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Abstract. Polygonal hybrid systems are a subclass of planar hybrid automata which can
be represented by piecewise constant differential inclusions. One way of analysing such
systems (and hybrid systems in general) is through the study of their phase portrait, which
characterise the systems’ qualitative behaviour. In this paper we identify and compute an
important object of polygonal hybrid systems’ phase portrait, namely invariance kernels.
An invariant set is a set of points such that any trajectory starting in such point keep
necessarily rotating in the set forever and the invariance kernel is the largest of such sets.
We show that this kernel is a non-convex polygon and we give a non-iterative algorithm for
computing the coordinates of its vertexes and edges. Moreover, we show some properties
of such systems’ simple cycles.
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1. Introduction

In its current meaning the word hybrid denotes anything that is composed by two
or more things of different nature. In our context, a hybrid system is a system with
both continuous and discrete behaviours interacting with each other. A typical
example is given by a discrete program that interacts with a continuous physical
environment. The analysis of such systems poses an interesting challenge mainly
because of their hybrid nature, implying the use of discrete and continuous mathe-
matics, domain of expertise of different academic communities.

Traditionally, the main preoccupation of computer scientists has been the study
of discrete systems, using logic and discrete mathematics as a basis for reasoning.
On the other hand, continuous models have been the subject of study of mathemati-
cians and physicists, even though differential equations with discontinuous right
hand side has also been considered in these communities (see [Filippov 1988] and
reference therein). Later on, control theoreticians developed theories and meth-
ods to solve problems on Control Theory about “switching systems”, in which
digital control is applied to switch between continuous laws. Hybrid systems are
nowadays studied, from different points of view and using different approaches and
methods, in Computer Science, Control Theory and Mathematics.

One of the main contributions of Computer Science to the hybrid system commu-
nity is related to the study of the (un)decidability of a variety of problems. When
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showing that a given problem is decidable it is desirable to have a constructive
proof of it, providing an algorithm. In the last decade many (un)decidability re-
sults for a variety of problems concerning classes of hybrid systems have been
given (e.g., [Asarin et al. 2000; Alur et al. 1995; Dang and Maler 1998; Greenstreet
and Mitchell 1999; Kurzhanski and Varaiya 2000]). Besides reachability analysis,
which is one of the main research areas in hybrid systems (see for instance [Alur
and Dill 1994; Asarin et al. 1995; Asarin et al. 2001; Cerāns and Vı̄ksna 1996;
Henzinger et al. 1995; Lafferriere et al. 1999; Maler and Pnueli 1993]) another
important issue in the analysis of a (hybrid) dynamical system is the study of its
qualitative behaviour, namely the construction of its phase portrait. Some typical
questions on this sense are “does every trajectory except the equilibrium point in
the origin converge to a limit cycle which is the unit circle?”, or ”what is the biggest
set such that any point on it is reachable from any other point on the set?”. There
have been few results on the qualitative properties of trajectories of hybrid sys-
tems [Asarin et al. 2002b; Aubin 2001; Deshpande and Varaiya 1995; Kourjanski
and Varaiya 1995; Kowalczyk and di Bernardo 2001; Matveev and Savkin 2000;
Simić et al. 2000]. In particular, the question of defining and constructing phase
portraits of hybrid systems has not been directly addressed except by Matveev and
Savkin [2000], where phase portraits of deterministic systems with piecewise con-
stant derivatives are explored and by Asarin et al. [2002b], where viability and
controllability kernels for polygonal differential inclusion systems (SPDIs) have
been computed. Moreover, a characterisation of viability and invariance kernels
was given by Aubin et al. [2001] for impulsive differential inclusions.

In this paper we show how to compute another important object of phase portraits
of SPDIs, namely the invariance kernel. In general, an invariant set is a set of
points such that for any point in the set it exists an infinite trajectory starting in
such point and every such trajectory remains in the set forever and the invariance
kernel is the largest of such sets. An invariance kernel is then a kind of “sink”
from where it is impossible to escape. We show that, for SPDIs, this kernel is a
non-convex polygon and we give a non-iterative algorithm for exactly computing
the coordinates of its vertexes and edges. Notice that since SPDIs are partially
defined over the plane, their invariance kernels are in general different from the
whole plane. Clearly, such kernels provide useful insight about the behaviour of
the SPDI around simple cycles.

Invariance kernels for SPDIs have been first introduced in [Schneider 2003],
which is a preliminary version of this work. In [Pace and Schneider 2003] it has
been shown that such kernels play a key role for proving termination of a model
checking algorithm for SPDIs. In the last-mentioned paper, however, only some
theorems showing how to compute them are stated without a complete proof. In
addition to proving in detail how to compute invariance kernels for SPDIs we prove
here many other useful properties about simple cycles.

The paper is organised as follows. In section 2 we recall some mathematical
definitions needed to define SPDIs which are defined in section 3. Section 4 is
concerned with the proof of properties of a class of simple cycles and the compu-
tation of invariance kernels for such cycles of SPDIs. In the last section we present
some concluding remarks.
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Fig. 1: An SPDI and its trajectory segment.

2. Preliminaries

Even though an SPDI may be seen as a hybrid automaton [Henzinger 1996], for
the specific purposes of this paper it is better to define it in a more mathematical
way. We need then the following mathematical concepts.

Let a = (a1, a2), x = (x1, x2) ∈ � 2 and λ ∈ �
. The inner product of two vectors

a = (a1, a2) and x = (x1, x2) is defined as a x = a1 x1 + a2 x2, while λx = (λx1, λx2)
is the product of a vector by an scalar λ and |x| =

√
x x is the 2-norm. We denote

by x̂ the vector (x2,−x1) obtained from x by rotating clockwise by the angle π/2.
Notice that x x̂ = 0.

The distance between two points x and y is defined to be |x − y|. For ε > 0, the
ε-neighbourhood of x is Bε(x) = {y | |x − y| < ε}. The interior of X ⊆ � 2 , denoted
by int(X), is the set of x ∈ X for which there exists ε > 0 such that Bε(x) ⊆ X.

For x1, . . . xn ∈
� 2 a linear combination is a vector x =

∑n
i=1 λixi for some

λi ∈
�

. A positive combination is a linear combination with λi ≥ 0 for every i.
The positive hull of a set X ⊆ � 2 is the set of all positive combinations of points
in X. Given a non-zero constant vector a and a constant b, a (closed) half-space is
the set of all points x satisfying a x ≤ b. A convex closed polygonal set P is the
intersection of finitely many half-spaces. An edge e is a segment of line in

� 2 .
An angle � b

a on the plane, defined by two non-zero vectors a,b is the set of all
positive linear combinations x = α a + β b, with α, β ≥ 0, and α + β > 0. We can
always assume that b is situated in the counter-clockwise direction from a. That is,
given A = {a,b}, with â b < 0, � b

a is the positive hull of A.
Let S be a finite index set and � = {Ps}s∈S be a finite set of convex closed

polygonal sets, called regions, such that:
(1) For all s ∈ S , int(Ps) , ∅;
(2) For all s , r ∈ S , int(Ps ∩ Pr) = ∅;
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(3)
⋃

s∈S Ps =
� 2 .

Condition 1 states that regions are full dimensional. Condition 2 says that the
intersection between two regions is either empty, an edge, or a point, whereas
the third condition states that the regions covers the whole space. Thus, � is a
partition. Condition 3 can be relaxed, and we consider then a partition of a subset
of the plane.

Let � = {φs}s∈S be such that φs is the positive hull of two vectors as and bs with
âs bs < 0 and � be a partition of the plane.

3. SPDI

A polygonal differential inclusion system [Schneider 2002] consists of a partition
of the plane into convex polygonal regions, together with a constant differential
inclusion associated with each region . More formally,

D 1. A polygonal differential inclusion system (SPDI) is a pair H =

( � , � ). Each region Ps has dynamics ẋ ∈ φs for x ∈ Ps (given a generic region
P we also use the notation φ(P)).

Let E(P) be the set of edges of P. We say that e ∈ E(P) is an entry of P if for all
x ∈ e and for all c ∈ φ(P), x + cε ∈ P for some ε > 0. We say that e is an exit of P
if the same condition holds for some ε < 0. We denote by In(P) ⊆ E(P) the set of
all entries of P and by Out(P) ⊆ E(P) the set of all exits of P.

A 1. All the edges in E(P) are either entries or exits, that is, E(P) =
In(P) ∪ Out(P).

E 1. Consider the SPDI illustrated in Fig. 1. For each region Ri, 1 ≤ i ≤ 8,
there is a pair of vectors (ai,bi), where:

a1 = b1 = (1, 5),
a2 = b2 = (−1, 1

2 ),
a3 = (−1, 11

60 ) and b3 = (−1,− 1
10 ),

a4 = b4 = (−1,−1),
a5 = b5 = (0,−1),
a6 = b6 = (1,−1),
a7 = b7 = (1, 0),
a8 = b8 = (1, 1).

We define now the notion of trajectory which in the literature is sometimes called
run.

D 2. A trajectory segment of an SPDI is a continuous function ξ : [0,T ]→� 2 which is smooth everywhere except in a discrete set of points, and such that for
all t ∈ [0,T ], if ξ(t) ∈ P and ξ̇(t) is defined then ξ̇(t) ∈ φ(P). If T = ∞, a trajectory
segment is called a trajectory.
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We are interested in making an abstraction in order to simplify part of our anal-
ysis. We will need to consider a discretisation of the trajectories, motivating the
following definition. The signature, denoted Sig(ξ), is the ordered sequence of all
edges traversed by the trajectory segment, that is, e1, e2, . . ., where ξ(ti) ∈ ei and
ti < ti+1.

The following assumption avoids trajectories staying inside a region without
leaving it.

A 2. We will only consider trajectories with infinite signatures.

3.1 Successors and predecessors

For computing the invariance kernel of an SPDI we need to know how to compute
the set of reachable points from and to a given interval, i.e. the successor and
predecessor operators. In SPDIs, these operators have some nice mathematical
properties inherited from a class of mathematical functions called truncated affine
multi-valued functions. We define first the latter and then we give the definition of
successors and predecessors.

3.1.1 Truncated affine multivalued functions

Truncated affine multi-valued functions (TAMFs) will be used to express predeces-
sors and successors. Before defining such functions we need the notion of affine
(multivalued) functions.

D 3. A (positive) affine function f :
� → �

is such that f (x) = ax+b with
a > 0. An affine multivalued function F :

� → 2 � , denoted F = 〈 fl, fu〉, is defined
by F(x) = 〈 fl(x), fu(x)〉 where fl and fu are affine and 〈·, ·〉 denotes an interval.

In what follows we will consider only well-formed intervals, i.e. 〈l, u〉 is an inter-
val iff l ≤ u. For notational convenience, we do not make explicit whether intervals
are open, closed, left-open or right-open, unless required for comprehension. For
an interval I = 〈l, u〉 we have that F(〈l, u〉) = 〈 fl(l), fu(u)〉.

D 4. The inverse of F is defined by F−1(x) = {y | x ∈ F(y)}. The universal
inverse of F is defined by F̃−1(I) = I′ iff I’ is the greatest non-empty interval such
that for all x ∈ I′, F(x) ⊆ I.

R 1. It is not difficult to show that F−1
= 〈 f −1

u , f −1
l 〉 and similarly that F̃−1

=

〈 f −1
l , f −1

u 〉, provided that 〈 f −1
l , f −1

u 〉 , ∅ (see Lemma 10 in the Appendix). Notice
that if I is a singleton then F̃−1 is defined only if fl = fu. The class of affine
(multivalued) functions is closed under composition.

We define now a new class of functions which arises from the class of affine
multivalued functions by truncating the argument and the image of such functions.
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D 5. A truncated affine multivalued function (TAMF) F :
� → 2 � is

defined by an affine multivalued function F and intervals S ⊆ �
+ and J ⊆ �

+ as
follows: F (x) = F(x) ∩ J if x ∈ S , otherwise F (x) = ∅.

For convenience we write F (x) = F({x} ∩ S ) ∩ J. For an interval I, F (I) =
F(I ∩ S ) ∩ J and F −1(I) = F−1(I ∩ J) ∩ S . We say that F is normalised if
S = Dom(F ) = {x | F(x) ∩ J , ∅} (thus, S ⊆ F−1(J)) and J = Im(F ) = F (S ). In
what follows we only consider normalised TAMFs.

As for AMFs we define now the universal inverse of a TAMF.

D 6. The universal inverse of F is defined by F̃ −1(I) = I′ iff I’ is the
greatest non-empty interval such that for all x ∈ I ′, F(x) ⊆ I and F(x) = F (x).

The following theorem states that TAMFs are closed under composition (see
[Schneider 2002]).

T 1. The composition of two TAMFs F1(I) = F1(I ∩ S 1) ∩ J1 and F2(I) =
F2(I∩S 2)∩ J2, is the TAMF (F2◦F1)(I) = F (I) = F(I∩S )∩ J, where F = F2◦F1,
S = S 1 ∩ F−1

1 (J1 ∩ S 2) and J = J2 ∩ F2(J1 ∩ S 2). �

3.1.2 Successors and Predecessors

We define now our main technical tools for computing invariance kernels, namely
the successor and predecessor operators. We need first to give an effective repre-
sentation of (rational) points and intervals on edges.

Given an SPDI, we fix a one-dimensional coordinate system on each edge to
represent points laying on edges. For notational convenience, we indistinctly use
letter e to denote the edge or its one-dimensional representation. Accordingly, we
write x ∈ e or x ∈ e, to mean “point x in edge e with coordinate x in the one-
dimensional coordinate system of e”. The same convention is applied to sets of
points of e represented as intervals (e.g., x ∈ I or x ∈ I, where I ⊆ e) and to
trajectories (e.g., “ξ starting in x” or “ξ starting in x”). Now, let P ∈ � , e ∈ In(P)
and e′ ∈ Out(P). We are now in condition of defining the edge-to-edge successor
of an SPDI.

D 7. For I ⊆ e, Succee′ (I) is the set of all points in e′ reachable from
some point in I by a trajectory segment ξ : [0, t] → � 2 in P (i.e., ξ(0) ∈ I ∧ ξ(t) ∈
e′ ∧ Sig(ξ) = ee′).

Ege-to-edge successors are TAMFs [Schneider 2002], then Succee′ (I) = F (I) =
F(I ∩ S ) ∩ J for some S ⊆ e and J ⊆ e′. Notice that it is always possible to chose
the positive direction on every edge in order to guarantee positive coefficients in
the TAMF.

E 2. Let us consider the SPDI of Example 1 and let e1, . . . , e8 be as in Fig. 1
and I = [l, u]. We assume a one-dimensional coordinate system such that e i = S i =
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Ji = (0, 1). We have that:

Fe1e2(I) =
[

l
2
,

u
2

]
Fe2e3(I) =

[
l − 1

10
, u +

11
60

]

Feiei+1(I) = I 3 ≤ i ≤ 7 Fe8e1(I) =
[
l +

1
5
, u +

1
5

]

with Succeiei+1(I) = Feiei+1(I ∩ S i)∩ Ji+1, for 1 ≤ i ≤ 7, and Succe8e1 (I) = Fe8e1 (I ∩
S 8) ∩ J1.

By Theorem 1 we know that successors are closed by composition. Given a
sequence w = e1, e2, . . . , en, the successor of I along w defined as Succw(I) =
Succen−1en ◦ . . . ◦ Succe1e2 (I) is a TAMF.

E 3. Let σ = e1 · · · e8e1 be as before. In Example 2 we have defined the
edge-to-edge AMFs Fe1e2 , . . . , Fe7e8 , Fe8e1 . We have that Succσ(I) = F(I ∩ S )∩ J,
where F is obtained composing the above functions:

F(I) =
[

l
2
+

1
10
,

u
2
+

23
60

]
(1)

S = (0, 1) and J = ( 1
5 ,

53
60 ) are computed using Theorem 1.

We can define in a similar way the edge-to-edge predecessor of an interval.

D 8. For I ⊆ e′, Preee′ (I) is the set of points in e that can reach a point in
I by a trajectory segment in P.

We have that [Asarin et al. 2001]: Preee′ = Succ−1
ee′ and Preσ = Succ−1

σ .

E 4. Continuing with our examples, let σ = e1 . . . e8e1 be as before and
I = [l, u]. We have that Preeiei+1(I) = F−1

eiei+1
(I ∩ Ji+1) ∩ S i, for 1 ≤ i ≤ 7, and

Pree8e1(I) = F−1
e8e1

(I ∩ J1) ∩ S 8, where:

F−1
e1e2

(I) = [2l, 2u] F−1
e2e3

(I) =
[
l − 11

60
, u +

1
10

]

F−1
eiei+1

(I) = I 3 ≤ i ≤ 7 F−1
e8e1

(I) =
[
l − 1

5
, u − 1

5

]

Besides, Preσ(I) = F−1(I ∩ J) ∩ S , where F−1(I) = [2l − 23
30 , 2u − 1

5 ].

Given two edges e and e′ and an interval I ⊆ e′ we define the ∀-predecessor
P̃re(I) in a similar way to Pre(I) using the universal inverse (see Definition 6)
instead of just the inverse.

D 9. For I ⊆ e′, P̃reee′ (I) is the set of points in e such that any successor
of such points are in I by a trajectory segment in P.

We have that P̃reee′ = S̃uc
−1
ee′ and, given a signature σ = e1e2 . . . em, P̃reσ = S̃uc

−1
σ .
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3.2 Qualitative analysis of simple edge-cycles

We are interested in analysing the infinite behaviour of simple edge-cycles and we
find then convenient to make a classification of such cycles. We need first some
preliminary definitions.

Let σ = e1 · · · eke1 be a simple edge-cycle, i.e., ei , e j for all 1 ≤ i , j ≤ k.
Let Succσ(I) = F(I ∩ S )∩ J with F = 〈 fl, fu〉 (we suppose that this representation
is normalised). We denote by Dσ the one-dimensional discrete-time dynamical
system defined by Succσ, that is xn+1 ∈ Succσ(xn).

A 3. None of the two functions fl, fu is the identity.

Let l∗ and u∗ be the fix-points of fl and fu, respectively (the fix-point x∗ is computed
by solving a linear equation f (x∗) = x∗, which can be finite or infinite), and S ∩
J = 〈L,U〉. By comparing the fix-points with the interval 〈L,U〉, we know (see
[Schneider 2002]) that a simple cycle is of one of the following types:

STAY. The cycle is not abandoned neither by the leftmost nor the rightmost tra-
jectory, that is, L ≤ l∗ ≤ u∗ ≤ U.

DIE. The rightmost trajectory exits the cycle through the left (consequently the
leftmost one also exits) or the leftmost trajectory exits the cycle through the
right (consequently the rightmost one also exits), that is, u∗ < L ∨ l∗ > U.

EXIT-BOTH. The leftmost trajectory exits the cycle through the left and the right-
most one through the right, that is, l∗ < L ∧ u∗ > U.

EXIT-LEFT. The leftmost trajectory exits the cycle (through the left) but the
rightmost one stays inside, that is, l∗ < L ≤ u∗ ≤ U.

EXIT-RIGHT. The rightmost trajectory exits the cycle (through the right) but the
leftmost one stays inside, that is, L ≤ l∗ ≤ U < u∗.

E 5. Let σ = e1 · · · e8e1 be as before. We have that S ∩ J = 〈L,U〉 = ( 1
5 ,

53
60 ).

The fix-points of Equation (1) are such that L = l∗ = 1
5 < u∗ = 23

30 < U. Thus, σ is
STAY.

The classification above gives us some information about the qualitative be-
haviour of trajectories. Any trajectory that enters a cycle of type DIE will eventu-
ally quit it after a finite number of turns. If the cycle is of type STAY, all trajecto-
ries that happen to enter it will keep turning inside it forever (provided they cycle
at least once). In all other cases, some trajectories will turn for a while and then
exit, and others will continue turning forever. This information is very useful for
solving the reachability problem [Asarin et al. 2001] as well as for obtaining the
invariance kernel.

E 6. Consider again the cycle σ = e1 · · · e8e1. Fig. 2 shows the reach set
of the interval [0.95, 1.0] ⊂ e1. Notice that the leftmost trajectory “converges to”
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Fig. 2: Reachability analysis.

the limit l∗ = 1
5 . Fig. 2 has been automatically generated by the SPeeDI toolbox

[Asarin et al. 2002a] we have developed for reachability analysis of SPDIs based
on the results given in [Asarin et al. 2001].

The above result does not allow us to directly answer other questions about the
behaviour of the SPDI such as determine for a given point (or set of points) whether
any trajectory (if it exists) starting in the point remains in the cycle forever. In order
to do this, we need to further study the properties of the system around simple
edge-cycles and in particular STAY cycles.

4. Invariance Kernel

In this section we present the main contributions of this paper, after defining in-
variance kernels. In a first part we prove some useful properties of STAY cycles,
while in the last part we show how to effectively compute invariance kernels.

In general, an invariant set is a set of points such that for any point in the set it
exists an infinite trajectory starting in such point and every such trajectory remains
in the set forever and the invariance kernel is the largest of such sets.

In particular, for SPDI, given a cyclic signature, an invariant set is a set of points
which keep rotating in the cycle forever and the invariance kernel is the largest of
such sets. We show that this kernel is a non-convex polygon (often with a hole in
the middle) and we give a non-iterative algorithm for computing the coordinates of
its vertexes and edges.

In what follows, let K ⊂ � 2 . We recall the definition of viable trajectory [Aubin
1991].

D 10. A trajectory ξ is viable in K if ξ(t) ∈ K for all t ≥ 0. K is a viability
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domain if for every x ∈ K, there exists at least one trajectory ξ, with ξ(0) = x,
which is viable in K.

We give now the formal definition of invariance kernel.

D 11. We say that a set K is invariant iff for any x ∈ K there exists at
least one trajectory starting in it and every trajectory starting in x is viable in K.
Given a set K, its largest invariant subset is called the invariance kernel of K and
is denoted by Inv(K).

4.1 Properties of STAY cycles

In this section we state some properties of STAY cycles. Recall thatDσ denotes the
one-dimensional discrete-time dynamical system defined by Succσ, that is xn+1 ∈
Succσ(xn). The concepts above can be defined for Dσ, by setting that a trajectory
x0x1 . . . of Dσ is viable in an interval I ⊆ �

, if xi ∈ I for all i ≥ 0. Similarly we
say that an interval I in an edge e is invariant if any trajectory starting on x0 ∈ I is
viable in I.

In what follows we provide a characterisation of one-dimensional discrete-time
invariant but before we need the following notational convention. Remember that
Succ(I) = F(I ∩ S ) ∩ J. Henceforth, whenever the signature σ is understood from
the context we will use indistinctly the notation Succσ and F for the successor
function, given that successors are TAMFs. Similarly for the predecessor function
Preσ and F −1.

L 1. For Dσ and σ a STAY cycle, the following is valid. If I is such that
F(I) ⊆ I and F(I) = F (I) then I is invariant. On the other hand if I is invariant
then F(I) = F (I).

P. Suppose that F(I) = F (I) and F(I) ⊆ I, then F (I) ⊆ I, thus by definition
of STAY and monotonicity of F , we know that for all n, F n(I) ⊆ I. Hence I is
invariant. Let suppose now that I is invariant, then for any trajectory starting on
x0 ∈ I, x0x1 . . . is in I and trivially F(I) = F (I). �

The following lemma states that, for STAY cycles, the image of the non-truncated
successor function applied to S ∩ J is in S ∩ J.

L 2. For STAY cycles, F(S ∩ J) ⊆ S ∩ J.

P. Direct from the definition of STAY cycles and the fact that the fix-points
are global attractors. �

We show now that for the kind of cycles under consideration, applying the trun-
cated or the non-truncated successor function gives the same result, given that the
argument is the interval S ∩ J.

L 3. For STAY cycles, F (S ∩ J) = F(S ∩ J).
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P. Suppose that x ∈ F (S ∩ J), then x ∈ F(S ∩ J)∩ J by definition of F , thus
x ∈ F(S ∩ J). Let’s prove now that F(S ∩ J) ⊆ F (S ∩ J). Let x ∈ F(S ∩ J), then
x ∈ S ∩ J by Lemma 2. Hence x ∈ F(S ∩ J) ∧ x ∈ S ∩ J, i.e. x ∈ F(S ∩ J)∩ (S ∩ J)
or what is the same, x ∈ (F(S ∩ J) ∩ J) ∧ x ∈ S . Thus x ∈ F (S ∩ J). �

The following result shows that the image of the successor function of a STAY
cycle is included in its domain. That means that if we apply a successor to an
interval I ⊆ J, we are sure that the result will be in its domain, thus we will be able
to apply the function once more and again.

L 4. For STAY cycles, J ⊆ S .

P. By normalisation, J = F (S ) and by definition of STAY F (S ) ⊆ S , thus
J ⊆ S . �

We give now a bound on the greatest interval having the property of equating
truncated and non-truncated successors.

L 5. For STAY cycles, the greatest interval IK such that F (IK) = F(IK) is
bounded by S ∩ J and S , i.e. S ∩ J ⊆ IK ⊆ S .

P. That S ∩ J ⊆ IK follows immediately from Lemma 3 and the hypothesis.
We prove now that IK ⊆ S . By hypothesis and by definition of F , F(IK ) = F(IK ∩
S ) ∩ J, then F(IK) ⊆ F(IK ∩ S ), but by monotonicity of F this is only possible if
IK ⊆ IK ∩ S that implies that IK ⊆ S . �

Next lemma gives an upper bound for the universal inverse of a non-truncated
successor when applied to its image J.

L 6. For STAY cycles, F̃−1(J) ⊆ S .

P. By Lemma 4, J ⊆ S and by Lemma 2, F(J) ⊆ J. On the other hand
F (S ) = J and then J ⊆ F(S ) (since F (H) ⊆ F(H) for any H). Applying F̃−1

to both sides we obtain F̃−1(J) ⊆ F̃−1(F(S )) and by Lemma 12 (see Appendix),
F̃−1(F(S )) = S and then F̃−1(J) ⊆ S . �

In what follows we show that the image of the successor function, namely J, is
a fix-point of the composition function of the truncated successor and its universal
inverse.

L 7. For STAY cycles, F (F̃ −1(J)) = J.

P.

J = F (F̃ −1(J))
= F (F̃−1(J) ∩ S ) (by definition of F̃ −1)
= F(F̃−1(J) ∩ S ) ∩ J (by definition of F )
= F(F̃−1(J)) ∩ J (by Lemma 6)
= J ∩ J (by Lemma 12 – see Appendix)
= J
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�
The last lemma of this section shows that J is also a fix-point of the composition

function of the non-truncated successor and the universal inverse of the truncated
successor.

L 8. For STAY cycles, F(F̃ −1(J)) = F (F̃ −1(J)).

P. That F (F̃ −1(J)) ⊆ F(F̃ −1(J)) follows directly from the definition of F
and F . We prove now that F(F̃ −1(J)) ⊆ F (F̃ −1(J)). Let x ∈ F(F̃ −1(J)), then by
Lemma 11 (see Appendix), x ∈ F(F̃−1(J) ∩ S ). But by Lemma 6, F̃−1(J) ⊆ S and
then F̃−1(J) ∩ S , ∅. We have then that x ∈ F(F̃−1(J)) ∩ F(S ) and by Lemma 12
(see Appendix) x ∈ J ∧ x ∈ F(S ). On the other hand, from x ∈ F(F̃−1(J) ∩ S )
and x ∈ J, x ∈ F(F̃ −1(J) ∩ S ) ∩ J and by definition of F , x ∈ F (F̃ −1(J)). �

Besides being important properties of STAY cycles, all the results shown in this
section are crucial for computing invariance kernel, as shown in next section.

4.2 Invariance Kernel Computation

Before showing how to compute an invariance kernel for a cycle σ = e1 . . . ene1,
we will show how to compute it for the one-dimensional discrete-time systemDσ,
i.e. Inv(e1).

T 2. For Dσ, if σ = e1 . . . ene1 is STAY then Inv(e1) = P̃reσ(J), otherwise
Inv(e1) = ∅.

P. That Inv(e1) = ∅ for any type of cycle but STAY follows directly from the
definition of each type of cycle.

Let’s consider a STAY cycle with signature σ. Let IK = F̃ −1(J) = P̃reσ(J). We
know that F(F̃ −1(J)) = F (F̃ −1(J)) = J (see Lemmas 7 and 8). By Lemmas 2, 3
and 4, we have that F (J) ⊆ J, so J ⊆ F̃ −1(J) and then F(F̃ −1(J)) ⊆ F̃ −1(J). We
have then, by Lemma 1, that IK is invariant. We prove now that IK is indeed the
greatest invariant. Let suppose that there exists an invariant H ⊆ S strictly greater
than IK . By assumption we have that IK = F̃ −1(J) ⊂ H, then by monotonicity
of F , F (F̃ −1(J)) ⊂ F (H) and by Lemma 7 we have that J ⊂ F (H), but this
contradicts the monotonicity of F since J = F (S ) ⊂ F (H) and then S ⊂ H which
contradicts the hypothesis that H ⊆ S . Hence, Inv(e1) = P̃reσ(J). �

The invariance kernel for the continuous-time system can be now found by prop-
agating P̃re(J) from e1 using the following operator. The extended ∀-predecessor
of an output edge e of a region R is the set of points in R such that every trajectory
segment starting in such point reaches e without traversing any other edge. More
formally,

D 12. Let R be a region and e be an edge in Out(R). The e-extended ∀-

predecessor of I, P̃ree(I) is defined as:

P̃ree(I) = {x | ∀ξ . (ξ(0) = x ⇒ ∃t ≥ 0 . (ξ(t) ∈ I ∧ Sig(ξ[0, t]) = e))}.
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The above notion can be extended to cyclic signatures (and so to edge-signatures)
as follows. Let σ = e1 . . . ek be a cyclic signature. For I ⊆ e1, the σ-extended ∀-

predecessor of I, P̃reσ(I) is the set of all x ∈ � 2 for which any trajectory segment
ξ starting in x, reaches some point in I, such that Sig(ξ) is a suffix of e2 . . . eke1.

It is easy to see that P̃reσ(I) is a polygonal subset of the plane which can be

calculated using the following procedure. First compute P̃reei (I) for all 1 ≤ i ≤ k
and then apply this operation k times:

P̃reσ(I) =
k⋃

i=1

P̃reei (Ii)

with

I1 = I,
Ik = P̃reeke1 (I1) and
Ii = P̃reeiei+1(Ii+1), for 2 ≤ i ≤ k − 1.

Now, let us define the following set:

Kσ =

k⋃

i=1

(int(Pi) ∪ ei) (2)

where Pi is such that ei−1 ∈ In(Pi), ei ∈ Out(Pi) and int(Pi) is the interior of Pi.
We can now compute the invariance kernel of Kσ.

T 3. If σ = e1 . . . ene1 is STAY then Inv(Kσ) = P̃reσ(P̃reσ(J)), otherwise
Inv(Kσ) = ∅.

P. Trivially Inv(Kσ) = ∅ for any type of cycle but STAY. That Inv(Kσ) =

P̃reσ(P̃reσ(J)) for STAY cycles, follows directly from Theorem 2 and definition of

P̃re. �

E 7. Let σ = e1 . . . e8e1 on the SPDI considered before. Fig. 3 depicts: (a)

Kσ, and (b) P̃reσ(P̃reσ(J)).

We have at this point all the elements for providing an algorithm to compute all
the invariance kernels of simple edge-cycles of a given SPDI.

for each simple cycle σ
if σ is STAY

then←− P̃reσ(P̃reσ(J))
else ←− ∅

Soundness of the algorithm follows directly from Theorem 3.
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Fig. 3: Invariance kernel.

5. Conclusion

The main contribution of this paper is an automatic procedure to obtain an im-
portant object of the phase portrait of polygonal differential inclusions systems
(SPDIs), namely invariance kernels. We have characterised where these kernels
“live”, namely in STAY cycles, and we have also proved many useful properties of
such cycles. Two remarkable features of our algorithm is that it depends only on the
computation of the predecessor and successor operators and that the computation
is exact.

Related Work The use of differential inclusions as a tool for modeling un-
certainties has been known for more than 70 years (Marchaud [1934]; Zaremba
[1936]; see also the book by Aubin and Cellina [1984] for a more complete treat-
ment of the subject). One of the reasons for a renewed interest in differential inclu-
sions was the development of viability theory [Aubin 1991]. Invariance, as well as
viability and controllability kernels may be defined under the framework of the vi-
ability theory. Despite of the similarity on the definition of viability and invariance
kernels, they differ on the quantification over trajectories: For viability kernels we
demand the existence of at least one trajectory remaining in the set forever while
for invariance kernels we ask so for every trajectory.

Some results concerning the computation of viability kernels for hybrid systems
using viability theory were given by Aubin et al. [2001], Aubin and Saint-Pierre
[2003] and Saint-Pierre [2002], which is for sure a non exhaustive list. In particu-
lar, Aubin et al. [2001] give a characterisation of invariance kernels for impulsive
differential inclusions. Works based on viability theory differ from ours mainly in
that they usually compute an approximation of the kernels (using numerical meth-
ods) while in our case we compute them exactly. This is possible since we consider
a specific class of hybrid systems in the plane, while the above-mentioned works
are more general.

As already mentioned in the introduction, besides their inherent importance as
phase portrait objects, invariance kernels are used to prove termination of a breadth-
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first search reachability algorithm for SPDIs, as shown in [Pace and Schneider
2003] (see also [Pace 2003] for more details about the algorithm).

Future Direction Invariance kernels provide an insight about the qualitative
behaviour of SPDIs, characterising the “sinks” on simple edge-cycles. Since SPDIs
could be used for approximating non-linear differential equations, one interesting
application of such kernels is their use for finding the limit cycles of such equations.

Another relevant question is whether it would be possible to extend the result
presented in this paper for higher dimensional hybrid systems. We believe it is
possible to compute the invariance kernels of SPDIs defined over two dimensional
manifolds, even though the reachability problem for such systems is an open ques-
tion [Asarin and Schneider 2002].
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Appendix A. Some Properties of Successors and Predecessors

Remember that Succ(I) = F(I ∩ S ) ∩ J. As the successor functions Succ are
TAMFs, we will use in what follows the notation F instead of Succ. Similarly for
the predecessor function.

The following lemma gives a characterisation of F̃−1:

L 9. If I′ is non empty, then F̃−1(I) = I′ iff F(I′) = I.

P. That F(I′) = I implies F̃−1(I) = I′ follows directly from the definition of
F̃−1.

Assume now that F̃−1(I) = I′, then by definition I′ is the greatest non-empty
interval such that for all x ∈ I ′, F(x) ⊆ I. Hence F(I′) ⊆ I. We prove now that
I ⊆ F̃−1(I′). Let x ∈ I, then it exists y ∈ F̃−1(x), i.e. x ∈ F(y). Thus, x ∈ F(I ′) and
then I ⊆ F̃−1(I′). We have then proved that F̃−1(I) = I′ implies F(I′) = I. �
It is not difficult to show that F̃−1

= 〈 f −1
l , f −1

u 〉:

L 10. Given an AMF F = 〈 fl, fu〉, then F̃−1
= 〈 f −1

l , f −1
u 〉.

P. Let I = 〈lI , uI〉 and suppose that I′ = 〈lI′ , uI′〉 is a non-empty interval.

F̃−1(I) = I′ ⇐⇒ F(I′) = I (by Lemma 9)
⇐⇒ 〈 fl(lI′ ), fu(uI′ )〉 = 〈lI , uI〉〉
⇐⇒ fl(lI′ ) = lI ∧ fu(uI′ ) = uI
⇐⇒ lI′ = f −1

l (lI) ∧ uI′ = f −1
u (uI)

⇐⇒ 〈lI′ , uI′〉 = 〈 f −1
l (lI) = f −1

u (uI)〉
⇐⇒ I′ = 〈 f −1

l (lI) = f −1
u (uI)〉

⇐⇒ F̃−1(I) = 〈 f −1
l (lI) = f −1

u (uI)〉

�
The following Lemma relate F̃−1 with F̃ −1:

L 11. Given a TAMF F (I) = F(I ∩ S ) ∩ J, then F̃ −1(I) = F̃−1(I ∩ J) ∩ S .

P. Similar to Lemma 1 of [Schneider 2002, p. 41]. �

L 12. If F̃−1(I) , ∅, then F̃−1(F(I)) = F(F̃−1(I)) = I.

P. Follows directly from the definition of F̃−1. �
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