
UNIVERSITY OF OSLODepartment of Informatis
Components, Objets,and ContratsResearh Report No.363Olaf OweGerardo ShneiderMartin Ste�en
Isbn 82-7368-321-4Issn 0806-3036
August 2007



Components, Objets, and Contrats∗Olaf Owe, Gerardo Shneider, Martin Ste�enDept. of Informatis, Univ. of OsloP.O. Box 1080 Blindern, N-0316 Oslo, NorwayE-mail: {olaf,gerardo,mste�en}�i�.uio.noAugust 2007AbstratBeing a omposite part of a larger system, a ruial feature of aomponent is its interfae, as it desribes the omponent's interationwith the rest of the system in an abstrat manner. It is now ommonlyaepted that simple, funtional interfaes are not expressive enoughfor omponents, and the trend is towards behavioral interfaes.We propose to go a step further and enhane omponents withdeonti ontrats, i.e., agreements between two or more omponents onwhat they are obliged, permitted, and forbidden to do when interating.This way, ontrats are modeled after legal ontrats from onventionalbusiness or judiial arenas. Indeed, our work aims at a framework fore-ontrats, i.e., �eletroni� versions of legal douments desribing theparties' respetive duties.We take the objet-oriented, onurrent programming languageCreol as starting point and extend it with a notion of omponents.We then disuss a framework where omponents are aompanied byontrats and we sketh some ideas on how analysis of ompatibilityand ompositionality ould be done in suh a setting.1 IntrodutionEven without general agreement about what onretely onstitutes a om-ponent, one thing is for sure: omponents are intended for omposition.
∗Partially supported by the Nordunet3 projet Contrat-Oriented Software Develop-ment for Internet Servies, and the EU-projet IST-33826 Credo: Modeling and analysisof evolutionary strutures for distributed servies.1



Whene the entral role of interfaes as an abstration mehanism for hidinginternal details. The interfae desription is the basis for omposition bothfrom a theoretial point of view � to semantially understand ompositionand to formally reason about omponents � as well as a pratial onern� only when agreeing on well-de�ned interfaes, there is hope to separatelydevelop and deploy software that works together.But then again, within this general piture, there is a large design spaewhat exatly onstitutes a good interfae abstration, and the hoie dependson the underlying language, the ommuniation model, and the propertiesof interest. At any rate, it is now ommonly aepted that simple, fun-tional interfaes, listing the method signatures, are not expressive enough foromponents, and the trend is to de�ne omponents together with behavioralinterfaes.We propose to go a step further and enhane omponents with ontrats,i.e., agreements between two or more omponents on what they are obliged,permitted and forbidden to do when interating. This way, ontrats aremodeled after legal ontrats from onventional business or judiial arenas.Indeed, our work aims at a framework for e-ontrats, i.e., �eletroni� ver-sions of legal douments desribing the parties' respetive duties. They gobeyond standard behavioral interfae desriptions, whih typially desribesets of interation traes. Contrats, in the intended appliation domain,involve a deonti perspetive, speaking about obligations, permissions andobligations, also ontaining lauses on what is to happen in ase the ontratis not respeted.We take the objet-oriented, onurrent programming language Creol asstarting point and extend it with a notion of omponents. We then disussa framework where omponents are aompanied by ontrats and we skethsome ideas on how analysis of ompatibility and ompositionality ould bedone in suh a setting.Outline of the paperThe paper is organized as follows. In the next setion we further elaborateon the motivation of our work. In Setion 3 we desribe the objet-orientedprogramming (and modeling) language Creol. In Setion 4 we expand on thede�nition and the use of ontrats in other domains not neessarily relatedto omponents. Setion 5 is the main part of this paper and onsists on twoparts. We �rst show how Creol may be extended to be used as a programminglanguage for omponents, whereas in the seond part we desribe a frameworkthat ombines omponents, objets and ontrats, and how ontrats may beused to failitate interation of omponents. We onlude in the last setion.2



2 MotivationThere is no lear-ut de�nition of what exatly is a omponent, and whatdistinguishes the notion from a software module or just an objet. However,the pratie of omponent frameworks learly distinguishes them. The on-eptual onfusion is perhaps due to some similarities, and also sine bothobjet-orientation and omponent-based tehnologies, eah at their time,where both hailed with similar promises as the next silver bullet to solvethe software risis. For instane, both objets and omponents are usuallytyped by interfaes, and the servies they o�er are only aessible throughsuh interfaes. Hene, both onepts provide abstration in supporting en-apsulation and hiding.We highlight here some essential di�erenes between objets and ompo-nents. (1) Components are supposed to be self-ontained units, and inde-pendently deployable. This is not the ase in general with objets, as theyare instanes of a lass and usually are not exeutable by themselves. (2) Aomponent may (and in general will, if developed using the objet-orientedparadigm) ontain many objets whih are enapsulated and thus are notaessible from other omponents. If an objet reates another objet insidea omponent, this new objet is not visible from the outside unless expliitlyallowed by the interfae. Objets in most languages do not have this feature.(3) Components represent stati entities representing the main elements ofthe run-time struture, in ontrast to objets, whih are dynami instantia-tions of lasses. A purely lass-oriented program does not identify the mainelements of a system.1In some sense the above may justify the de�nition of omponents as beingjust a olletion of �irles� (objets) enapsulated inside a �box�, whih inturn ould also be a kind of objet typed by an interfae. It is now aeptedthat suh interfaes should not only take into aount funtional aspets butshould take into aount the history of interations, or in other words bebehavioral.In this paper we will disuss the relation between objets and ompo-nents, by skething how omponents ould be de�ned in the objet-orientedprogramming and modeling language Creol [8℄. We will also present someideas on the use of ontrats as omplement to behavioral interfaes to helpthe development and deployment of omponents, to guarantee among otherthings their orretness and ompositionality.1However, early OO languages, inluding Simula and Beta, had a notion of blokpre�xing giving rise to stati units whih resemble omponents in this sense.3



2.1 The problemWe are onerned with �nding a good programming language and appropri-ate abstrations for developing omponents in an integrated manner withinthe objet-oriented paradigm. We are also interested in enhaning ompo-nents with more sophistiated strutures than interfaes, targeted towardse-ontrats. In that ontext, we address the following questions.Design: How to develop omponents in a programming environment faili-tating rapid prototyping and testing?Composition and ompatibility: How do we know that two or more om-ponents will not on�it with eah other when put together?Substitutability: How to guarantee that replaing a omponent will notintrodue new unexpeted behaviors?Deonti spei�ation: How to speify what a omponent is supposed todo, what it may do, and what it should not do?Contrat violation: How to reat in ase a omponent does what it is notsupposed to do?Relevane to omponent-based software developmentThe issues mentioned above are ruial in a omponent-based software devel-opment and deployment. In fat, most of the questions in the previous se-tion, apart from perhaps the deonti aspet, are not new to the omponent-based software engineering ommunity who is trying to answer them in oneor another way.Towards a solutionWe propose here to use ontrats as a means to speify and to (partially)guarantee the safe oexistene of omponents. A ontrat in our setting ismodeled after real ontrats, as one might �nd in law or judiial arenas. Inthis sense, it is more than a behavioral interfae2 as it ontain lauses aboutthe obligations, permissions (or rights), and prohibitions of the signatories.The basi idea is that omponents are deployed not only with its usualinterfae spei�ation, but together with a deonti ontrat. To assure non-on�iting interation between two omponents, their respetive ontratsmust agree in well-de�ned ways as explained in more detail in Setion 5.2See for instane the series of OOPSLA workshops on behavioral interfaes for furtherinformation. 4



3 CreolCreol is an objet-oriented, onurrent programming and modeling languagedeveloped at the University of Oslo. For a deeper overage of the language,its design and semantis, we refer to the Creol web pages [8℄ and to [19, 21℄.The hoie of Creol as underlying language is motivated as follows:Conurreny: Creol is a language for open, distributed systems, supportingonurreny and asynhronous method alls. The onurreny modeltherefore is that of loosely oupled ative objets with asynhronousommuniation. This makes it an attrative basis for omponent-basedsystems. It has been argued also elsewhere, that an asynhronous om-muniation model of entities, loosely oupled by message passing, iswell-suited in suh settings.Objet-orientation: Creol is an objet-oriented, lass-based language, withlate binding and multiple inheritane, as well as user de�ned datatypes and funtions. It is strongly typed, supporting subtypes andsub-interfaesInterfaes: Creol's notion of o-interfae allows spei�ation of requiredand provided interfaes. The language at the urrent state alreadysupports behavioral interfaes, based on assume-guarantee spei�a-tions expressed in terms of the ommuniation history.Formal foundations: A formal operational semantis, de�ned in rewritinglogis, allows us to formalize the extension to omponents by reuse ofthe operational semantis. The ore of the language has a small ker-nel with an operational semantis onsisting of only 11 rewrite rules.This makes it easy to extend and modify the language and the seman-tis. Based on the formal semantis, the language omes with a simplereasoning system and omposition rules.Tool support: Creol has an exeutable interpreter de�ned in the Maudelanguage and rewriting tool. This provides a useful test-bed for theimplementation and testing of our omponent-based extension. TheMaude tool may be used for simulation, model heking, and analysis.4 ContratsThe term �ontrat� is beoming a buzzword, and di�erent researh om-munities understand it in various ways. We brie�y reall some of its moreommon de�nitions or informal meanings.5



1. Conventional ontrats are legally binding douments, establishing therights and obligations of di�erent signatories, as in traditional judiialand ommerial ativities.2. Eletroni ontrats are mahine-oriented and may be written diretlyin a formal spei�ation language, or translated from a onventionalontrat. The main feature is the inlusion of ertain normative no-tions suh as obligations, permissions, and prohibitions, be it diretlyor by representing them indiretly. In this ontext, the signatories of aontrat may be objets, agents, web servies, et.3. Some researhers informally understand ontrats as behavioral inter-faes, whih speify the history of interations between di�erent agents(partiipants, objets, prinipals, entities, et). The rights and obliga-tions are thus determined by legal (sets of) traes.4. The term �ontrat� is sometimes used for speifying the interationbetween ommuniating entities (agents, objets, et). It is ommonto talk then about a ontratual protool.5. Programming by ontrat or design by ontrat is an in�uential method-ology popularized �rst in the ontext of the objet-oriented languageEi�el [23℄. Contrat here means a relation between pre- and post-onditions of routines, method alls, et.6. In the ontext of web servies, �ontrats� may be understood as aservie-level agreement usually written in an XML-like language likeIBM's Web Servie Level Agreement (WSLA [36℄).We are mostly onerned with the �rst two meanings, though, as we willsee later, to be able to reason and operate on ontrats it is natural to havethe ontrats written in a formal language, and thus the seond meaning ismore adequate. Obviously, the mentioned interpretations are not absolutelydisjoint. The point we like to stress here is the importane of the mentionednormative aspets, whih is very typial for (eletroni) ontrats apturingthe spirit in whih legal ontrats are usually written. Of ourse, beside thosedeonti aspets, eletroni ontats in our sense also inlude behavioral aspet(making statements about the order of interations at the interfae) or mayrelate the pre- and post-onditions of methods, as in point 5. But what ismissing in usual interfae and behavioral spei�ations are linguisti meansto make the onsequenes expliit; i.e. what happens (or should happen)when the normative requirements are violated.6



5 Components, Objets, and ContratsIn this setion we �rst propose a way to extend the objet-oriented program-ming language Creol to deal with omponents. We then present a frameworkwhere omponents are aompanied by ontrats and we sketh some ideason how analysis of ompatibility and ompositionality ould be done in suha framework.5.1 Creol as a Component-Based LanguageThe ore Creol language is entered around lasses and dynamially gener-ated objets. A simple notion of omponent representing singleton entitiesenapsulating a subsystem, is obtained by the onstrutomponent C implements list-of-interfaesbodyendwhere the body ontain ordinary Creol delarations and ode, inluding anumber of attributes setting up the initial internal objet struture. All in-ternal struture is hidden, exept from the ommuniation primitives statedin the interfaes in the implements lause. In partiular, objets generatedby the struture inside a omponent are onsidered to be part of this internalstruture. A omponent may be thought of as an abstration of a subsystemwhere the implements lause de�nes visible events in the interation with theenvironment. Communiation to the omponent is done using the name ofthe omponent. Routing of inoming alls may be done automatially, andin priniple non-deterministially, or, if desired, by expliit programming ofthe handling of the re-routing. The input and output events of a Creol om-ponent are method invoation and reply events. In order to obtain platformindependent units one would need to lift the interation model to the levelof ports.5.2 Components and ContratsBefore desribing our proposed framework, we list some of the main featuresof ontrats in the ontext of omponent-based development and deploy-ment. Formal ontrats assoiated with omponents omplement behavioralinterfaes and give the following added value:1. If written in a formal language with formal semantis and proof system,a ontrat an be proved to be on�it-free, both by model heking7



and logial dedution tehniques. The automati heks an also revealinompleteness in the spei�ation, for instane it may indiate that noesalation is agreed upon in ase one of the partners ats ontrary towhat it is spei�ed in the ontrat.2. The use of ontrats may assist the developer during the developmentphase to hek whether a omponent may enter into on�it with otheromponents, through a stati analysis of ontrat ompatibility. Theappropriate notion of ompatibility in the presene of obligations, per-missions, and prohibitions needs to be developed.3. A well-founded theory of ontrats should provide the following kindsof analysis:
• Determine whether a ontrat is overed by another one, i.e. awell-de�ned notion of sub-ontrat. This will help deiding whethera omponent may be replaed by another one in a safe manner.
• Allow deisions on whether paying a penalty in ase of one on-trat violation is bene�ial or not in ase of sub-ontrating. As-sume omponent A has a ontrat with omponent B where it isstipulated that A must �pay� x (aording to a ertain notion ofquanti�ed penalty) to B in ase of ontrat violation. Supposenow that suh violation depends on a servie/produt providedby C to A and that there is a ontrat between A and C statingthat C must pay y to A in ase of their own ontrat violation.Then a theory of ontrats would allow A to determine whether ornot it is good to ompose with B. During the development phasethis kind of information may help de�ning sub-ontrating whihare not against a omponent's own interest.
• A negotiation phase ould be added previous to the ompositionof two or more omponents. In this phase a ontrat ould benegotiated before �nal �signature�, as in web servies ontext.4. A run-time ontrat monitor will guarantee that the ontrat is re-speted, inluding the penalties and esalations in ase of ontrat vio-lation. I.e., what should happen if one of the signatories ats �ontraryto duty� or �ontrary to permission� (abbreviated as CTD and CTP).We expet suh a monitor ould be extrated from the omponentsontrats in a (semi-)automati way, at least partially.The above list already gives an idea on how we intend to ombine on-trats and omponents. Contrats may be used both at the development anddeployment phase. 8



Conformance

Static Analysis Testing/Simulation (Maude)

Compatibitliy/Conflict−free

Development (Creol)

PSfrag replaements Co1Co1

Co1Con

Con

C1 C1C1

C1Cn

Cn CnFigure 1: Development phase.Development Phase During this phase our framework may be summa-rized as follows (see Fig. 1):Development: Eah omponents has assoiated one or more ontrats inthe sense disussed above, i.e., speifying the obligations, permissions,and prohibitions in the omponent's interating behavior. We proposeCreol as a development platform.Stati Analysis: Before deployment, the ontrat is formally analyzed toguarantee that it is ontradition free. This might be done by using aproof system or by model heking. Stati onformane between theomponent and its ontrat is also proved.Testing/Simulation: It is well known that stati analysis tehniques an-not validate every aspet of a system. Testing and simulation are thusneeded to omplement the above. Sine Creol has a formal semantisin rewriting logi and implemented in Maude, we propose to use theMaude environment to simulate and test eah omponent separatelyand its interation with other omponents being developed.Deployment Phase After the omponent is �released� there is still noomplete guarantee of it being well suited for the yet unknown platform9



Pre−execution Analysis

Executing Platform

Monitor

PSfrag replaements
Co1
Co1Con

Con

Coi

Coi

C1
C1Cn

Cn

Ci

Ci

Figure 2: Deployment phase.where it will be exeuted. We propose the following framework to inreaseon�dene on the omponent's ompatibility with its future environment.See Fig. 2.Pre-exeution Analysis: Before adding a new omponent to an existingontext where it will be omposed with other omponents, the or-responding ontrats are heked to guarantee ompatibility. If thereare disagreements, a phase of negotiation may start, or the omponentis simply rejeted. This phase may be onsidered as a kind of statianalysis on the side of the exeution platform.Exeution: If the omponent is aepted after the analysis of the previousphase, then it is deployed. A ontrat monitor is launhed to guaranteethat the omponents behave aording to the ontrat. In ase of on-trat violation, the monitor is responsible of taking the orrespondingation as stipulated in the ontrat for suh situation, or anel theontrat and disable the omponent.6 Related workObjet-orientation Two main interation models for distributed proessesare remote method invoation (RMI) and message passing. RMI is the ap-10



proah adopted by Java, and may lead to unneessary waiting in a distributedsetting. Moreover, Java's thread onept fores the programmer to hoosebetween redued parallelism (using the synhronized keyword) and shared-variable interferene, and makes reasoning highly omplex [2℄. Mehanismsbased on synhronous message passing also result in unneessary delays [20℄.Asynhronous message passing, as popularized by the ator model [4, 17℄, isvery �exible but laks the struture and disipline of objet-oriented methodalls. Moreover, ators have no diret notion of inheritane or hierarhy. Inontrast, Creol objets are onurrent, eah with its own virtual proessorand internal proess ontrol, and ommuniate using synhronous or asyn-hronous, i.e., non-bloking method alls. This provides the e�ieny ofmessage passing systems, while keeping the struturing bene�ts of methodsand objet-oriented programming. A distinguishing feature of the languagein this respet is also that in Creol, the lient objet, i.e., the aller, de-ides, whether to invoke the servie asynhronously or whether to blok.Furthermore, onditional proessor release points provide a high-level syn-hronization mehanism that allow ombination of ative and reative objetbehavior.Components With the size of software systems ever inreasing, there is nolak of proposals for omponent models, frameworks, and platforms, inlud-ing various proposals within UML [7℄, Java omponent models, for instaneEJB [33℄, and di�erent omponent models put forward by Mirosoft. Asstressed above, omposability and, as a onsequene, the notion of interfaesare entral. Furthermore �nding the right level of abstration is ruial, es-peially when developing a formal approah to omponents (f. [22℄ for a ol-letion of formal approahes to omponent-based software). A oneptuallylear and elegant approah to get a grip on interfae behavior is to onsiderthe notion of being replaeable as a de�nitorial starting point: Two ompo-nents, seen as syntatially omposable units of a language, are onsideredequal, when they an replae eah other with no observable di�erene. Thisorresponds to an observable, ontextual perspetive on equality as de�nito-rial yardstik. As a blak-box notion, it is appropriate for a omponent-basedsetting and has been employed for many languages and aluli, but obviouslythe de�nition leaves the atual interfae desription impliit. The task re-mains then to develop an expliit interfae semantis, and ideally, to provethat it oinides with the impliit, ontextually given one. That orrespondsto the well-known problem of full abstration.In [32℄, for instane, suh a semantis is developed in a lass-based objet-oriented setting, without an expliit notion of omponent. In other words, a11



omponent is seen just as a set of lasses, without linguisti support. The no-tion of observation is based on may- and must-testing [25℄. Furthermore, themode is based on a more tightly-oupled model of ommuniation, namelythat of multi-threaded Java. Currently [3℄, the ommuniation model portedfrom multi-threading as in Java to a more loosely oupled model with asyn-hronous messages passing and ative objets, orresponding to Creol. Inpartiular, futures [12℄ and promises. With similar goals, [28℄ presents a be-havioral interfae semantis for a lass-based objet-oriented alulus, how-ever without onurreny. The language, on the other hand, ahieves a bettermodularization of the program. In partiular, it urbs the unstruturednessof the heap by imposing ownership-struture. Another interation seman-tis of omponents, in this ase based on the ator model of onurreny, ispresented in [34℄. None of the mentioned approahes, however, is tailoredtowards deonti aspets, as aimed for in our setting.Contrats Due to the great in�uene of the design by ontrat introduedby Bertrand Meyer and popularized �rst in the ontext of the objet-orientedlanguage Ei�el [23℄, we brie�y disuss here some related works. Contrat heremeans that every feature or method, reated by the software developer (thesupplier) starts with a preondition that must be satis�ed by the softwareuser (the onsumer) of the routine. Moreover, eah feature ends with post-onditions whih the supplier guarantees to be true, if the preonditions weresatis�ed. The approah has been used for other languages, as well, for in-stane in the ontext of C# language [13℄. Relatively well-known here isthe Spe#-language [5℄ and more reently Sing#[14℄ as extension of Spe#.Sing#, the ore language of the Singularity operating system [18℄, is a type-safe, objet-oriented language based on message-passing ommuniation.To use ontrats in the ontext of omponent-based development anddeployment as we have skethed in the previous setions we need to be ableto write a ontrat in a formal language to be amenable to formal analysis,negotiation and monitoring.There are urrently several di�erent approahes aiming at de�ning a for-mal language for ontrats. Some works onentrate on the de�nition ofontrat taxonomies [1, 6, 35℄, while others look for formalizations based onlogis (e.g. lassial [11℄, modal [10℄, deonti [16, 27℄ and defeasible logi[15, 31℄). Other formalizations are based on models of omputation (e.g.FSMs [24℄ and Petri Nets [9℄). None of the above has reahed enough ma-turity as to be onsidered the solution to the problems of formal de�nitionof ontrats. Some provide a good framework for monitoring but lak a for-mal semantis and a reasoning system; others have nie proof systems and12



model theory, but not mehanisms for monitoring or negotiation; many of thedeonti-based approahes put too muh emphasis on the logial propertiesand neglet the pratial side, inluding monitoring. None of them apturesall the intuitive properties of e-ontrats we have desribed, while avoidingthe most important paradoxes.Sine we intend to pursue our researh by extending the ontrat language
CL developed in [30℄, we desribe the main features of this language in moredetail. CL is a language tailored for eletroni ontrats (e-ontrats) withformal semantis in µ

a-alulus, whih is an extension of the µ-alulus withations. A nie feature is that it opens the way to use the logi proof system,as well as existing model hekers. Sine the µ
a-alulus is an ation-basedlogi the language follows an out-to-do approah, i.e. where obligations, per-missions and prohibitions are applied to ations and not to state-of-a�airs.The language avoids the main lassial paradoxes of deonti logi, and it ispossible to express (onditional) obligation, permission and prohibition overonurrent ations keeping their intuitive meaning. Obligation of disjuntiveand onjuntive ations is de�ned ompositionally and it allows the repre-sentation of CTDs and CTPs. On the other hand, there is no mehanismfor monitoring nor negotiation in the urrent state of development. No rea-soning system is provided, though it seems quite straightforward to use theproof system as well as existing model hekers of the underlying µ-alulus.The approah is intended to be restrited to the ontext of e-ontrats, soit is not pratial for more general ontrats, though we believe it an beused in the ontext of omponents. The underlying ation algebra has beenstudied in [29℄ and initial works to show how to model hek ontrats hasbeen presented in [26℄.7 Final DisussionIn this paper we skethed how to enhane omponents with ontrats as om-plementary to the latest ideas of using behavioral interfaes. In our opinionthis approah would bene�t from the fat that suh ontrats ould be an-alyzed logially and model heked in order to �nd (loal) inonsistenies,they ould be negotiated and monitored. We believe omponent-based de-velopment and engineering will in some sense be redued to the same kindof problems one �nds in web servies and other appliation domains whereontrats are being studied.The extension of Creol with primitives to de�ne omponents is not di�-ult to do as most of the basi onstruts are already de�ned in the language.For instane, ontrats might be inluded as data-types in the language.13



The suessful use of ontrats as we have proposed depends very muhon the existene of a suitable formal ontrat language. As mentioned in therelated work setion we intend to further explore CL and its semantis to beused in this ontext. We expet to bene�t from its formal semantis in the
µ-alulus to further develop proof systems and to explore the possibility ofuse existing model heking tools.Though we believe the �rst phase of the deployment phase ould beahieved relatively easy. we are aware that obtaining a ontrat monitor,when exeuting a omponent, ould represent a big hallenge if we intend todo so in real-time. We do not have a solution yet. A very interesting researhdiretion would be to study how to ombine meta-programming (e.g. in a re-�etive language) tehniques with a formal (logial) framework for extratinga monitor from one or more ontrats.8 AknowledgmentsMarel Kyas has ontributed with valuable disussions about omponents.Referenes[1℄ J. Aagedal. Quality of Servie Support in Development of DistributedSystems. PhD thesis, Dept. of Informatis, Faulty of Mathematis andNatural Sienes, University of Oslo, 2001.[2℄ E. Ábrahám, F. S. de Boer, W.-P. de Roever, and M. Ste�en. Anassertion-based proof system for multithreaded Java. Theoretial Com-put. Si., 331, 2005.[3℄ E. Ábrahám, I. Grabe, A. Grüner, and M. Ste�en. Abstrat interfaebehavior of an objet-oriented language with futures and promises. 2007.In preparation.[4℄ G. A. Agha. ACTORS: A Model of Conurrent Computation in Dis-tibuted Systems. MIT Press, 1986.[5℄ M. Barnett, K. R. M. Leino, and W. Shulte. The Spe# programmingsystem: An overview. In Proeedings of In CASSIS 2004, volume 3362of Leture Notes in Computer Siene. Springer-Verlag, 2004.[6℄ A. Beugnard, J.-M. Jézéquel, and N. Plouzeau. Making omponentsontrat aware. IEEE Computer, 32(7):38�45, 1999.14



[7℄ J. Cheesman and J. Daniels. UML Components. Addison-Wesley, 2000.[8℄ The Creol language. http:www.ifi.uio.no/~reol, 2007.[9℄ A. Daskalopulu. Model Cheking Contratual Protools. In L. Breukerand Winkels, editors, JURIX 2000, Frontiers in Arti�ial Intelligeneand Appliations Series, pages 35�47. IOS Press, 2000.[10℄ A. Daskalopulu and T. S. E. Maibaum. Towards Eletroni ContratPerformane. In Legal Information Systems Appliations, 12th Interna-tional Conferene and Workshop on Database and Expert Systems Ap-pliations, pages 771�777. IEEE C.S. Press, 2001.[11℄ H. Davulu, M. Kifer, and I. V. Ramakrishnan. CTR-S: A Logifor Speifying Contrats in Semanti Web Servies. In Proeedings ofWWW2004, pages 144�153, May 2004.[12℄ F. S. de Boer, D. Clarke, and E. B. Johnsen. A omplete guide to thefuture. In R. de Niola, editor, Proeedings of Programming Languagesand Systems, 16th European Symposium on Programming, ESOP 2007,Vienna, Austria., volume 4421 of Leture Notes in Computer Siene.Springer-Verlag, 2007.[13℄ ECMA International Standardizing Information and CommuniationSystems. C# Language Spei�ation, 2nd edition, De. 2002. StandardECMA-334.[14℄ M. Fähndrih, M. Aiken, C. Hawblitzel, O. Hodson, G. C. Hunt, J. R.Larus, and S. Levi. Language support for fast and reliable message-based ommuniation in Singularity OS. In Proeedings of EuroSys 2006,Leuven, Belgium. ACM SIGOPS, 2006.[15℄ G. Governatori. Representing business ontrats in RuleML. Interna-tional Journal of Cooperative Information Systems, 14:181�216, 2005.[16℄ G. Governatori and A. Rotolo. Logi of violations: A Gentzen systemfor reasoning with ontrary-to-duty obligations. Australasian Journal ofLogi, 4:193�215, 2006.[17℄ I. A. M. Gul A. Agha, S. F. Smith, and C. L. Talott. A foundationfor ator omputation. Journal of Funtional Programming, 7(1), Jan.1997.
15

http:www.ifi.uio.no/~creol


[18℄ G. C. Hunt, J. R. Larus, M. Abadi, M. Aiken, P. Barham, M. Fähndrih,C. Hawblitzel, O. Hodson, S. Levi, N. Murphy, B. Steensgaard, D. Tra-diti, T. Wobber, and B. Zill. An overview of the Singularity projet.Tehnial Report MSR-TR-2005-135, Mirosoft Researh, 2005.[19℄ E. B. Johnsen and O. Owe. An asynhronous ommuniation model fordistributed onurrent objets. In Pro. 2nd Intl. Conf. on Software En-gineering and Formal Methods (SEFM'04), pages 188�197. IEEE Com-puter Soiety Press, Sept. 2004.[20℄ E. B. Johnsen and O. Owe. An asynhronous ommuniation model fordistributed onurrent objets. Software and Systems Modeling, 6(1):35�58, Mar. 2007.[21℄ E. B. Johnsen, O. Owe, and I. C. Yu. Creol: A type-safe objet-orientedmodel for distributed onurrent systems. Theoretial Computer Si-ene, 365(1�2):23�66, Nov. 2006.[22℄ G. T. Leavens and M. Sitaraman, editors. Foundations of Component-Based Systems. Cambridge University Press, 2000.[23℄ B. Meyer. Ei�el: The Language. Prentie Hall, 1992.[24℄ C. Molina-Jimenez, S. Shrivastava, E. Solaiman, and J. Warne. Run-time Monitoring and Enforement of Eletroni Contrats. EletroniCommere Researh and Appliations, 3(2):108�125, 2004.[25℄ R. D. Niola and M. Hennessy. Testing equivalenes for proesses. The-oretial Comput. Si., 34:83�133, 1984.[26℄ G. Pae, C. Prisaariu, and G. Shneider. Model heking ontrats �aase study. In 5th International Symposium on Automated Tehnologyfor Veri�ation and Analysis (ATVA'07), volume 4762 of LNCS, pages82�97, Tokyo, Japan, Otober 2007. Springer-Verlag.[27℄ A. Pashke, J. Dietrih, and K. Kuhla. A Logi Based SLA ManagementFramework. In 4th Semanti Web Conferene (ISWC 2005), 2005.[28℄ A. Poetzsh-He�ter and J. Shäfer. A representation-independent be-havioral semantis for objet-oriented omponents. In 9th IFIP Interna-tional Conferene on Formal Methods for Open Objet-Based DistributedSystems (FMOODS), volume 4468 of LNCS, pages 157�173. Springer,2007. 16



[29℄ C. Prisaariu and G. Shneider. An algebrai struture for the ation-based ontrat language CL. 2007. Submitted.[30℄ C. Prisaariu and G. Shneider. A formal language for eletroni on-trats. In FMOODS'07, volume 4468 of LNCS, pages 174�189. Springer,2007.[31℄ I. Song and G. Governatori. Nested rules in defeasible logi. In RuleML,volume 3791 of LNCS, pages 204�208, 2005.[32℄ M. Ste�en. Objet-Connetivity and Observability for Class-Based,Objet-Oriented Languages. Habilitation thesis, Tehnishe Faktultätder Christian-Albrehts-Universität zu Kiel, 2006. submitted 4th. July,aepted 7. February 2007.[33℄ Sun Mirosystems In., USA. JSR-220 Enterprise JavaBeans Spei�a-tion, version 3.0 edition, May 2006.[34℄ C. L. Talott. Interation semantis for omponents of dis-tributed systems. In 1st IFIP Workshop on Formal Methodsfor Open Objet-based Distributed Systems, FMOODS'96, 1996.http://www-formal.stanford.edu/MT/96fmoods.ps.Z.[35℄ V. Tosi. On Comprehensive Contratual Desriptions of Web Servies.In IEEE International Conferene on e-Tehnology, e-Commere, ande-Servie, pages 444�449. IEEE, 2005.[36℄ WSLA: Web Servie Level Agreements. www.researh.ibm.om/wsla/.

17

http://www-formal.stanford.edu/MT/96fmoods.ps.Z
www.research.ibm.com/wsla/

	Introduction
	Motivation
	The problem

	Creol
	Contracts
	Components, Objects, and Contracts
	Creol as a Component-Based Language
	Components and Contracts

	Related work
	Final Discussion
	Acknowledgments

