
Towards integration of XML in the Creol object-oriented
language

Arild Torjusen, Olaf Owe, Gerardo Schneider
Department of Informatics, University of Oslo - Oslo, Norway{aribraat,olaf,gerardo}�ifi.uio.no

Abstract
Creol is a high level object-oriented modeling language fordistributed
systems. In this paper we propose an extension to Creol for handling XML
documents.

1 Introduction
XML (eXtensible Markup Language) [2] is a flexible and generic format for structured
data aimed at being shared on the World Wide Web and intranets. The need for XML
documents as first-class citizens is acknowledged by academic as well as by business-
oriented communities [7].

XML documents are ordered labeled tree structures containingmarkup symbols
describing their content. The document structure is described by a document type—or
schema—written in a schema language. The integration of XML on current object-
oriented languages is far from trivial. The initial approach has been to treat XML through
APIs which use strings for representing literals. One problem with this approach is that
it limits the use of static checking tools. Furthermore, therepresentation of programs as
text involves potential security risks. See [7] for a more detailed description of the main
problems arising with the integration of XML in object-oriented languages.
Creol Our research project concerns integration of XML into the object-oriented language
Creol [6]. The main features of Creol are: It supports object-oriented classes and
subclasses, as well as user defined data types and functions.This gives flexibility in
our choices when representing XML. Creol is oriented towards open distributed systems,
with support for concurrency and asynchronous communication. This gives an interesting
setting for exploring processing and sharing of XML documents. Creol is strongly typed
and has a formal operational semantics defined in rewriting logic with a small kernel
consisting of only 11 rewrite rules. This makes it easy to extend the language and to
formalize the extensions by reuse of the operational semantics. The interpreter for Creol
written in Maude [3] provides a useful framework for implementation and testing.
Our Agenda In order to integrate XML documents in Creol, we intend to address the
following issues: (1) Parsing and well-formedness checking of XML documents; (2)
internal representation of XML in Creol with preservation of Creol static type-safety;
(3) validity-checking of XML data-structures against schemas; (4) queries on XML
documents; and finally (5) more complex transformations on XML documents.

This paper gives a sketch of the first steps towards integration of XML in Creol.
We give a representation of XML in Creol and address the issueof validity-checking.

This paper was presented at the NIK-2007 conference; see http://www.nik.no/.

{aribraat,olaf,gerardo}@ifi.uio.no

Validation can be done either by functions defined “on top” ofthe existing type system
or by enhancing the Creol type system withregular expression types [5]. The former
approach is taken here. A more detailed presentation of our work is available in the
research report [9], which also contains a larger example and a survey of related work.

In the next section we show how XML documents are integrated in Creol. In Section3
we show how schemas are represented in Creol. Section4 is concerned with the validation
of XML documents. In Section5 we conclude and present further work.

2 A model for XML in Creol
The data model defined in the XPath 1.0 Recommendation [10] isthe basis for canonical
XML which we will take as the point of departure for the internal representation of XML
in Creol. XPath models an XML document as an ordered tree containing nodes of seven
different types. We will focus on the following four node types in our model: Aroot
node represents the root of the XML tree; anelement node has a name (corresponding
to the XML tag for the element) and may have as its children nodes of other kinds and
associated sets of attribute and namespace nodes;text nodes represent character data; and
attribute nodes contain name/value pairs for attributes. The three remaining node types:
namespace, processing instructions, andcomment nodes are left out from the model for
now since they are less relevant to demonstrating integration of XML in Creol. Leaving
these out also simplifies the definition of element nodes and allows us to represent a root
node with an element node (cf. [9]).

Since the Creol operational semantics is executable in Maude, we accommodate XML
by extending the operational semantics with Maude sorts (type names) for XML names,
element, text, and attribute nodes, as well as a sort for XML documents and a common
supersortContentNd for nodes that can occur as children of an element node (i.e. element
and text nodes):sorts XMLName ElemNd TextNd AttNd ContentNd XMLDo .subsort ElemNd TextNd < ContentNd .
We add the following constructors:op (_=_) : XMLName String -> AttNd [tor℄ .op tx : String -> TextNd [tor℄ .op _(_)[_℄ : XMLName AttNdList ContentNdList -> ElemNd [tor℄ .op _[_℄ : XMLName ContentNdList -> ElemNd [tor℄ .op xmlDo : ElemNd XMLShema -> XMLDo [tor℄ .
Example The XML fragment:<rp addr="vera�foo.om">Vera</rp> has the Maude
syntax:"rp"("addr"="vera�foo.om")[tx("Vera")℄.

3 Schemas and type checking
There are several generally adopted XML schema languages with different expressive
power [8]. The DTD language is sufficiently expressive for our purpose of demonstrating
XML integration in Creol and hence we adapt its restrictionsto achieve simple validation
(i.e. only deterministic regular expressions are allowed in the definition of an element).
The schema type for Creol A DTD is a list of markup declarations i.e. either declarations
of element type, attribute-list, entity, or of notation. We only consider declarations of
element type here. TheXMLShema constructor is:op xmlShema : XMLName ElemDelList -> XMLShema [tor℄ .

with an additional operatornoShema for use in XML documents with no XML Schema.
Element type declarations consist of a name and a specification of the legal content.

There are four kinds of specification: either one of the keywords “EMPTY” or “ANY”,
or the specification of acontent model, or a mixed-content declaration of the form:
(#PCDATA | e1 | e2 | . . . | en) ∗ where eachei is an element name.

A content model is a context free grammar governing the allowed types of the child
elements and the order in which they are allowed to appear. Wemodel the content models
as regular expressions over the alphabetΣ containing element names and the reserved
namePCDATA. By includingPCDATA in Σ, a mixed-content declaration may be modeled
as a content model specification. The set of regular expressions overΣ∗ is obtained
using concatenation (�), union (|), and star as well as ’?’ and ’+’ with their standard
interpretation:op elDel : XMLName ContentModel -> ElemDel [tor℄ .ops empty any : -> ContentModel [tor℄ .op elCt : RegExp -> ContentModel [tor℄ .op PCDATA : -> RegExp [tor℄ .ops _? _* _+ : RegExp -> RegExp [tor pre 40 ℄ .op (_�_) : RegExp RegExp -> RegExp [tor asso pre 42 ℄op _|_ : RegExp RegExp -> RegExp [tor pre 44 ℄
Example The DTD fragment:<!DOCTYPE email [<!ELEMENT email (head, body, foot*)><!ELEMENT head (sender, rp, subjet?)>...℄>
has the Maude syntax:xmlShema("email", (elemDel("email",elCt("head"�"body"�("foot"*)))elemDel("head",elCt("sender"�"rp"�("subjet"?)))...)) .
4 Validating XML in Creol
Well-formedness of any value of typeXMLDo is ensured by Maude type checking.
The XML specification defines an XML document to bevalid “if it has an associated
document type declaration and if the document complies withthe constraints expressed
in it” [2].

Validation of an XML document is performed by the functionvalidate : XMLDo
→ ValResult. A ValResult is a boolean/string pair where the boolean value indicates
validity and the string contains an error message or a recordof the processing.validate
checks whether there is a schema with a name matching the document root node
associated with the document, in which case the recursive functionval is called, otherwise
validation ends with a negative result. The functionval : ContentNdList ElemDelList
→ ValResult validates a content node list against the element declaration list defined
by the schema by retrieving for each node the corresponding declaredContentModel and
calling the functionhek : ContentNd ContentModel ElemDelList → ValResult. If
there is noContentModel for some node the document is invalid. Note also that according
to [2] an element type must not be declared more than once so uniqueness of declarations
may be assumed.

For aContentNd to be valid relative to aContentModel we need to consider three cases:
TheContentModel is empty and the element should have no content or theContentModel
is any and the element can consist of any sequence of (declared) elements intermixed
with character data. These two cases are easy to check. The third case is where theContentModel specifies a regular expression and it is checked by matching the list of
names of children elements of the node against the regular expression specified in theContentModel and in addition callingval on the list of children elements. Matching

of a list of element names against a regular expression is implemented by constructing a
deterministic finite automaton from the regular expressionand test whether the automaton
accepts the string corresponding to the list of names.

5 Conclusion
Integrating XML documents in object-oriented languages isnot easy in general as
witnessed by the extensive research conducted in this area,and nicely presented in the
survey [7]. We have outlined how to integrate XML documents into Creol, an object-
oriented language with formal semantics in rewriting logic. We have also presented an
algorithm for validating XML documents against XML schemas, to show that the former
are instances of the latter.

This paper is a first step towards a full integration of XML into Creol, and we intend to
pursue our work as to complete our agenda described in Section 1. In particular, we find
it interesting to be able to manipulate and reason about XML documents, and to enhance
the Creol type system withregular expression types and to adapt the semantic sub-typing
algorithm from the related work on CDuce [1] and XDuce [4].

References
[1] V. Benzaken, G. Castagna, and A. Frisch. CDuce: an XML-centric general-purpose

language.SIGPLAN Not., 38(9):51–63, 2003.

[2] T. Bray, J.Paoli, C. Sperberg-McQueen, E. Maler, and F. Yergeau. Ex-
tensible Markup Language (XML) 1.0, third edition, February 2004.
http://www.w3.org/TR/REC-xml/.

[3] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martí-Oliet,J. Meseguer, and J. F.
Quesada. Maude: Specification and programming in rewritinglogic. Theoretical
Comput. Sci., 285:187–243, Aug. 2002.

[4] H. Hosoya and B. C. Pierce. XDuce: A statically typed XML processing language.
ACM Trans. Inter. Tech., 3(2):117–148, 2003.

[5] H. Hosoya, J. Vouillon, and B. C. Pierce. Regular expression types for XML. ACM
SIGPLAN Notices, 35(9):11–22, 2000.

[6] E. B. Johnsen and O. Owe. An asynchronous communication model for distributed
concurrent objects.Software and Systems Modeling, 6(1):35–58, Mar. 2007.

[7] E. Meijer, W. Schulte, and G. Bierman. Programming with circles, triangles and
rectangles. InProceedings of the XML Conference, 2003.

[8] M. Murata, D. Lee, and M. Mani. Taxonomy of XML schema languages using
formal language theory. InExtreme Markup Languages, Montreal, Canada, 2001.

[9] A. Torjusen, O. Owe, and G. Schneider. Towards integration of XML in the Creol
object-oriented language. Res. Rep. 365, Dept. of Informatics, Univ. of Oslo, Oct.
2007.

[10] W3C (World Wide Web Consortium). XML Path Language (XPath)
Version 1.0, 1999. W3C Recommendation 16 November 1999.http://www.w3.org/TR/1999/REC-xpath-19991116.

http://www.w3.org/TR/1999/REC-xpath-19991116

	Introduction
	A model for XML in Creol
	Schemas and type checking
	Validating XML in Creol
	Conclusion

