents, whereas in the se
ond part we des
ribe a frameworkthat 
ombines 
omponents, obje
ts and 
ontra
ts, and how 
ontra
ts may beused to fa
ilitate intera
tion of 
omponents. We 
on
lude in the last se
tion.2



2 MotivationThere is no 
lear-
ut de�nition of what exa
tly is a 
omponent, and whatdistinguishes the notion from a software module or just an obje
t. However,the pra
ti
e of 
omponent frameworks 
learly distinguishes them. The 
on-
eptual 
onfusion is perhaps due to some similarities, and also sin
e bothobje
t-orientation and 
omponent-based te
hnologies, ea
h at their time,where both hailed with similar promises as the next silver bullet to solvethe software 
risis. For instan
e, both obje
ts and 
omponents are usuallytyped by interfa
es, and the servi
es they o�er are only a

essible throughsu
h interfa
es. Hen
e, both 
on
epts provide abstra
tion in supporting en-
apsulation and hiding.We highlight here some essential di�eren
es between obje
ts and 
ompo-nents. (1) Components are supposed to be self-
ontained units, and inde-pendently deployable. This is not the 
ase in general with obje
ts, as theyare instan
es of a 
lass and usually are not exe
utable by themselves. (2) A
omponent may (and in general will, if developed using the obje
t-orientedparadigm) 
ontain many obje
ts whi
h are en
apsulated and thus are nota

essible from other 
omponents. If an obje
t 
reates another obje
t insidea 
omponent, this new obje
t is not visible from the outside unless expli
itlyallowed by the interfa
e. Obje
ts in most languages do not have this feature.(3) Components represent stati
 entities representing the main elements ofthe run-time stru
ture, in 
ontrast to obje
ts, whi
h are dynami
 instantia-tions of 
lasses. A purely 
lass-oriented program does not identify the mainelements of a system.1In some sense the above may justify the de�nition of 
omponents as beingjust a 
olle
tion of �
ir
les� (obje
ts) en
apsulated inside a �box�, whi
h inturn 
ould also be a kind of obje
t typed by an interfa
e. It is now a

eptedthat su
h interfa
es should not only take into a

ount fun
tional aspe
ts butshould take into a

ount the history of intera
tions, or in other words bebehavioral.In this paper we will dis
uss the relation between obje
ts and 
ompo-nents, by sket
hing how 
omponents 
ould be de�ned in the obje
t-orientedprogramming and modeling language Creol [8℄. We will also present someideas on the use of 
ontra
ts as 
omplement to behavioral interfa
es to helpthe development and deployment of 
omponents, to guarantee among otherthings their 
orre
tness and 
ompositionality.1However, early OO languages, in
luding Simula and Beta, had a notion of blo
kpre�xing giving rise to stati
 units whi
h resemble 
omponents in this sense.3



2.1 The problemWe are 
on
erned with �nding a good programming language and appropri-ate abstra
tions for developing 
omponents in an integrated manner withinthe obje
t-oriented paradigm. We are also interested in enhan
ing 
ompo-nents with more sophisti
ated stru
tures than interfa
es, targeted towardse-
ontra
ts. In that 
ontext, we address the following questions.Design: How to develop 
omponents in a programming environment fa
ili-tating rapid prototyping and testing?Composition and 
ompatibility: How do we know that two or more 
om-ponents will not 
on�i
t with ea
h other when put together?Substitutability: How to guarantee that repla
ing a 
omponent will notintrodu
e new unexpe
ted behaviors?Deonti
 spe
i�
ation: How to spe
ify what a 
omponent is supposed todo, what it may do, and what it should not do?Contra
t violation: How to rea
t in 
ase a 
omponent does what it is notsupposed to do?Relevan
e to 
omponent-based software developmentThe issues mentioned above are 
ru
ial in a 
omponent-based software devel-opment and deployment. In fa
t, most of the questions in the previous se
-tion, apart from perhaps the deonti
 aspe
t, are not new to the 
omponent-based software engineering 
ommunity who is trying to answer them in oneor another way.Towards a solutionWe propose here to use 
ontra
ts as a means to spe
ify and to (partially)guarantee the safe 
oexisten
e of 
omponents. A 
ontra
t in our setting ismodeled after real 
ontra
ts, as one might �nd in law or judi
ial arenas. Inthis sense, it is more than a behavioral interfa
e2 as it 
ontain 
lauses aboutthe obligations, permissions (or rights), and prohibitions of the signatories.The basi
 idea is that 
omponents are deployed not only with its usualinterfa
e spe
i�
ation, but together with a deonti
 
ontra
t. To assure non-
on�i
ting intera
tion between two 
omponents, their respe
tive 
ontra
tsmust agree in well-de�ned ways as explained in more detail in Se
tion 5.2See for instan
e the series of OOPSLA workshops on behavioral interfa
es for furtherinformation. 4



3 CreolCreol is an obje
t-oriented, 
on
urrent programming and modeling languagedeveloped at the University of Oslo. For a deeper 
overage of the language,its design and semanti
s, we refer to the Creol web pages [8℄ and to [19, 21℄.The 
hoi
e of Creol as underlying language is motivated as follows:Con
urren
y: Creol is a language for open, distributed systems, supporting
on
urren
y and asyn
hronous method 
alls. The 
on
urren
y modeltherefore is that of loosely 
oupled a
tive obje
ts with asyn
hronous
ommuni
ation. This makes it an attra
tive basis for 
omponent-basedsystems. It has been argued also elsewhere, that an asyn
hronous 
om-muni
ation model of entities, loosely 
oupled by message passing, iswell-suited in su
h settings.Obje
t-orientation: Creol is an obje
t-oriented, 
lass-based language, withlate binding and multiple inheritan
e, as well as user de�ned datatypes and fun
tions. It is strongly typed, supporting subtypes andsub-interfa
esInterfa
es: Creol's notion of 
o-interfa
e allows spe
i�
ation of requiredand provided interfa
es. The language at the 
urrent state alreadysupports behavioral interfa
es, based on assume-guarantee spe
i�
a-tions expressed in terms of the 
ommuni
ation history.Formal foundations: A formal operational semanti
s, de�ned in rewritinglogi
s, allows us to formalize the extension to 
omponents by reuse ofthe operational semanti
s. The 
ore of the language has a small ker-nel with an operational semanti
s 
onsisting of only 11 rewrite rules.This makes it easy to extend and modify the language and the seman-ti
s. Based on the formal semanti
s, the language 
omes with a simplereasoning system and 
omposition rules.Tool support: Creol has an exe
utable interpreter de�ned in the Maudelanguage and rewriting tool. This provides a useful test-bed for theimplementation and testing of our 
omponent-based extension. TheMaude tool may be used for simulation, model 
he
king, and analysis.4 Contra
tsThe term �
ontra
t� is be
oming a buzzword, and di�erent resear
h 
om-munities understand it in various ways. We brie�y re
all some of its more
ommon de�nitions or informal meanings.5



1. Conventional 
ontra
ts are legally binding do
uments, establishing therights and obligations of di�erent signatories, as in traditional judi
ialand 
ommer
ial a
tivities.2. Ele
troni
 
ontra
ts are ma
hine-oriented and may be written dire
tlyin a formal spe
i�
ation language, or translated from a 
onventional
ontra
t. The main feature is the in
lusion of 
ertain normative no-tions su
h as obligations, permissions, and prohibitions, be it dire
tlyor by representing them indire
tly. In this 
ontext, the signatories of a
ontra
t may be obje
ts, agents, web servi
es, et
.3. Some resear
hers informally understand 
ontra
ts as behavioral inter-fa
es, whi
h spe
ify the history of intera
tions between di�erent agents(parti
ipants, obje
ts, prin
ipals, entities, et
). The rights and obliga-tions are thus determined by legal (sets of) tra
es.4. The term �
ontra
t� is sometimes used for spe
ifying the intera
tionbetween 
ommuni
ating entities (agents, obje
ts, et
). It is 
ommonto talk then about a 
ontra
tual proto
ol.5. Programming by 
ontra
t or design by 
ontra
t is an in�uential method-ology popularized �rst in the 
ontext of the obje
t-oriented languageEi�el [23℄. Contra
t here means a relation between pre- and post-
onditions of routines, method 
alls, et
.6. In the 
ontext of web servi
es, �
ontra
ts� may be understood as aservi
e-level agreement usually written in an XML-like language likeIBM's Web Servi
e Level Agreement (WSLA [36℄).We are mostly 
on
erned with the �rst two meanings, though, as we willsee later, to be able to reason and operate on 
ontra
ts it is natural to havethe 
ontra
ts written in a formal language, and thus the se
ond meaning ismore adequate. Obviously, the mentioned interpretations are not absolutelydisjoint. The point we like to stress here is the importan
e of the mentionednormative aspe
ts, whi
h is very typi
al for (ele
troni
) 
ontra
ts 
apturingthe spirit in whi
h legal 
ontra
ts are usually written. Of 
ourse, beside thosedeonti
 aspe
ts, ele
troni
 
onta
ts in our sense also in
lude behavioral aspe
t(making statements about the order of intera
tions at the interfa
e) or mayrelate the pre- and post-
onditions of methods, as in point 5. But what ismissing in usual interfa
e and behavioral spe
i�
ations are linguisti
 meansto make the 
onsequen
es expli
it; i.e. what happens (or should happen)when the normative requirements are violated.6



5 Components, Obje
ts, and Contra
tsIn this se
tion we �rst propose a way to extend the obje
t-oriented program-ming language Creol to deal with 
omponents. We then present a frameworkwhere 
omponents are a

ompanied by 
ontra
ts and we sket
h some ideason how analysis of 
ompatibility and 
ompositionality 
ould be done in su
ha framework.5.1 Creol as a Component-Based LanguageThe 
ore Creol language is 
entered around 
lasses and dynami
ally gener-ated obje
ts. A simple notion of 
omponent representing singleton entitiesen
apsulating a subsystem, is obtained by the 
onstru
t
omponent C implements list-of-interfa
esbodyendwhere the body 
ontain ordinary Creol de
larations and 
ode, in
luding anumber of attributes setting up the initial internal obje
t stru
ture. All in-ternal stru
ture is hidden, ex
ept from the 
ommuni
ation primitives statedin the interfa
es in the implements 
lause. In parti
ular, obje
ts generatedby the stru
ture inside a 
omponent are 
onsidered to be part of this internalstru
ture. A 
omponent may be thought of as an abstra
tion of a subsystemwhere the implements 
lause de�nes visible events in the intera
tion with theenvironment. Communi
ation to the 
omponent is done using the name ofthe 
omponent. Routing of in
oming 
alls may be done automati
ally, andin prin
iple non-deterministi
ally, or, if desired, by expli
it programming ofthe handling of the re-routing. The input and output events of a Creol 
om-ponent are method invo
ation and reply events. In order to obtain platformindependent units one would need to lift the intera
tion model to the levelof ports.5.2 Components and Contra
tsBefore des
ribing our proposed framework, we list some of the main featuresof 
ontra
ts in the 
ontext of 
omponent-based development and deploy-ment. Formal 
ontra
ts asso
iated with 
omponents 
omplement behavioralinterfa
es and give the following added value:1. If written in a formal language with formal semanti
s and proof system,a 
ontra
t 
an be proved to be 
on�i
t-free, both by model 
he
king7



and logi
al dedu
tion te
hniques. The automati
 
he
ks 
an also revealin
ompleteness in the spe
i�
ation, for instan
e it may indi
ate that noes
alation is agreed upon in 
ase one of the partners a
ts 
ontrary towhat it is spe
i�ed in the 
ontra
t.2. The use of 
ontra
ts may assist the developer during the developmentphase to 
he
k whether a 
omponent may enter into 
on�i
t with other
omponents, through a stati
 analysis of 
ontra
t 
ompatibility. Theappropriate notion of 
ompatibility in the presen
e of obligations, per-missions, and prohibitions needs to be developed.3. A well-founded theory of 
ontra
ts should provide the following kindsof analysis:
• Determine whether a 
ontra
t is 
overed by another one, i.e. awell-de�ned notion of sub-
ontra
t. This will help de
iding whethera 
omponent may be repla
ed by another one in a safe manner.
• Allow de
isions on whether paying a penalty in 
ase of one 
on-tra
t violation is bene�
ial or not in 
ase of sub-
ontra
ting. As-sume 
omponent A has a 
ontra
t with 
omponent B where it isstipulated that A must �pay� x (a

ording to a 
ertain notion ofquanti�ed penalty) to B in 
ase of 
ontra
t violation. Supposenow that su
h violation depends on a servi
e/produ
t providedby C to A and that there is a 
ontra
t between A and C statingthat C must pay y to A in 
ase of their own 
ontra
t violation.Then a theory of 
ontra
ts would allow A to determine whether ornot it is good to 
ompose with B. During the development phasethis kind of information may help de�ning sub-
ontra
ting whi
hare not against a 
omponent's own interest.
• A negotiation phase 
ould be added previous to the 
ompositionof two or more 
omponents. In this phase a 
ontra
t 
ould benegotiated before �nal �signature�, as in web servi
es 
ontext.4. A run-time 
ontra
t monitor will guarantee that the 
ontra
t is re-spe
ted, in
luding the penalties and es
alations in 
ase of 
ontra
t vio-lation. I.e., what should happen if one of the signatories a
ts �
ontraryto duty� or �
ontrary to permission� (abbreviated as CTD and CTP).We expe
t su
h a monitor 
ould be extra
ted from the 
omponents
ontra
ts in a (semi-)automati
 way, at least partially.The above list already gives an idea on how we intend to 
ombine 
on-tra
ts and 
omponents. Contra
ts may be used both at the development anddeployment phase. 8



Conformance

Static Analysis Testing/Simulation (Maude)

Compatibitliy/Conflict−free

Development (Creol)

PSfrag repla
ements Co1Co1

Co1Con

Con

C
1 C
1C
1

C
1C
n

C
n C
nFigure 1: Development phase.Development Phase During this phase our framework may be summa-rized as follows (see Fig. 1):Development: Ea
h 
omponents has asso
iated one or more 
ontra
ts inthe sense dis
ussed above, i.e., spe
ifying the obligations, permissions,and prohibitions in the 
omponent's intera
ting behavior. We proposeCreol as a development platform.Stati
 Analysis: Before deployment, the 
ontra
t is formally analyzed toguarantee that it is 
ontradi
tion free. This might be done by using aproof system or by model 
he
king. Stati
 
onforman
e between the
omponent and its 
ontra
t is also proved.Testing/Simulation: It is well known that stati
 analysis te
hniques 
an-not validate every aspe
t of a system. Testing and simulation are thusneeded to 
omplement the above. Sin
e Creol has a formal semanti
sin rewriting logi
 and implemented in Maude, we propose to use theMaude environment to simulate and test ea
h 
omponent separatelyand its intera
tion with other 
omponents being developed.Deployment Phase After the 
omponent is �released� there is still no
omplete guarantee of it being well suited for the yet unknown platform9



Pre−execution Analysis

Executing Platform

Monitor

PSfrag repla
ements
Co1
Co1Con

Con

Coi

Coi

C
1
C
1C
n

C
n

C
i

C
i

Figure 2: Deployment phase.where it will be exe
uted. We propose the following framework to in
rease
on�den
e on the 
omponent's 
ompatibility with its future environment.See Fig. 2.Pre-exe
ution Analysis: Before adding a new 
omponent to an existing
ontext where it will be 
omposed with other 
omponents, the 
or-responding 
ontra
ts are 
he
ked to guarantee 
ompatibility. If thereare disagreements, a phase of negotiation may start, or the 
omponentis simply reje
ted. This phase may be 
onsidered as a kind of stati
analysis on the side of the exe
ution platform.Exe
ution: If the 
omponent is a

epted after the analysis of the previousphase, then it is deployed. A 
ontra
t monitor is laun
hed to guaranteethat the 
omponents behave a

ording to the 
ontra
t. In 
ase of 
on-tra
t violation, the monitor is responsible of taking the 
orrespondinga
tion as stipulated in the 
ontra
t for su
h situation, or 
an
el the
ontra
t and disable the 
omponent.6 Related workObje
t-orientation Two main intera
tion models for distributed pro
essesare remote method invo
ation (RMI) and message passing. RMI is the ap-10



proa
h adopted by Java, and may lead to unne
essary waiting in a distributedsetting. Moreover, Java's thread 
on
ept for
es the programmer to 
hoosebetween redu
ed parallelism (using the syn
hronized keyword) and shared-variable interferen
e, and makes reasoning highly 
omplex [2℄. Me
hanismsbased on syn
hronous message passing also result in unne
essary delays [20℄.Asyn
hronous message passing, as popularized by the a
tor model [4, 17℄, isvery �exible but la
ks the stru
ture and dis
ipline of obje
t-oriented method
alls. Moreover, a
tors have no dire
t notion of inheritan
e or hierar
hy. In
ontrast, Creol obje
ts are 
on
urrent, ea
h with its own virtual pro
essorand internal pro
ess 
ontrol, and 
ommuni
ate using syn
hronous or asyn-
hronous, i.e., non-blo
king method 
alls. This provides the e�
ien
y ofmessage passing systems, while keeping the stru
turing bene�ts of methodsand obje
t-oriented programming. A distinguishing feature of the languagein this respe
t is also that in Creol, the 
lient obje
t, i.e., the 
aller, de-
ides, whether to invoke the servi
e asyn
hronously or whether to blo
k.Furthermore, 
onditional pro
essor release points provide a high-level syn-
hronization me
hanism that allow 
ombination of a
tive and rea
tive obje
tbehavior.Components With the size of software systems ever in
reasing, there is nola
k of proposals for 
omponent models, frameworks, and platforms, in
lud-ing various proposals within UML [7℄, Java 
omponent models, for instan
eEJB [33℄, and di�erent 
omponent models put forward by Mi
rosoft. Asstressed above, 
omposability and, as a 
onsequen
e, the notion of interfa
esare 
entral. Furthermore �nding the right level of abstra
tion is 
ru
ial, es-pe
ially when developing a formal approa
h to 
omponents (
f. [22℄ for a 
ol-le
tion of formal approa
hes to 
omponent-based software). A 
on
eptually
lear and elegant approa
h to get a grip on interfa
e behavior is to 
onsiderthe notion of being repla
eable as a de�nitorial starting point: Two 
ompo-nents, seen as synta
ti
ally 
omposable units of a language, are 
onsideredequal, when they 
an repla
e ea
h other with no observable di�eren
e. This
orresponds to an observable, 
ontextual perspe
tive on equality as de�nito-rial yardsti
k. As a bla
k-box notion, it is appropriate for a 
omponent-basedsetting and has been employed for many languages and 
al
uli, but obviouslythe de�nition leaves the a
tual interfa
e des
ription impli
it. The task re-mains then to develop an expli
it interfa
e semanti
s, and ideally, to provethat it 
oin
ides with the impli
it, 
ontextually given one. That 
orrespondsto the well-known problem of full abstra
tion.In [32℄, for instan
e, su
h a semanti
s is developed in a 
lass-based obje
t-oriented setting, without an expli
it notion of 
omponent. In other words, a11




omponent is seen just as a set of 
lasses, without linguisti
 support. The no-tion of observation is based on may- and must-testing [25℄. Furthermore, themode is based on a more tightly-
oupled model of 
ommuni
ation, namelythat of multi-threaded Java. Currently [3℄, the 
ommuni
ation model portedfrom multi-threading as in Java to a more loosely 
oupled model with asyn-
hronous messages passing and a
tive obje
ts, 
orresponding to Creol. Inparti
ular, futures [12℄ and promises. With similar goals, [28℄ presents a be-havioral interfa
e semanti
s for a 
lass-based obje
t-oriented 
al
ulus, how-ever without 
on
urren
y. The language, on the other hand, a
hieves a bettermodularization of the program. In parti
ular, it 
urbs the unstru
turednessof the heap by imposing ownership-stru
ture. Another intera
tion seman-ti
s of 
omponents, in this 
ase based on the a
tor model of 
on
urren
y, ispresented in [34℄. None of the mentioned approa
hes, however, is tailoredtowards deonti
 aspe
ts, as aimed for in our setting.Contra
ts Due to the great in�uen
e of the design by 
ontra
t introdu
edby Bertrand Meyer and popularized �rst in the 
ontext of the obje
t-orientedlanguage Ei�el [23℄, we brie�y dis
uss here some related works. Contra
t heremeans that every feature or method, 
reated by the software developer (thesupplier) starts with a pre
ondition that must be satis�ed by the softwareuser (the 
onsumer) of the routine. Moreover, ea
h feature ends with post-
onditions whi
h the supplier guarantees to be true, if the pre
onditions weresatis�ed. The approa
h has been used for other languages, as well, for in-stan
e in the 
ontext of C# language [13℄. Relatively well-known here isthe Spe
#-language [5℄ and more re
ently Sing#[14℄ as extension of Spe
#.Sing#, the 
ore language of the Singularity operating system [18℄, is a type-safe, obje
t-oriented language based on message-passing 
ommuni
ation.To use 
ontra
ts in the 
ontext of 
omponent-based development anddeployment as we have sket
hed in the previous se
tions we need to be ableto write a 
ontra
t in a formal language to be amenable to formal analysis,negotiation and monitoring.There are 
urrently several di�erent approa
hes aiming at de�ning a for-mal language for 
ontra
ts. Some works 
on
entrate on the de�nition of
ontra
t taxonomies [1, 6, 35℄, while others look for formalizations based onlogi
s (e.g. 
lassi
al [11℄, modal [10℄, deonti
 [16, 27℄ and defeasible logi
[15, 31℄). Other formalizations are based on models of 
omputation (e.g.FSMs [24℄ and Petri Nets [9℄). None of the above has rea
hed enough ma-turity as to be 
onsidered the solution to the problems of formal de�nitionof 
ontra
ts. Some provide a good framework for monitoring but la
k a for-mal semanti
s and a reasoning system; others have ni
e proof systems and12



model theory, but not me
hanisms for monitoring or negotiation; many of thedeonti
-based approa
hes put too mu
h emphasis on the logi
al propertiesand negle
t the pra
ti
al side, in
luding monitoring. None of them 
apturesall the intuitive properties of e-
ontra
ts we have des
ribed, while avoidingthe most important paradoxes.Sin
e we intend to pursue our resear
h by extending the 
ontra
t language
CL developed in [30℄, we des
ribe the main features of this language in moredetail. CL is a language tailored for ele
troni
 
ontra
ts (e-
ontra
ts) withformal semanti
s in µ

a-
al
ulus, whi
h is an extension of the µ-
al
ulus witha
tions. A ni
e feature is that it opens the way to use the logi
 proof system,as well as existing model 
he
kers. Sin
e the µ
a-
al
ulus is an a
tion-basedlogi
 the language follows an out-to-do approa
h, i.e. where obligations, per-missions and prohibitions are applied to a
tions and not to state-of-a�airs.The language avoids the main 
lassi
al paradoxes of deonti
 logi
, and it ispossible to express (
onditional) obligation, permission and prohibition over
on
urrent a
tions keeping their intuitive meaning. Obligation of disjun
tiveand 
onjun
tive a
tions is de�ned 
ompositionally and it allows the repre-sentation of CTDs and CTPs. On the other hand, there is no me
hanismfor monitoring nor negotiation in the 
urrent state of development. No rea-soning system is provided, though it seems quite straightforward to use theproof system as well as existing model 
he
kers of the underlying µ-
al
ulus.The approa
h is intended to be restri
ted to the 
ontext of e-
ontra
ts, soit is not pra
ti
al for more general 
ontra
ts, though we believe it 
an beused in the 
ontext of 
omponents. The underlying a
tion algebra has beenstudied in [29℄ and initial works to show how to model 
he
k 
ontra
ts hasbeen presented in [26℄.7 Final Dis
ussionIn this paper we sket
hed how to enhan
e 
omponents with 
ontra
ts as 
om-plementary to the latest ideas of using behavioral interfa
es. In our opinionthis approa
h would bene�t from the fa
t that su
h 
ontra
ts 
ould be an-alyzed logi
ally and model 
he
ked in order to �nd (lo
al) in
onsisten
ies,they 
ould be negotiated and monitored. We believe 
omponent-based de-velopment and engineering will in some sense be redu
ed to the same kindof problems one �nds in web servi
es and other appli
ation domains where
ontra
ts are being studied.The extension of Creol with primitives to de�ne 
omponents is not di�-
ult to do as most of the basi
 
onstru
ts are already de�ned in the language.For instan
e, 
ontra
ts might be in
luded as data-types in the language.13



The su

essful use of 
ontra
ts as we have proposed depends very mu
hon the existen
e of a suitable formal 
ontra
t language. As mentioned in therelated work se
tion we intend to further explore CL and its semanti
s to beused in this 
ontext. We expe
t to bene�t from its formal semanti
s in the
µ-
al
ulus to further develop proof systems and to explore the possibility ofuse existing model 
he
king tools.Though we believe the �rst phase of the deployment phase 
ould bea
hieved relatively easy. we are aware that obtaining a 
ontra
t monitor,when exe
uting a 
omponent, 
ould represent a big 
hallenge if we intend todo so in real-time. We do not have a solution yet. A very interesting resear
hdire
tion would be to study how to 
ombine meta-programming (e.g. in a re-�e
tive language) te
hniques with a formal (logi
al) framework for extra
tinga monitor from one or more 
ontra
ts.8 A
knowledgmentsMar
el Kyas has 
ontributed with valuable dis
ussions about 
omponents.Referen
es[1℄ J. Aagedal. Quality of Servi
e Support in Development of DistributedSystems. PhD thesis, Dept. of Informati
s, Fa
ulty of Mathemati
s andNatural S
ien
es, University of Oslo, 2001.[2℄ E. Ábrahám, F. S. de Boer, W.-P. de Roever, and M. Ste�en. Anassertion-based proof system for multithreaded Java. Theoreti
al Com-put. S
i., 331, 2005.[3℄ E. Ábrahám, I. Grabe, A. Grüner, and M. Ste�en. Abstra
t interfa
ebehavior of an obje
t-oriented language with futures and promises. 2007.In preparation.[4℄ G. A. Agha. ACTORS: A Model of Con
urrent Computation in Dis-tibuted Systems. MIT Press, 1986.[5℄ M. Barnett, K. R. M. Leino, and W. S
hulte. The Spe
# programmingsystem: An overview. In Pro
eedings of In CASSIS 2004, volume 3362of Le
ture Notes in Computer S
ien
e. Springer-Verlag, 2004.[6℄ A. Beugnard, J.-M. Jézéquel, and N. Plouzeau. Making 
omponents
ontra
t aware. IEEE Computer, 32(7):38�45, 1999.14



[7℄ J. Cheesman and J. Daniels. UML Components. Addison-Wesley, 2000.[8℄ The Creol language. http:www.ifi.uio.no/~
reol, 2007.[9℄ A. Daskalopulu. Model Che
king Contra
tual Proto
ols. In L. Breukerand Winkels, editors, JURIX 2000, Frontiers in Arti�
ial Intelligen
eand Appli
ations Series, pages 35�47. IOS Press, 2000.[10℄ A. Daskalopulu and T. S. E. Maibaum. Towards Ele
troni
 Contra
tPerforman
e. In Legal Information Systems Appli
ations, 12th Interna-tional Conferen
e and Workshop on Database and Expert Systems Ap-pli
ations, pages 771�777. IEEE C.S. Press, 2001.[11℄ H. Davul
u, M. Kifer, and I. V. Ramakrishnan. CTR-S: A Logi
for Spe
ifying Contra
ts in Semanti
 Web Servi
es. In Pro
eedings ofWWW2004, pages 144�153, May 2004.[12℄ F. S. de Boer, D. Clarke, and E. B. Johnsen. A 
omplete guide to thefuture. In R. de Ni
ola, editor, Pro
eedings of Programming Languagesand Systems, 16th European Symposium on Programming, ESOP 2007,Vienna, Austria., volume 4421 of Le
ture Notes in Computer S
ien
e.Springer-Verlag, 2007.[13℄ ECMA International Standardizing Information and Communi
ationSystems. C# Language Spe
i�
ation, 2nd edition, De
. 2002. StandardECMA-334.[14℄ M. Fähndri
h, M. Aiken, C. Hawblitzel, O. Hodson, G. C. Hunt, J. R.Larus, and S. Levi. Language support for fast and reliable message-based 
ommuni
ation in Singularity OS. In Pro
eedings of EuroSys 2006,Leuven, Belgium. ACM SIGOPS, 2006.[15℄ G. Governatori. Representing business 
ontra
ts in RuleML. Interna-tional Journal of Cooperative Information Systems, 14:181�216, 2005.[16℄ G. Governatori and A. Rotolo. Logi
 of violations: A Gentzen systemfor reasoning with 
ontrary-to-duty obligations. Australasian Journal ofLogi
, 4:193�215, 2006.[17℄ I. A. M. Gul A. Agha, S. F. Smith, and C. L. Tal
ott. A foundationfor a
tor 
omputation. Journal of Fun
tional Programming, 7(1), Jan.1997.
15

http:www.ifi.uio.no/~creol


[18℄ G. C. Hunt, J. R. Larus, M. Abadi, M. Aiken, P. Barham, M. Fähndri
h,C. Hawblitzel, O. Hodson, S. Levi, N. Murphy, B. Steensgaard, D. Tra-diti, T. Wobber, and B. Zill. An overview of the Singularity proje
t.Te
hni
al Report MSR-TR-2005-135, Mi
rosoft Resear
h, 2005.[19℄ E. B. Johnsen and O. Owe. An asyn
hronous 
ommuni
ation model fordistributed 
on
urrent obje
ts. In Pro
. 2nd Intl. Conf. on Software En-gineering and Formal Methods (SEFM'04), pages 188�197. IEEE Com-puter So
iety Press, Sept. 2004.[20℄ E. B. Johnsen and O. Owe. An asyn
hronous 
ommuni
ation model fordistributed 
on
urrent obje
ts. Software and Systems Modeling, 6(1):35�58, Mar. 2007.[21℄ E. B. Johnsen, O. Owe, and I. C. Yu. Creol: A type-safe obje
t-orientedmodel for distributed 
on
urrent systems. Theoreti
al Computer S
i-en
e, 365(1�2):23�66, Nov. 2006.[22℄ G. T. Leavens and M. Sitaraman, editors. Foundations of Component-Based Systems. Cambridge University Press, 2000.[23℄ B. Meyer. Ei�el: The Language. Prenti
e Hall, 1992.[24℄ C. Molina-Jimenez, S. Shrivastava, E. Solaiman, and J. Warne. Run-time Monitoring and Enfor
ement of Ele
troni
 Contra
ts. Ele
troni
Commer
e Resear
h and Appli
ations, 3(2):108�125, 2004.[25℄ R. D. Ni
ola and M. Hennessy. Testing equivalen
es for pro
esses. The-oreti
al Comput. S
i., 34:83�133, 1984.[26℄ G. Pa
e, C. Prisa
ariu, and G. S
hneider. Model 
he
king 
ontra
ts �a
ase study. In 5th International Symposium on Automated Te
hnologyfor Veri�
ation and Analysis (ATVA'07), volume 4762 of LNCS, pages82�97, Tokyo, Japan, O
tober 2007. Springer-Verlag.[27℄ A. Pas
hke, J. Dietri
h, and K. Kuhla. A Logi
 Based SLA ManagementFramework. In 4th Semanti
 Web Conferen
e (ISWC 2005), 2005.[28℄ A. Poetzs
h-He�ter and J. S
häfer. A representation-independent be-havioral semanti
s for obje
t-oriented 
omponents. In 9th IFIP Interna-tional Conferen
e on Formal Methods for Open Obje
t-Based DistributedSystems (FMOODS), volume 4468 of LNCS, pages 157�173. Springer,2007. 16



[29℄ C. Prisa
ariu and G. S
hneider. An algebrai
 stru
ture for the a
tion-based 
ontra
t language CL. 2007. Submitted.[30℄ C. Prisa
ariu and G. S
hneider. A formal language for ele
troni
 
on-tra
ts. In FMOODS'07, volume 4468 of LNCS, pages 174�189. Springer,2007.[31℄ I. Song and G. Governatori. Nested rules in defeasible logi
. In RuleML,volume 3791 of LNCS, pages 204�208, 2005.[32℄ M. Ste�en. Obje
t-Conne
tivity and Observability for Class-Based,Obje
t-Oriented Languages. Habilitation thesis, Te
hnis
he Faktultätder Christian-Albre
hts-Universität zu Kiel, 2006. submitted 4th. July,a

epted 7. February 2007.[33℄ Sun Mi
rosystems In
., USA. JSR-220 Enterprise JavaBeans Spe
i�
a-tion, version 3.0 edition, May 2006.[34℄ C. L. Tal
ott. Intera
tion semanti
s for 
omponents of dis-tributed systems. In 1st IFIP Workshop on Formal Methodsfor Open Obje
t-based Distributed Systems, FMOODS'96, 1996.http://www-formal.stanford.edu/MT/96fmoods.ps.Z.[35℄ V. Tosi
. On Comprehensive Contra
tual Des
riptions of Web Servi
es.In IEEE International Conferen
e on e-Te
hnology, e-Commer
e, ande-Servi
e, pages 444�449. IEEE, 2005.[36℄ WSLA: Web Servi
e Level Agreements. www.resear
h.ibm.
om/wsla/.

17

http://www-formal.stanford.edu/MT/96fmoods.ps.Z
www.research.ibm.com/wsla/

	Introduction
	Motivation
	The problem

	Creol
	Contracts
	Components, Objects, and Contracts
	Creol as a Component-Based Language
	Components and Contracts

	Related work
	Final Discussion
	Acknowledgments

