CROME: Contract-Based Robotic Mission
Specification

Piergiuseppe Mallozzi', Pierluigi Nuzzo®, Patrizio Pelliccione!'?, Gerardo Schneider!
!Chalmers University of Technology | University of Gothenburg, Sweden
2University of L’ Aquila, Italy
3Viterbi School of Engineering, University of Southern California, Los Angeles, USA
Email: mallozzi @chalmers.se, nuzzo@usc.edu, patrizio.pelliccione @univagq.it, gersch@chalmers.se

Abstract—We address the problem of automatically construct-
ing a formal robotic mission specification in a logic language
with precise semantics starting from an informal description
of the mission requirements. We present CROME (Contract-
based RObotic Mission spEcification), a framework that allows
capturing mission requirements in terms of goals by using
specification patterns, and automatically building linear temporal
logic mission specifications conforming with the requirements.
CROME leverages a new formal model, termed Contract-based
Goal Graph (CGG), which enables organizing the requirements
in a modular way with a rigorous compositional semantics. By
relying on the CGG, it is then possible to automatically: i)
check the feasibility of the overall mission, ii) further refine it
from a library of pre-defined goals, and iii) synthesize multiple
controllers that implement different parts of the mission at
different abstraction levels, when the specification is realizable. If
the overall mission is not realizable, CROME identifies mission
scenarios, i.e., sub-missions that can be realizable. We illustrate
the effectiveness of our methodology and supporting tool on a
case study.

I. INTRODUCTION

In the near future, service robots will increasingly be used to
support tasks in everyday life [1], [2], [3], even though existing
solutions are often not readily usable [4]. Service robots are
“a type of robot that performs useful tasks for humans or
equipment excluding industrial automation applications” [5].
The service robotics market is estimated to reach a value of
$24 billion by 2022 [3]. However, the robots that we find
in the market today are highly specialized to accomplish a
specific function. Their use often reduces to clicking a specific
button that will trigger the execution of the specific mission
the robot is programmed for. For instance, this is the case of
commercial vacuum cleaner robots like Roomba [6]. On the
other hand, the advent of multipurpose service robots, required
to accomplish various domain-specific missions, calls for new
languages and tools to enable end users to accurately specify
complex missions [2], [7], [8].

We make a distinction between a mission requirement,
i.e., an informal description of the mission the robots must
perform, and a mission specification, i.e., a formulation of
the mission in a formal (logical) language with precise se-
mantics [2]. Producing a mission specification from a mission
requirement is identified as the mission specification problem.
Many results in the literature highlight the advantages of

978-1-7281-9148-5/20/$31.00 © 2020 IEEE

specifying robotic missions in a temporal logic language,
like linear temporal logic (LTL) or computation tree logic
(CTL) [9], (101, [11], [12], [13], [14], [15], [16], [17],
[18], [19], [20], [21], [22]. Using formal languages makes
behavioral specifications precise and unambiguous. However,
logic formulas can be difficult to interpret for the end user,
and generating them can be an error-prone process [23],
[24], [2]. Mission requirements, on the other hand, are often
ambiguous [25], [26], [27] and make it hard to assess the
correctness of the specification [28], [29], [30], [31]. In recent
years, there have been many proposals for describing mission
requirements based on: i) domain specific languages [7], [32],
[33], ii) natural language [26], and iii) visual and end-user-
oriented environments [34], [35], [36], [37], mostly used for
educational purposes. While the approaches above provide
substantial contributions to the mission specification problem,
solutions that can scale to complex missions and enable the
deployment of service robots in everyday life are still elusive.
As stated in the Multi-Annual Roadmap for Robotics in
Europe (MAR) [38], to reduce costs and establish a vibrant
component market, we need tools that can support mission
reuse and diversification, as well as the variability of condi-
tions and application scenarios occurring in a real mission.
This is also witnessed by our findings during a collaboration
with practitioners in the robotic domain [39]. While it is often
not difficult to define what the robots should do, the challenge
is in coping with the variability of the environments in which
the robots operate, especially those involving humans [39]. To
address this issue, we would need to explicitly enumerate all
the possible variants of a mission using, e.g., state diagrams or
flow charts, which can be difficult, tedious, and error-prone.
Menghi et al. [2] have recently identified and proposed a
catalogue of robotic movement patterns, which are solutions
to recurring problems in mission specification. Patterns are
based on LTL formulas, which are often used to automatically
synthesize plans [12], [15], [40], [41], [42]. While grounded
in a formal language, these patterns can also be used by non-
experts and there exist tool support to compose them via
conjunction or disjunction for the specification of complex
missions [43]. Garcia et al. [7] introduce more complex
composition rules, including control-flow operators like fall-
back (to define alternative strategies when the previous ones
fail), exception-handling (to stop the current execution when

an exception is raised and then continue with the current task),
and sequence (to perform a sequence of tasks). However,
control-flow operators are implemented in software but lack
a formal representation in logic, which makes it difficult to
verify the feasibility of the entire mission specification in a
way that is independent of the implementation.

In this paper, we propose a framework, named CROME
(Contract-based RObotic Mission spEcification), that explicitly
addresses the problems of specification reuse and environment
modeling in mission specification, enabling the designer to
cope with the variability of the application scenarios of a
robotic mission. By building on recent work on contract-based
requirement engineering [40], [44], [41], leveraging context-
aware contract models and patterns to generate controller
specifications, we decouple the task specification from the
specification of the context in which the task is executed.
End users explicitly specify the various mission tasks together
with their contexts. The overall mission is then automatically
compiled by CROME. CROME contributes to the following
aspects of the mission specification process:

o Formulating mission requirements. We model each re-
quirement as a goal, expressed using a set of previously
proposed patterns [2], [45]. Goal models have been used
over the years as an intuitive and effective means to
capture the designer’s objectives and their hierarchical
structure [46]. In this paper, we augment the notion of
goal to explicitly include a concept of context, which en-
ables building mission specifications that are adaptable to
different environmental conditions. Contexts help capture
the variability associated with a mission goal, so that the
same goal can be implemented in different ways when
used in different contexts.

o Generating mission specifications. We introduce a novel
model, termed contract-based goal graph (CGG), which
is automatically generated to formalize a mission and its
sub-missions. The CGG is a graph of goals where the
root node represents the overall mission, its immediate
children represent mission scenarios, and the rest of the
nodes are part of the sub-missions. In a CGG, goals
are captured by assume-guarantee contracts [47] and are
linked together using operations and relations between
contracts. We differentiate the scenario nodes from other
nodes since they are goals that have mutually exclusive
contexts and identify sub-missions that cannot be jointly
realized.

o Refining mission specifications out of a library of goals.
We introduce an algorithm that automatically refines the
leaf nodes of a CGG using the goals in a library, so that
“abstract” goals in the CGG can be further implemented
(refined) by more “concrete” goals.

By formalizing the mission specification with a CGG,
CROME also offers the following capabilities:

o Requirement conflict identification. By checking the sat-
isfiability of the CGG contracts, we are able to identify
the presence of conflicts in the mission requirements and

immediately inform the designer, before attempting at
synthesizing a controller.

e Realizability checking and controller generation.
CROME checks the realizability of each scenario in the
CGG and informs the designer of which sub-goals can
be realized (i.e., a controller can be synthesized), given
a model of the environment. For each realizable goal
of the CGG, CROME synthesizes a controller in the
form of a Mealy machine. The controllers are produced
together with the CGG.

Our case study shows that the modularity of the CGG allows
efficiently checking the feasibility of a mission. The identifi-
cation of the scenarios allows analyzing the impact of environ-
ment variability on the realizability of the robotic mission. The
automatic refinement from a goal library facilitates the reuse
of existing goals to implement complex specifications. Finally,
mutually exclusive scenarios can point to control architectures
that may not have a centralized implementation, while still
being realizable in a decentralized fashion.

The rest of the paper is organized as follows. In Section II
we provide background notions and related work on contracts,
linear temporal logic, specification patterns, and contexts.
We introduce CROME in Section III. We detail how the
robotic mission is specified and mutually exclusive contexts
are generated in Section IV and Section V, respectively. We
present the CGG in Section VI and illustrate our approach on
a case study motivated by a care center in Section VII. Finally,
in Section VIII, we draw some conclusions.

II. BACKGROUND AND RELATED WORK

We provide some background on the basic building blocks
of CROME: contracts, linear temporal logic, and specification
patterns.

A. Assume-Guarantee Contracts

Contract-based design [47], [44] has emerged over the years
as a design paradigm capable of providing formal support
for building complex systems in a modular way, by enabling
compositional reasoning, stepwise refinement, and reuse of
pre-designed components.

A contract C is a triple (V,A,G) where V is a set of
system variables (including, e.g., input and output variables
or ports), and A and G are sets of behaviors over V. For
simplicity, whenever possible, we drop V' from the definition
and refer to contracts as pairs of assumptions and guarantees,
ie., C = (A,G). A expresses the behaviors that are expected
from the environment, while G expresses the behaviors that an
implementation promises under the environment assumptions.
In this paper, we express assumptions and guarantees as sets of
behaviors satisfying a logic formula; we then use the formula
itself to denote them, with a slight abuse of notation, whenever
there is no confusion. An environment £ satisfies a contract C
whenever F and C are defined over the same set of variables
and all the behaviors of E are included in the assumptions
of C, i.e., when |E| C A, where |E]| is the set of behaviors
of E. An implementation M satisfies a contract C whenever

M and C are defined over the same set of variables and all
the behaviors of M are included in the guarantees of C when
considered in the context of the assumptions A, i.e., when
|[M|NACG.

A contract C = (A,G) can be placed in saturated form
by re-defining its guarantees as Gy = G U A, where A
denotes the complement of A. A contract and its saturated
forms are semantically equivalent, i.e., they have the same set
of environments and implementations. Therefore, in the rest
of the paper, we assume that all the contracts are expressed
in saturated form. A contract C is compatible if there exists
an environment for it, i.e., if and only if A # (). Similarly, a
saturated contract C is consistent if and only if there exists an
implementation satisfying it, i.e., if and only if G # (). We say
that a contract is well-formed if and only if it is compatible
and consistent. We detail below the contract operations and
relations used in this paper.

1) Contract Refinement: Refinement establishes a pre-order
between contracts, which formalizes the notion of replace-
ment. Let C = (A,G) and C' = (A’,G’) be two contracts.
C refines C’, denoted by C =< (', if and only if all the
assumptions of C’ are contained in the assumptions of C and all
the guarantees of C are included in the guarantees of C’, that
is, if and only if A D A’ and G C G’. Refinement entails
relaxing the assumptions and strengthening the guarantees.
When C < C’, we also say that C’ is an abstraction of C
and can be replaced by C in the design.

2) Contract Composition: Contracts associated with dis-
tinct implementations can be combined via the composition
operation (]|) to specify the composition between the cor-
responding implementations. Let C; = (A;,G1) and Cy =
(Az, G2) be two contracts. The composition C = (4,G) =
C1 || C2 can be computed as follows:

A= (A1NA)U(G1NGY), 9]
G =G1NGs. ()

Intuitively, an implementation satisfying C must satisfy the
guarantees of both C; and Cs, hence the operation of inter-
section in (2). An environment for C should also satisfy all
the assumptions, motivating the conjunction of A; and A,
in (1). However, part of the assumptions in C; may be already
supported by Cy and vice versa. This allows relaxing A3 N As
with the complement of the guarantees of C [47].

3) Contract Conjunction: Different contracts on a single
implementation can be combined using the conjunction op-
eration (A). Let C; = (41,G1) and C; = (Az2,G2) be
two contracts. We can compute their conjunction by taking
the greatest lower bound of C; and C, with respect to the
refinement relation. Intuitively, the conjunction C = C; A Cq
is the weakest (most general) contract that refines both C;
and Cs. C can be computed by taking the intersection of the
guarantees and the union of the assumptions, that is:

C = (Al U AQ,Gl N GQ)

Intuitively, an implementation satisfying C must satisfy the
guarantees of both C; and C, while being able to operate in
either of the environments of C; or C,.

B. Linear Temporal Logic

Given a set of atomic propositions AP (i.e., Boolean
statements over system variables) and the state s of a system
(i.e., a specific valuation of the system variables), we say that
s satisfies p, written s = p, with p € AP, if p is true at
state s. We can construct LTL formulas over AP according to
the following recursive grammar:

o=p|Plp1Ver | Xo|pUpy

where ¢, ¢1, and @9 are LTL formulas, @ is the negation of
©, V is the logic disjunction, X is the temporal operator next
and U is the temporal operator until. Other temporal operators
such as globally (G) and eventually (F) can be derived as
follows: F ¢ = true U ¢ and G ¢ = F . We refer to the
literature [48] for the formal semantics of LTL.

C. Specification Patterns and Context

1) Robotic Patterns: Robotic patterns have been proposed
as a solution to recurrent mission specification problems
based on the analysis of mission requirements in the robotic
literature [2]. CROME supports 22 patterns [2], capturing
robot movements and actions performed as a robot move in
the environment, organized into three groups: core movement
patterns, triggers, and avoidance patterns.

For example, let us assume that the mission requirement is:
‘A robot must patrol a set of locations in a certain strict order.’
The designer can formulate this requirement by using the
Strict Ordered Patroling pattern, instantiated for the required
set of locations. Let 1, ls, and I3 be the atomic propositions
of type location that the robot must visit in the given order.
The mission requirement can then be reformulated as ‘Given
the locations I1,lo, and I3, the robot should visit all the
locations indefinitely and following a strict order,’! leading
to the following LTL formulation:

G(F(ll A F(lg A F(l3)))) A (E U l1) AN (E U lg)
A G(ll — X(E U l3))
As shown in this example, a robotic pattern can significantly
facilitate the difficult and error-prone task of mission specifi-
cation.

2) Specification Patterns with Scopes: Our library of pat-
terns is also inspired by the work of Dwyers et al. [45],
who developed a catalogue of generic property specification
patterns for a broader range of applications. In particular, we
adopt the notion of scope, which provides a way to define the
extent to which a property must hold [45]. For example, for

Uhttp://roboticpatterns.com/pattern/strictorderedpatrolling/

http://roboticpatterns.com/pattern/strictorderedpatrolling/

the universality pattern, in which we require that a property e
be true, we can introduce the following scopes:

e global = G(e) 4)
e before r = F(r) — (e U r) %)
e after ¢ = G(q — G(e)) (6)

ebetween gand r=G((¢ AT A Fr)—(eUr)) (7)
e after g until r = (G(¢ A T— ((eUr) | G p))), (8)

where ¢, r are also properties or events. The patterns proposed
by Dwyers et al. [45] were also extended to incorporate
time [49] and probability [50]. Autili et al. [S1] present a
unified catalogue of property specification patterns including,
among others, the patterns mentioned above [45], [49], [50].
A description of the patterns in this catalogue [51] is also
available online [52].

3) Context: Many characterizations of the ‘context’ of an
application have been provided, often informally, in the litera-
ture. In context-aware ubiquitous computing [53], the context
of an application may include information like location, iden-
tities of nearby people and objects, time of the day, season,
or temperature. More generally, Dey and Abowd [54] define
context as “any information that can be used to characterize
the situation of an entity. An entity is a person, place, or
object that is considered relevant to the interaction between
a user and an application, including the user and application
themselves.” In the robotic domain, Bloisi et al. [55] define
mission-related contexts as “choices that are useful in robotic
scenarios for adapting the robot behaviors to the different
situations.” CROME builds on these characterizations and
adapts them to robotic missions by formalizing a context as
a property associated with a goal and expressed by a logic
formula.

III. OVERVIEW OF CROME

Figure 1 shows the mission specification process with
CROME, which can be summarized as follows.

Phase : A robotic mission can be decomposed into a set
of requirements prescribed to a system (the robot) acting in an
environment. In the requirement capture phase, the designer
provides the inputs to CROME: specification goals, domain
properties, and a goal library. Each specification goal G;,
modeling a mission requirement, is specified using a pattern
p; and instantiated in a context x;. The domain properties
encapsulate constraints on the environment and the system.
They belong to three categories: (1) physical rules, denoted
by t, e.g., specifying the map of a building; (2) logical rules,
denoted by [, e.g., specifying logical partitions (areas) of a
building; and (3) system constraints, denoted by s, e.g., speci-
fying actions that can not be performed simultaneously by the
robotic system, such as going in two locations simultaneously.
Finally, the designer can provide a library of predefined goals
that will be used in phase to automatically refine the
mission specification.

Phase @: In this phase, CROME analyzes the relationship
between goals and groups them in clusters based on their

context. For example, two goals are mutually exclusive if the
conjunction of their contexts produces a contradiction with
respect to the domain properties. CROME produces clusters
of goals and associates to each cluster a new generated context
mfj, which is guaranteed to be mutually exclusive with any
other cluster’s context. This phase is detailed in Section V.

Phase @: CROME builds the Contract-based Goal Graph
(CGG), a formal model representing a graph of goals.
CROME formulates assume-guarantee (A/G) contracts for
each goal and leverages the clusters created in phase @ to
determine the structure of the CGG, which in this phase takes
the form of a tree. Contracts belonging to the same cluster
are combined using composition; the resulting contracts of
the clusters are combined using conjunction. By building the
CGG, CROME analyzes the consistency of the mission and
helps detect conflicting requirements.

Phase : Given a library of goals L, for each leaf node of
the CGG, CROME checks whether it can be refined by a goal
of the library. Checking refinement between goals amounts
to checking refinement between the contracts formalizing the
goals. If a library goal is found, it is connected to the CGG
and becomes a new leaf node to be scheduled for refinement.
The refinement procedure continues recursively until no more
library goals can be used to extend the CGG. A library
goal can refine multiple goals of the CGG. In this case, we
introduce a new leaf for the library goal and connect it with
all the goals it refines, which makes the CGG no longer a tree.

Phase @: CROME checks the realizability of each node
of the CGG. If the root of the CGG M is realizable, then
a controller can be generated for the whole mission specified
by the designer. If the root node is not realizable, then it may
still be possible to realize some of the mission scenarios, as
identified in the CGG. Moreover, for each scenario, different
controllers can be generated at different abstraction levels. We
provide details for this phase in Section VI-B3.

IV. CAPTURING MISSION REQUIREMENTS

Mission requirements are provided by the designer in terms
of goals and domain properties, expressed in a structured
way using patterns and scopes, which will be automatically
translated into LTL formulas. Goals and domain properties are
defined over a set of atomic propositions AP, which can be
true or false at any point during the mission. In the following,
we detail the building blocks of the mission requirements, i.e.,
atomic propositions, contexts, goals, and domain properties.

A. Atomic Propositions

Atomic propositions (APs) can be grouped into six cate-
gories based on the semantics associated with them. Sensor
APs, location APs, and action APs are associated with the
robot. Location-context APs, time-context APs, and identity-
context APs are associated with the context. APs can refer to
controlled or uncontrolled variables for the robot. For example,
location APs and action APs refer to controlled variables, since
a robot can choose its next location and action, while the other

Specification goals
G1:71,p1

G Ty
— "

Domain properties

{t,1,s}

Goals library
l::{gl-w“;gm}) A
Mission @ Context-based @ Mission Specification @ CGG Refinement @ Controller Generation
@ Requirements Specification Clustering with CGG from Library of goals via Reactive Synthesis

CROME process

s unrealizable

T unrealizable %_‘O

7

Fig. 1: Mission specification process

APs refer to uncontrolled variables, since they relate to the
context or the perception of the environment.

B. Context

We formalize contexts in terms of Boolean predicates en-
coding the situation in which a goal must be active. For
example, context propositions can encode information related
to the location, time, or identities associated with a goal. In
a robotic application, locations specify where a robot can be,
time specifies when a certain goal must be active (e.g., during
the day or the night), and identities specify the state of external
entities (who) that may interact with the robot.

C. Goals

In CROME each mission requirement is modeled by a goal,
characterized by the following elements:

o Name: goal identifier;

o Description: English description of the mission require-
ment;

o Context: Boolean predicates over the context APs that
hold true for the goal;

o Objective: formulas over all the AP expressing what the
robot must achieve under the context of the goal.

Goal objectives can be expressed, for example, by properties
including atomic propositions in combination with Boolean
operators and the temporal operator G (globally), which suits a
large number of natural-language requirements [56]. However,
CROME enables the expression of more complex objectives.
We address the generation of complex temporal logic formulas
via the robotic patterns [2] and the specification patterns with
scopes [45] in Section II-C.

D. Domain Properties

Domain properties are general constraints that must hold
for the whole mission; they can relate to the robotic agent or
the environment and use any type of AP. Domain properties
can also be generated by using patterns or basic logic predi-
cates over the APs. CROME accepts three kinds of domain
properties, which are all compiled as logic predicates:

o Mutex properties relate predicates that cannot be true at
the same time. For example, warehouse and shop AP

can be marked as mutex propositions, since they represent
separate physical environments where the robot cannot be
at the same time.

o Inclusion properties express constraints on pairs of
propositions, predicates, or patterns, such that, when
the first term is true, then also the second term must
be true. For example, SequencedPatroling(cashier,
entrance, warehouse) and Patroling(shop) can be
part of an inclusion property since whenever the robot
patrols the cashier, entrance, and warehouse
locations in sequence, then it patrols the shop.

o Adjacency properties express constraints over location
APs that are adjacent, i.e., such that one location can
be reached within one step from another location. For
example, adjacency properties can be used to describe
the grid-map of the environment, eventually constraining
the movements of the robotic system.

Separating the domain properties from the goals is instru-
mental to mission specification reuse, as it allows instantiating
the same goals in different environments enjoying different
domain properties.

V. CONTEXT-BASED SPECIFICATION CLUSTERING

In this phase, CROME groups the goals into separate
clusters based on their contexts. If the contexts associated with
two goals are jointly satisfiable, then the goals are placed in the
same cluster; otherwise they are placed in different clusters,
which are marked as mutually exclusive. A cluster is then a
tuple containing a mutex-context and a set of goals.

Algorithm 1 automates this phase. It takes as inputs the
list of goals and the domain properties, referred as rules.
The result is a set of clusters, each associated with a new
mutex-context, which is inconsistent with any mutex-context
associated with another cluster. First, the algorithm extracts all
the contexts from the list of goals and computes all the possible
combinations of contexts. For each combination of contexts
comb the algorithm performs the following operations:

o Saturation: it adds to the combination the negation of all
the contexts that are not part of the combination.

Algorithm 1: Extract mutually exclusive context clus-
ters

Input: goals: list of goals, rules: domain properties
Output: clusters: set of tuples, where each tuple contains a
mutex-context and a set of goals

goals_cxts < extract_context(goals)

mtx_cxts <« 0

/* Compute all the possible combinations for L
goals_cxts */

for i in {0..L} do

/* Extract all combinations of i contexts
*/

comb_1i < combinations(contexts, i)

/* For each combination */

for comb in comb_1 do

for ctx in contexts do

/* Saturate the combination %/
/* If the context is not part of the
combination */

if ctx not in comb then
/* Get the negation of the context
formula x/
ctx_neg < Not(ctx)
/* Add the negation to the
combination */
comb_1i 4 comb_i U ctx_neg

/+ Add additional rules when needed x/
for r in rules do

if r applies to comb then
L comb ¢« comb U r

/+ Simplify formulas in comb @ */
comb < simplify(comb)
if comb is consistent then
/* Conjoin all the elements in comb
and save the result in
new_contexts x/
mtx_cxts < mtx_cxts U And(comb)

/* Group contexts in mtx_cxts @ */
mtx_cxts < group(mtx_cxts)
clusters < 0
for cxt in mtx_cxts do
L /* Map goals to contexts in mtx_cxts @ */
c_to_g =map(ctx, goals)
clusters - clusters U c_to_g

/* Select final clusters @ */
clusters < select(clusters)

return clusters

o Adding rules: if any predicate in comb contains APs that
are also in a predicate of the rules, then it adds the
predicate in the rules to the combination.

o Consistency check: if the conjunction of all the contexts in
a combination, after the addition of the rules predicate
is consistent, meaning that the resulting formula is sat-
isfiable, then it produces a new mutex-context, obtained
from the conjunction of the contexts augmented with the
rules.

Algorithm 1 then groups the mutex-contexts, maps each
goal to a mutex-context to form different clusters, and selects
the final mutex-contexts among those that are mapped to the
same set of goals. Given L contexts, there are at most M

il Tl ,Q T12
Ty 21
of

T3 T3l

TIN

T22 Ta2N

B

I32 T3N

@

=2
#]|2]

TM1 Tpr2 TMN

Fig. 2: Example of mapping of 5 goals Gi,...,G5 to M
mutex-contexts z, ..., :EQV[Each combination of contexts
contains at most N logic propositions in conjunction. A circled
number indicates refinement checking tasks among formulas
expressing the goal contexts or mutex-contexts.

combinations, where

M- ZL(i):kzg.

L!
(L — k)
k=1,..., L k'(L k)

Each combination contains at most N = L + R elements
in conjunction, where L is the number of contexts and R
is the number of additional rules, i.e., domain properties
related to the context. For example, Figure 2 shows a list
of context combinations that are mapped to a list of goals.
Each combination is formed by propositions x;; representing
contexts and rules, and their conjunction results in a mutex-
context x}. Every mutex-context z; is then associated with a
set of goals G to form a cluster. We detail below some of the
functions used in Algorithm 1.

In CROME, contexts and mutex-contexts are formulas.
Therefore, to manipulate contexts, we define a refinement
relation between formulas. A formula ¢ refines a formula) if
and only if ¢ — ¢ is valid. If ¢ refines), then the behaviors
satisfying ¢ are included in the set of behaviors satisfying .
The simplify, group, map, and select functions in Algorithm 1
perform refinement checks among pairs of LTL formulas, as
also marked by the circled numbers in Figure 2:

. @ simplify. Each mutex-context is built as a conjunc-
tion of clauses. Each clause x; represents a context, a
negation of a context, or a context rule. For each pair
of clauses Z;q,; in a mutex-context zj, Algorithm 1
checks whether x;, refines x;, and removes the most
abstract clause, e.g., if x;q — X, then ;4 A T = Tiq.

. @ group. This process is similar to the one in simplify,
but operates on pairs of mutex-contexts x, m;-, as shown
in Figure 2, rather than the clauses of each mutex-context.
For each pair of mutex-context formulas, if a formula
implies another one, the group function only retains the
most refined one.

. @ map. The mapping process connects each specifica-
tion goal to a new mutex-context x, and finally forms a
cluster. Let x; be the context of the specification goal G;.
Then, the map function checks whether all the behaviors
satisfying the mutex-context x} are contained in context
x;, that is, whether 2 is a refinement of x;. If this is the
case, CROME links G; to the new context ;. Because

mutex-contexts are constructed by refining contexts, there
must exist a mutex-context x; that refines x;.

. @ select. It may happen that more than one mutex-
context are linked to the same goal. For example, in
Figure 2, both z% and 2y, are linked to G; and Gs. In
this case, CROME maps the goal to the cluster with the
most abstract context.

VI. MISSION SPECIFICATION VIA CONTRACT-BASED
GOAL GRAPHS

In this step, domain properties and goals are formalized
using A/G contracts and organized using a CGG.

A. Contract Formalization and Analysis

Once the clusters and mutex-contexts are identified by
Algorithm 1, CROME produces one contract C; for each goal
G; in the clusters, where:

« the assumptions capture the domain properties related to

the environment in which the mission is deployed;

o the guarantees capture the properties associated with

the goal objectives and the corresponding context via
formulas of the form

G(ctx — obj))

for a context ctr and an objective obj expressed, for
example, as a conjunction of robotic patterns.

Since contract assumptions and guarantees are expressed
by logic formulas, CROME checks for incompatibility and
inconsistency (i.e., emptiness of assumptions or guarantees)
by checking whether the logic formulas are satisfiable. More-
over, CROME performs a feasibility check to verify whether
contracts are well-formed, i.e., whether AN G # () holds. For
example, the contract C = (¢g, ¢4), where ¢, := G(env),
¢g = G(env) — (Fmove A Fmove), and env and
move are APs, is compatible and consistent. However, C is
not well-formed since ¢, A ¢, is infeasible. LTL satisfiability
checks can be reduced to model checking problems [44], [57].
We check the satisfiability of a formula ¢ by querying a model
checker for the validity of ¢ := —¢. If % is valid, then ¢ is
unsatisfiable. A counterexample invalidating v is a model, i.e.,
a satisfying trace, for ¢.

B. Contract-Based Goal Graph

A CGG, shown in Figure 3, is a graph T' = (T, ¥), where
each node v € T =T'U A is either a goal node -y € T" or an
operator node 6 € A, with T N A = (). Each goal node is the
formalization of a goal via a contract. Each operator node takes
a value in {||, A} and represents an operation (composition or
conjunction) between contracts. Each edge ¢ € ¥ can connect
a goal node in I to an operator node in A or two goal nodes.
In the former case, the edge is a connection link. Otherwise,
it is a refinement link.

Any goal node of the CGG can be realized to achieve a
controller. A realization of the root node covers the whole
mission but the synthesis problem could be infeasible or
intractable in practice. The decomposition of the goals via

the modularity of the CGG allows pointing out portions of
the mission that may be independently realizable.

1) Building the CGG via Composition and Conjunction:
CROME uses contract conjunction and composition to com-
bine the different goals and form the CGG. Composition and
conjunction produce more complex goals from simpler ones,
which are then connected to the CGG. However, composi-
tion demands that the resulting goal operate in environments
satisfying the assumptions of all the composing goals. On the
other hand, conjunction requires that the resulting goal operate
with environments that satisfy either (but not necessarily
both) of the assumptions of the original goals. CROME uses
contract conjunction to blend different scenarios that must be
both satisfied by the mission, while the scenarios are built
by composition of smaller contracts. More specifically, the
CGQG is built by computing, for each cluster, the composition
of the goals associated with the cluster (e.g., Co and Cs
in Figure 3). Goals can be interconnected to form complex
structures, where the guarantees of one (or more) goal are
used to discharge the assumptions of other goals. Such a
composition produces a new goal node (e.g., S in Figure 3),
which is the scenario supported by the goals in the cluster.
Finally, the overall mission specification M is compiled in
terms of the conjunction of all the mutually exclusive scenarios
(e.g., S§1 and S, in Figure 3).

2) Extending the CGG via Refinement from Library of
Goals: A library of goals is a collection of goals, each
formalized with a contract and labeled with a cost. CROME
can automatically extend a CGG by refining its leaf nodes
with goals chosen from a library of goals, while minimizing
the overall cost. Figure 3 shows how contracts Cy,Cs, and Cs
are refined by the library goals £, Lo, and L5. A refinement
link between a library goal £ = (a;,g;) and a leaf node
C = (ac,g.) is created if and only if £ < C. Lo is further
refined by library goal £;, while L5 refines two goal nodes
of the CGG, which are both corresponding to contract Cs.

3) Controller Synthesis: CROME checks the realizabil-
ity of each goal node of the CGG and, if it is realiz-
able, it produces a controller using reactive synthesis. In
Figure 3, goal Cs is refined by L5 and they can both be
realized with two controllers at different abstraction levels.
For example, let us assume that C3 requires as objective
Patroling(a, b, ¢), corresponding to the LTL formula ¢, =
GF a AN GF b A GF c. On the other hand, the library
goal objective is SequencedPatroling(a, x,y, z, ¢) correspond-
ing to ¢, = GF(a AF(z AF(y AF(z AF ¢)))). Further,
there exists a domain property of type inclusion between
SequencedPatroling(x,y, z) and Patroling(b), that is, ¢ =
G(F(x ANF(y AF 2))) — GF b. Given C3 = (¢, ¢,) and
L5 = (true, ¢,.), we have and L5 < Cs, since ¢ — frue and
or — (¥ — @) are valid formulas.

VII. CASE STUDY: URGENT CARE

We consider a mission performed by a service robot working
in an urgent care clinic, and consisting of several tasks.
Figure 4 shows the map of the clinic together with the contexts.

goal node
operator node

— - => refinement link

connection lmk

Controllers generated

‘

~
~

Library goals - .

connected via refinement

Fig. 3: Example of CGG where some of the goal nodes are linked to a Mealy machine representing the controller synthesized

from the node.

LN WAITING ISOLATION CHARGING
B 2m, A N 1
day . 2 % 1
¢ | 28 |
night § :

)

5| B C E F

8
urgent A D %y
R 2l
normal |

entrance pharmacy medical-room

care-center

Fig. 4: Care clinic map showing the time, location, and identity
contexts (written in italics).

Time contexts (day, night) and identity contexts (urgent,
normal) capture the variability in the time of the day and type
of patient that needs attention. Location contexts (corridor,
entrance, pharmacy, medical-room, and care-center) denote
one or more physical locations on the map (A, B, C, D, E, F,
G, WAITING, ISOLATION, and CHARGING). Both during
the day and during the night, the robot must patrol the clinic.
By patroling we mean that the robot should recurrently visit all
the rooms (in any order) without letting any room unvisited.
To express this property we use the patroling pattern [2].

During the day, and when inside the pharmacy, the robot
must get the medicine, whenever asked to do so, and give it
to the client. It must also welcome new patients at the entrance
of the shop. Finally, it must always go and charge the battery
when the power level is low. CROME relies on the model
checker NuSMV [58] to perform all the checks in the CGG

and on Strix? to generate controllers via reactive synthesis.

Figure 5 shows the mission requirements formalized as
goals by the designer and the goals that are selected from
the library of goals by CROME to refine the mission re-
quirements. A goal is composed of (i) name, (ii) description,
(iii) context, and (iv) objective (Section 1V). For brevity, in
Figure 5, we have omitted the goal descriptions. For example
the name of the first goal is Patrolling, the context is
described by two atomic propositions, night and day, and
the objective is an instantiation of the patroling® pattern (i.e.,
instantiated on the AP care — center). We use multiple
Boolean propositions separated by comma to denote multiple
goals, each instantiated in a single context. Specifying Goal
I with context night,day is then equivalent to specifying
two separate goals for night and day, respectively. When the
context is omitted from a goal, then we imply that the goal
objectives must hold in all contexts. We also note that Goal
4 instantiates a property specification pattern, the recurrent
pattern,4 which also uses the scope between Q and R.

We observe that Goal 1 and Goal 3 are refined differently
according to the contexts specified by the designer. In Goal
1, patroling is achieved by patroling the corridor during the
night, while patroling the entrance and the pharmacy are
required during the day. Similarly, for Goal 3, the task of
welcoming a new patient is refined differently according to
the gravity of the symptoms where, in the severe cases, the
robot visits the isolation room while, in the normal cases, it
goes in the waiting room.

CROME produces a CGG with a total of 17 goals, 5 of
which are the identified scenarios and 11 are library goals that
can be reused to refine the leaves of the CGG. Figure 6 shows

Zhttps://strix.model.in.tum.de/
3http://roboticpatterns.com/pattern/sequencedpatrolling/
“http://ps-patterns.wikidot.com/recurrence- property-pattern

https://strix.model.in.tum.de/
http://roboticpatterns.com/pattern/sequencedpatrolling/
http://ps-patterns.wikidot.com/recurrence-property-pattern

GOAL 1 - Patrolling GOAL 2 - Serve pharmacy GOAL 3 - Patient Visit
P === ctx: night, day ctx: pharmacy & day ctx: day & mild, day & severe
11— == obj: Patrolling(care-center) obj: Delayed-Reaction obj: Prompt-Reaction <
1! trigger = get-medicines trigger = patient-entered 1|
| : reaction = give-medicines reaction = welcome-patient “”
b A I
i | N
| L —— — {Night Patrol Corridor : Severe symptoms welcome "
I ctx: night X ctx: severe ::
[obj: Patrolling(corridor) Search check and deliver medicines obj: Instlant—Reactlon' "
: ! obj: Prompt-Reaction trigger = patient-entered 1
1__:__ Day Patrol Entrance and Pharmacy trigger = look-up-meds reaction = welcome-patient & __:_!
T ctx: day . reaction = search & check-label . check-temperature)
| obj: Patrolling(entrance, pharmacy) Prompt-Reaction Wait |
! ; ° where = entrance
1! trigger = search & check-label til = patient—is—followi |
1! reaction = pick-up-medicine V.ur.]tj(‘. _lpi.le? 1s-Toltowing |
! Patrol b-c—e—f Prompt-Reaction isitiisotation :
: - obj: Sequenced-Patrolling(b,c,e,f) trigger = pick-up-medicine \
) reaction = deliver-medicine Mild symptoms welcome |
|___|Patrol a-d ctx: mild |
obj: Sequenced-Patrolling(a,d) obj: Instant-Reaction :
trigger = patient-entered |
reaction = welcome-patient & | |
v Legend GOAL 4 - Charge Battery check-temperature
|:| goals specified by the designer obj: Recurrence_P_between_Q_and_R Wait
: q = low-battery where = entrance
|:| goals selected from the library : p = charging until = patient-is-following
) r = full-battery Visit(waiting)
-——-——— refinement link

Fig. 5: Care clinic main goals specified by the designer connected via refinement to the goals selected from the library.

A
— Charge-battery || Patrolling(night)

— Charge-battery || Patrolling(day)
— Charge-battery || Patrolling(day) || Serve Pharmacy

— Charge-battery || Patrolling(day) || Welcome-patients(mild)

'— Charge-battery || Patrolling(day) || Welcome-patients(severe)

Fig. 6: Goals belonging to each identified scenario of the case
study.

the name of the goals associated to each of the five mutex-
contexts. The full example is available online.’> The root node
of the CGG can not be realized by the synthesizer, which runs
out of memory. However, every scenario of the CGG is realiz-
able with a maximum and minimum synthesis time of 962.98 s
and 24.59 s, respectively. On the other hand, individual nodes
can take up to 0.72 s to be realized into a controller. Overall,
this example shows how CROME facilitates the formalization
of mission requirements, can identify mission scenarios that
can be independently realizable, and can refine leaf goals from
a library of goals.

VIII. CONCLUSIONS

In this paper we introduced CROME, a design framework
for capturing and formalizing robotic mission requirements.
CROME facilitates the translation of informal requirements
in terms of goals by leveraging a set of specification patterns.
It then formalizes the goals in terms of assume-guarantee con-
tracts and leverages a novel, modular representation, namely, a

Shttps://github.com/pierg/cogomo/tree/master/results/ CROME

contract-based goal graph (CGG), to analyze the mission spec-
ification and detect inconsistencies. Given the CGG, CROME
can automatically refine the leaf nodes with goals from a
predefined library. It can automatically check the realizability
of the overall mission and synthesize a controller, if the
mission is realizable. Finally, if the mission is not realizable,
CROME can help debug the specification by identifying
subsets of requirements in terms of mission scenarios that
may be realized. Future work includes devising heuristics
to improve on the scalability of the clustering algorithm
and further experimentation, also in collaboration with our
industrial partners, to investigate the feasibility and usability
of the approach in practical and industrial contexts.

ACKNOWLEDGMENTS

This work was supported in part by the Wallenberg Al Au-
tonomous Systems and Software Program (WASP), funded by
the Knut and Alice Wallenberg Foundation, and the EU H2020
Research and Innovation Program under GA No. 731869
(Co4Robots). In addition, the authors gratefully acknowledge
the support by the US National Science Foundation (NSF) un-
der Awards 1846524 and 1839842, the US Defense Advanced
Projects Agency (DARPA) under Award HR00112010003, the
US Office of Naval Research (ONR) under Award N00014-20-
1-2258, Raytheon Technologies Corporation, and the Centre
of EXcellence on Connected, Geo-Localized and Cybersecure
Vehicle (EX-Emerge), funded by the Italian Government un-
der CIPE resolution n. 70/2017 (Aug. 7, 2017). The views,
opinions, or findings contained in this article should not be
interpreted as representing the official views or policies, either
expressed or implied, by the US Government. This content is
approved for public release; distribution is unlimited.

https://github.com/pierg/cogomo/tree/master/results/CROME

[1]

[2]

[5]

[6]
[7]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

REFERENCES

IFR, “World Robotic Survey,” https://ifr.org/ifr-press-
releases/news/world-robotics-survey-service-robots-are-conquering-
the-world-, 2016.

C. Menghi, C. Tsigkanos, P. Pelliccione, C. Ghezzi, and T. Berger,
“Specification Patterns for Robotic Missions,” IEEE Transactions on
Software Engineering, pp. 1-1, 2019.

Markets and Markets, “Service Robotics Market — Global Fore-
cast to 2022, https://www.marketsandmarkets.com/Market-Reports/
service-robotics-market-681.html, 2017.

D. Bozhinoski, D. D. Ruscio], I. Malavolta, P. Pelliccione, and
I. Crnkovic, “Safety for mobile robotic systems: A systematic mapping
study from a software engineering perspective,” Journal of Systems
and Software, vol. 151, pp. 150 — 179, 2019. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0164121219300317
ISO, “ISO - Robotics,” https://www.iso.org/obp/ui/#iso:std:is0:8373:
ed-2:vl:en, 2012.

“Roomba Robot Vacuum Cleaners,” https://www.irobot.se/roomba.

S. Garcia, P. Pelliccione, C. Menghi, T. Berger, and T. Bures, “High-
level mission specification for multiple robots,” in Proceedings of the
12th ACM SIGPLAN International Conference on Software Language
Engineering, ser. SLE 2019. New York, NY, USA: Association for
Computing Machinery, 2019, p. 127-140.

ABB, “ABB makes robot programming more intuitive with Wizard Easy
Programming software,” https://shorturl.at/sFU15.

S. Maoz and J. O. Ringert, “GR(1) synthesis for LTL specification
patterns,” in Foundations of Software Engineering (FSE). ACM, 2015.
M. Guo and D. V. Dimarogonas, “Multi-agent plan reconfiguration
under local LTL specifications,” The International Journal of Robotics
Research, 2015.

C. Finucane, G. Jing, and H. Kress-Gazit, “LTLMoP: Experimenting
with language, temporal logic and robot control,” in International
Conference on Intelligent Robots and Systems (IROS). IEEE, 2010,
pp. 1988-1993.

C. Menghi, S. Garcia, P. Pelliccione, and J. Tumova, “Multi-robot LTL
Planning Under Uncertainty,” in Formal Methods, K. Havelund, J. Pe-
leska, B. Roscoe, and E. de Vink, Eds. Cham: Springer International
Publishing, 2018, pp. 399-417.

A. Ulusoy, S. L. Smith, X. C. Ding, C. Belta, and D. Rus, “Optimal
multi-robot path planning with Temporal Logic constraints,” in 2011
IEEE/RSJ International Conference on Intelligent Robots and Systems,
IROS 2011. IEEE, 2011.

G. E. Fainekos, A. Girard, H. Kress-Gazit, and G. J. Pappas, “Temporal
logic motion planning for dynamic robots,” Automatica, vol. 45, no. 2,
pp. 343-352, 2009.

M. Guo, K. H. Johansson, and D. V. Dimarogonas, “Revising motion
planning under linear temporal logic specifications in partially known
workspaces,” in International Conference on Robotics and Automation
(ICRA). 1IEEE, 2013.

E. M. Wolff, U. Topcu, and R. M. Murray, “Automaton-Guided
Controller Synthesis for Nonlinear Systems with Temporal Logic,” in
International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2013.

H. Kress-Gazit, “Robot challenges: Toward development of verication
and synthesis techniques [errata],” IEEE Robotics & Automation Mag-
azine, vol. 18, no. 4, pp. 108-109, 2011.

S. Maoz and J. O. Ringert, “Synthesizing a Lego Forklift Controller in
GR(1): A Case Study,” in Proceedings Fourth Workshop on Synthesis
(SYNT), 2015.

S. Maoz and Y. Sa’ar, “AspectLTL: an aspect language for LTL
specifications,” in International conference on Aspect-oriented software
development. ACM, 2011.

S. Maoz and J. O. Ringert, “On well-separation of GR(1) specifications,”
in Foundations of Software Engineering (FSE). ACM, 2016.

Y. Shoukry, P. Nuzzo, A. Balkan, I. Saha, A. L. Sangiovanni-Vincentelli,
S. A. Seshia, G. J. Pappas, and P. Tabuada, “Linear temporal logic
motion planning for teams of underactuated robots using satisfiability
modulo convex programming,” in Proc. Int. Conf. Decision and Control,
Dec. 2017.

X. Sun, R. Nambiar, M. Melhorn, Y. Shoukry, and P. Nuzzo, “DoS-
resilient multi-robot temporal logic motion planning,” in Proc. Interna-
tional Conference on Robotics and Automation (ICRA), 2019, pp. 6051—
6057.

(23]

[24]

[25]

[26]

[27]

[28]

[29]

(30]

[31]

(32]

(33]

[34]

[35]

(36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

G. J. Holzmann, “The logic of bugs,” in Foundations of Software
Engineering (FSE). ACM, 2002.

M. Autili, P. Inverardi, and P. Pelliccione, “Graphical scenarios for
specifying temporal properties: An automated approach,” Automated
Software Engg., vol. 14, no. 3, 2007.

W. Wei, K. Kim, and G. Fainekos, “Extended LTLvis motion planning
interface,” in International Conference on Systems, Man, and Cybernet-
ics. IEEE, 2016.

C. Lignos, V. Raman, C. Finucane, M. Marcus, and H. Kress-Gazit,
“Provably correct reactive control from natural language,” Autonomous
Robots, vol. 38, no. 1, pp. 89-105, 2015.

V. Raman, C. Lignos, C. Finucane, K. C. Lee, M. Marcus, and H. Kress-
Gazit, “Sorry Dave, I'm Afraid I Can’t Do That: Explaining Unachiev-
able Robot Tasks Using Natural Language,” University of Pennsylvania
Philadelphia United States, Tech. Rep., 2013.

S. Srinivas, R. Kermani, K. Kim, Y. Kobayashi, and G. Fainekos, “A
graphical language for 1tl motion and mission planning,” in International
Conference on Robotics and Biomimetics (ROBIO). 1EEE, 2013.

U. S. Shah and D. C. Jinwala, “Resolving ambiguities in natural lan-
guage software requirements: a comprehensive survey,” ACM SIGSOFT
Software Engineering Notes, 2015.

N. Kiyavitskaya, N. Zeni, L. Mich, and D. M. Berry, “Requirements for
tools for ambiguity identification and measurement in natural language
requirements specifications,” Requirements engineering, 2008.

J. O. Ringert, B. Rumpe, and A. Wortmann, “A requirements modeling
language for the component behavior of cyber physical robotics sys-
tems,” arXiv preprint arXiv:1409.0394, 2014.

A. Nordmann, N. Hochgeschwender, and S. Wrede, “A survey on
domain-specific languages in robotics,” in Simulation, Modeling, and
Programming for Autonomous Robots. Springer, 2014.

D. Bozhinoski, D. D. Ruscio, I. Malavolta, P. Pelliccione, and M. Tivoli,
“FLYAQ: enabling non-expert users to specify and generate missions of
autonomous multicopters,” in Automated Software Engineering (ASE).
IEEE, 2015.

D. Weintrop, A. Afzal, J. Salac, P. Francis, B. Li, D. C. Shepherd,
and D. Franklin, “Evaluating CoBlox: A comparative study of robotics
programming environments for adult novices,” in Proceedings of the
2018 CHI Conference on Human Factors in Computing Systems, ser.
CHI ’18. New York, NY, USA: ACM, 2018, pp. 366:1-366:12.

G. Biggs and B. Macdonald, “A survey of robot programming systems,”
in in Proceedings of the Australasian Conference on Robotics and
Automation, CSIRO, 2003, p. 27.

J. D. Robert W. Button, John Kamp, Thomas B. Curtin, A Survey of
Missions for Unmanned Undersea Vehicles, 2010.

A. Nordmann, N. Hochgeschwender, D. Wigand, and S. Wrede, “A
Survey on Domain-Specific Modeling and Languages in Robotics,”
Journal of Software Engineering for Robotics, vol. 7, no. 1, pp. 75—
99, 2016.

SPARC, “Robotics 2020 Multi-Annual Roadmap,” shorturl.at/rIQ07,
2016.

S. Garcia, D. Struber, D. Brugali, T. Berger, and P. Pelliccione, “An
empirical assessment of robotics software engineering,” in ACM Joint
European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (ESEC/FSE 2020), 2020.

P. Nuzzo, H. Xu, N. Ozay, J. B. Finn, A. L. Sangiovanni-Vincentelli,
R. M. Murray, A. Donzé, and S. A. Seshia, “A contract-based method-
ology for aircraft electric power system design,” IEEE Access, vol. 2,
pp. 1-25, 2014.

P. Nuzzo, M. Lora, Y. A. Feldman, and A. L. Sangiovanni-Vincentelli,
“CHASE: Contract-based requirement engineering for cyber-physical
system design,” in 2018 Design, Automation & Test in Europe Con-
ference & Exhibition (DATE). 1EEE, 2018, pp. 839-844.

P. Nuzzo, J. Finn, A. Tannopollo, and A. L. Sangiovanni-Vincentelli,
“Contract-based design of control protocols for safety-critical cyber-
physical systems,” in Proc. Design Automation and Test in Europe
Conference, Mar. 2014, pp. 1-4.

C. Menghi, C. Tsigkanos, T. Berger, and P. Pelliccione, “Psalm: Speci-
fication of dependable robotic missions,” in 2019 IEEE/ACM 41st Inter-
national Conference on Software Engineering: Companion Proceedings
(ICSE-Companion), 2019, pp. 99-102.

P. Nuzzo, A. Sangiovanni-Vincentelli, D. Bresolin, L. Geretti, and
T. Villa, “A platform-based design methodology with contracts and
related tools for the design of cyber-physical systems,” Proc. IEEE, vol.
103, no. 11, Nov. 2015.

https://www.marketsandmarkets.com/Market-Reports/service-robotics-market-681.html
https://www.marketsandmarkets.com/Market-Reports/service-robotics-market-681.html
http://www.sciencedirect.com/science/article/pii/S0164121219300317
https://www.iso.org/obp/ui/#iso:std:iso:8373:ed-2:v1:en
https://www.iso.org/obp/ui/#iso:std:iso:8373:ed-2:v1:en
https://www.irobot.se/roomba
https://shorturl.at/sFU15
shorturl.at/rIQ07

[45]

[46]

(471

[48]
[49]

[50]

M. B. Dwyer, G. S. Avrunin, and J. C. Corbett, “Patterns in property
specifications for finite-state verification,” in Proceedings of the 21st
international conference on Software engineering, 1999, pp. 411-420.
A. Van Lamsweerde, “Goal-oriented requirements engineering: A guided
tour,” in Proceedings fifth ieee international symposium on requirements
engineering. 1EEE, 2001, pp. 249-262.

A. Benveniste, B. Caillaud, D. Nickovic, R. Passerone et al., “Contracts
for system design,” Foundations and Trends in Electronic Design Au-
tomation, vol. 12, no. 2-3, pp. 124-400, 2018.

C. Baier and J.-P. Katoen, Principles of model checking.
2008.

S. Konrad and B. H. C. Cheng, “Real-time specification patterns,” in
Proc. of ICSE’05. ACM, 2005, pp. 372-381.

L. Grunske, “Specification patterns for probabilistic quality properties,”
in 30th International Conference on Software Engineering (ICSE0S),
W. Schifer, M. B. Dwyer, and V. Gruhn, Eds. ACM Press, 2008, pp.
31-40.

MIT press,

[51]

[52]
(53]
[54]
[55]

[56]

[57]

[58]

M. Autili, L. Grunske, M. Lumpe, P. Pelliccione, and A. Tang, “Aligning
qualitative, real-time, and probabilistic property specification patterns
using a structured english grammar,” IEEE Transactions on Software
Engineering, vol. 41, no. 7, pp. 620-638, 2015.

“Property Specification Patterns,” http://ps-patterns.wikidot.com/.

J. Krumm, Ubiquitous Computing Fundamentals, 2010, vol. 53, no. 5.
A. K. Dey, “Understanding and using context,” Personal and ubiquitous
computing, vol. 5, no. 1, pp. 4-7, 2001.

D. D. Bloisi, D. Nardi, F. Riccio, and F. Trapani, “Context in Robotics
and Information Fusion,” pp. 675-699, 2016.

A. Van Lamsweerde, “Requirements engineering in the year 00: a re-
search perspective,” in Proceedings of the 22nd international conference
on Software engineering, 2000, pp. 5-19.

A. Tannopollo, P. Nuzzo, S. Tripakis, and A. Sangiovanni-Vincentelli,
“Library-based scalable refinement checking for contract-based design,”
in 2014 Design, Automation & Test in Europe Conference & Exhibition
(DATE). 1EEE, 2014, pp. 1-6.

R. Cavada, A. Cimatti, M. Dorigatti, A. Griggio, A. Mariotti, A. Micheli,
S. Mover, M. Roveri, and S. Tonetta, “The nuXmv symbolic model
checker,” in CAV, 2014, pp. 334-342.

http://ps-patterns.wikidot.com/

	Introduction
	Background and Related Work
	Assume-Guarantee Contracts
	Contract Refinement
	Contract Composition
	Contract Conjunction

	Linear Temporal Logic
	Specification Patterns and Context
	Robotic Patterns
	Specification Patterns with Scopes
	Context

	Overview of CROME
	Capturing Mission Requirements
	Atomic Propositions
	Context
	Goals
	Domain Properties

	Context-Based Specification Clustering
	Mission Specification via Contract-Based Goal Graphs
	Contract Formalization and Analysis
	Contract-Based Goal Graph
	Building the CGG via Composition and Conjunction
	Extending the CGG via Refinement from Library of Goals
	Controller Synthesis

	Case Study: Urgent Care
	Conclusions
	References

