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Abstract. A well known problem in robotics is the motion planning problem in the presence of
static obstacles. The trajectory of the robot must satisfy a linear di�erential equation as well as
possible input and state constraints. In this paper, we explore the use of symbolic reachability
algorithms to decide whether the motion planning problem is feasible or not. In the case where
it is feasible, it computes a feasible nominal input pro�le satisfying all system constraints. Our
algorithm is based on quanti�er elimination techniques in the ordered �eld of the reals, which
have been recently applied to compute the reachable space for classes of linear hybrid systems.
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1. INTRODUCTION

The robot motion planning problem asks whether a mo-
bile robot can reach a desired �nal con�guration from
a given initial con�guration while avoiding all static
obstacles. During the past three decades, the motion
planning problem has received, in various forms, the
attention of the robotics community [13].

Similar reachability computations have been very re-
cently the focus of much research in the emerging area
of hybrid systems. Hybrid systems combine both digi-
tal and analog systems, in a way that is useful for the
analysis and design of distributed, embedded control
systems. Many of the motivating applications, which
include automated highway systems [16] and air traf-
�c management systems [15], are safety critical, and
require guarantees of safe operation. Consequently,
much research focuses on computing reachable sets for
hybrid systems in order to ensure that these systems
avoid unsafe regions of the state space. In particular,
in [9, 10, 11, 12] it has been shown that the reachable
set of several useful classes of hybrid systems that con-
tain linear control systems of the form _x = Ax + Bu
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can be characterized as a predicate in the theory of the
ordered �eld of real numbers, yielding a decidability
result for the reachability problem. A quanti�er-free
characterization of the reachable sets can then be ob-
tained by quanti�er elimination using state-of-the-art
tools such as Redlog [4] and Qepcad [3].

In this paper, we explore the application of the above
reachability results and tools for the motion planning
problem. We consider point mass robots whose dy-
namics are described by linear integrators, have veloc-
ity and acceleration constraints, and must avoid semi-
algebraic, static obstacles. Furthermore, the class of
allowable inputs is parametrically de�ned as the set of
polynomials of a �xed order, whose rational coe�cient
can satisfy semialgebraic constraints. This results in
a motion planning algorithm that is complete, in the
sense that the algorithm will return whether the prob-
lem is solvable or not, and if it is solvable, it will return
the exact set of parameter values for which the mo-
tion planning problem has a solution. This set of feasi-
ble parameter values can then be used to perform sec-
ondary objectives, such as minimization of path, time,
or control input.

Quanti�er elimination has been recently applied in the
area of motion planning [14, 17]. However, these works
are restricted to semilinear translational motions, that
is, continuous paths consisting in �nitely many trans-
lations along straight lines. In this paper, we use the



recent results in [9, 10, 11, 12] to extend the framework
of [17] to deal with more general motions, characterized
by linear control systems, at the price of increased com-
putational complexity.

Other applications of quanti�er elimination in control
theory go as back as [1], where it was used to obtain
an algorithmic solution to the problem of stabilization
by static output feedback. More recently, a number of
researchers have used quanti�er elimination in testing
stability of linear systems [7], robust feedback control
[6], and trajectory tracking of nonlinear control systems
[8].

The structure of this paper is as follows: In Section 2,
we present a simpli�ed, two-dimensional version of the
motion planning problem. At the price of complexity,
all the results and computations can be lifted to higher
dimensions. In Section 3, we review the reachability
results of [9, 10] and apply them to obtain decidabil-
ity results for classes of motion planning problems. In
Section 4, we use the state-of-the-art tools Redlog
[4] and Qepcad [3] in order to solve simple motion
planning problems by performing reachability compu-
tations. Section 5 concludes with areas for future re-
search.

2. PROBLEM STATEMENT

A mobile robot is located at an initial position (x0; y0)
with initial velocity (vx0 ; vy0) and it is desired that
it reaches the target position (xF ; yF ) with velocity
(vxF ; vyF ). The motion of the robot is modeled by the
following two chains of integrators

_x = vx

_vx = ax (1)

_y = vy

_vy = ay

where ax; ay 2 R is the acceleration control input in the
x and y direction respectively. Furthermore, due to ve-
locity and acceleration constraints, the trajectories gen-
erated by the above equations must satisfy constraints
of the form

vmin
x � vx � vmax

x

vmin
y � vy � vmax

y (2)

amin
x � ax � amax

x

amin
y � ay � amax

y

The inputs are typically constrained to belong in a class
of functions. We will constrain the inputs ax(t), ay(t)
to be polynomial functions of time. Splines, special
concatenations of polynomial functions, have been ex-
tremely popular in the robotics community. For sim-
plicity, consider second order polynomial functions of
time. Thus

ax(t) = a2t
2 + a1t+ a0 (3)

ay(t) = b2t
2 + b1t+ b0

Figure 1. Motion Planning Problem

where ai and bi, i = 0; 1; 2, are control parameters.

The environment contains several obstacles Oi which
must be avoided by the robot. The obstacles can have
one of the following forms

Oi = f(x; y) 2 R2 j pi(x; y) � 0g
Oi = f(x; y) 2 R2 j pi(x; y) � 0g (4)

Oi = f(x; y) 2 R2 j pi(x; y) = 0g
where pi(x; y) is some polynomial in x; y with rational
coe�cients. We are now ready to formally state the
motion planning problem in the presence of obstacles.

Problem 1 (Motion planning) Does there exist an
instantiation of all the parameters ai and bi, such that
the corresponding trajectory of the di�erential equation
(1) connects the initial state (x0; y0; vx0 ; vy0) with the
�nal state (xF ; yF ; vxF ; vyF ) while avoiding all obstacles
Oi?

Of course, Problem 1 can be made more general in
many ways. One can have motion in three or n dimen-
sions, the order of the integrators and the polynomial
inputs could be larger than two, and the obstacles could
be in general semialgebraic. Such generalizations pose
no conceptual di�culty in the following constructions.

3. REACHABILITY COMPUTATIONS

A large class of continuous systems, including equation
(1) of the point mass robot, are modeled by linear con-
trol systems of the following form

_x = Ax+Bu (5)

where x 2 Rn is the state of the system, A 2 Rn�n , B 2
Rn�m are the system matrices, and u(t) : R �! Rm

is a piecewise continuous control input. In our setting,
we will further assume that the control input u belongs
in a set U of input functions, where

U = fu = [u1; : : : ; un]
T j uj =

rX

l=1

bjlpl(t)



and �b(bjl) 1 � j � n; 1 � l � rg (6)

where �b(bjl) is a �rst order formula that de�nes a
semialgebraic set, and pl(t) are some basis functions
(to be determined later). Therefore, U consists of lin-
ear combinations of these basis functions, where the
rational coe�cients of the linear combination satisfy
some semialgebraic constraint.

A family of linear vector �elds is de�ned as a tuple
F = (A;U). Given a family F we say that a state y is
reachable from a state x, if there exists a control input
u(t) 2 U , and a t � 0 such that y = �(x; u; t), where
�(x; u; t) denotes the trajectory of system (5) with in-
put u(t). Our motion planning computations rely on
the solution of the following reachability problem.

Problem 2 (Reachability Problem) Given a fam-
ily F = (A;U) of linear vector �elds, compute all states
that are reachable from a semi-algebraic set of initial
states.

Even though there is a wealth of results in control the-
ory regarding the reachable set from a given point, only
recently have people looked at computing reachable
sets of di�erential equations or di�erential inclusions
starting from an initial set of states. The �rst exact
solution to Problem 2, for certain families of linear dif-
ferential equations was given in [12] based on the results
of [9, 10, 11].

Theorem 1 (Decidable Reachability Computation)
Let F = (A;U) be a family of linear control vector
�elds with A 2 Qn�n , let the control set U be de�ned
by equation (6), and let � denote the spectrum of
the matrix A. Furthermore, assume that one of the
following cases holds :

1. A is nilpotent, and the basis functions are of the
form pl(t) = tl, or

2. A is diagonalizable with real, rational eigenvalues,
and the basis functions are of the form pl(t) = e�lt,
with �l 62 �, or

3. A is diagonalizable, has purely imaginary eigen-
values of the form ir with r 2 Q, and the ba-
sis functions are of the form pl(t) = sin(�lt) or
pl(t) = cos(�lt), with �l 62 �.

Then, Reachability Problem 2 is decidable for any F =
(A;U) in the above classes.

In addition to reachability of linear systems, Theorem 1
can be trivially extended to hybrid systems which con-
tain a �xed, �nite number of discrete switches. This
allows us to consider reachability computations of lin-
ear control systems whose inputs are �xed, �nite con-
catenations of functions belonging in U .
For the case of nilpotent A matrices, Theorem 1 allows
us to consider splines, which are special concatenations

of polynomials. This is particularly relevant for motion
planning computations as the robot dynamics (1) be-
long to this class.

4. MOTION PLANNING COMPUTATIONS

To illustrate the approach consider the example shown
in Figure 1. The robot is modeled by a di�erential
equation (1) along with the following (lack of) con-
straints

vmin
x = vmin

y = �1 vmax
x = vmax

y = +1
amin
x = amin

y = �1 amax
x = amax

y = +1
The initial state is (x0; y0; vx0 ; vy0) = (1; 1; 0; 0), and
the �nal state is (xF ; yF ; vxF ; vyF ) = (4; 4; 0; 0). The
static obstacles are

O1 = f(x; y) 2 R2 j x � 0g
O2 = f(x; y) 2 R2 j y � 0g (7)

O3 = f(x; y) 2 R2 j (x� 2)2 + (y � 2)2 � 1g
Assume that the control inputs have the following form,

ax(t) = a2t
2 + a1t+ a0

ay(t) = b2t
2 + b1t+ b0

Higher order polynomials can also be considered at the
price of complexity.

We would like to know whether there exist values for
the coe�cients of the input polynomials that will steer
the robot from the initial state to the �nal state while
respecting all system dynamics and avoiding all obsta-
cles. After integrating the control input, the robot state
trajectories will have the following form

vx(t) =  x(t) =
1

3
a2t

3 +
1

2
a1t

2 + a0t+ vx0

vy(t) =  y(t) =
1

3
b2t

3 +
1

2
b1t

2 + b0t+ vy0

x(t) = �x(t) =
1

12
a2t

4 +
1

6
a1t

3 +
1

2
a0t

2 + vx0t+ x0

y(t) = �y(t) =
1

12
b2t

4 +
1

6
b1t

3 +
1

2
b0t

2 + vy0t+ y0

Let I and F be the predicates characterizing the initial
and �nal points

I = (x0 = y0 = 1) ^ (vx0 = vy0 = 0)

F = (x = y = 4) ^ (vx = vy = 0)

For simplicity, let us �rst consider the problem without
obstacles. We de�ne the predicate PostI characteriz-
ing all the values of the parameters that correspond to
trajectories starting at the initial point

PostI(a0; a1; a2; b0; b1; b2; x; y; vx; vy) =
9t; x0; y0; vx0 ; vy0 :
t � 0 ^ x = �x(t) ^ y = �y(t)
^ vx =  x(t) ^ vy =  y(t)
^ I(x0; y0; vx0 ; vy0)

(8)

After eliminating the existentially quanti�ed variables
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Figure 2. Parameter Synthesis without Obsta-
cles

t, x0, y0, vx0 and vy0 , PostI is a quanti�er free formula
in the coe�cients and the �nal position. We can de-
cide whether the �nal con�guration can be reached by
simply checking whether

9a0; a1; a2; b0; b1; b2; x; y; vx; vy :
F (x; y; vx; vy)
^ PostI(a0; a1; a2; b0; b1; b2; x; y; vx; vy)

(9)

is true by eliminating the variables. This can be done
using the generic quanti�er elimination with answer of
Redlog, which reduces the formula to true, yielding
the following possible instantiation of the eliminated
variables

a0 = �inf
a1 = (2inf

p
inf)=3

a2 = (�inf2)=12
b0 = (15eps

p
inf �

p
5inf2 � 5inf2)=(15inf)

b1 = (
p
inf

p
5inf � 15eps)=15

b2 = (30
p
infeps� 2

p
5inf2 + 5inf2)=180

where eps and inf are dummy variables introduces by
Redlog [5]. The fact that one can exactly compute the
set of parameter values for which the motion planning
problem is feasible, is one of the main advantages of
using symbolic reachability computations. In the case
above, Redlog returns this feasible set of parameters
parameterized by eps and inf which are free parame-
ters to explore in secondary objectives. For example,
instantiating eps to 0 and inf to 1=16 we obtain the
trajectory shown in Figure 2.

In the presence of obstacles, we de�ne the predicate
PostI characterizing all the values of the parameters
that correspond to trajectories starting at the initial

point and avoiding the obstacles as follows

PostI(a0; a1; a2; b0; b1; b2; x; y; vx; vy) =
9t; x0; y0; vx0 ; vy0 : t � 0
^ x = �x(t) ^ y = �y(t)
^ vx =  x(t) ^ vy =  y(t)
^ I(x0; y0; vx0 ; vy0 ; a0; b0)
^ 8t0 : 0 � t0 � t =)

�x(t
0) � 0 ^ �y(t0) � 0

^ (�x(t
0)� 2)2 + (�y(t)� 2)2 > 1

(10)

After eliminating the existentially quanti�ed variables,
PostI is a quanti�er free formula in the coe�cients and
the �nal position. Again, we can decide whether the
�nal con�guration can be reached by eliminating the
variables.

Even though in theory the problem can be solved, in
practice this is not the case. For instance, in formula
(10) there are polynomials of degree eight (�x(t

0) and
�y(t

0), that are polynomials of degree four, are un-
der a quadratic power). Unfortunately, state-of-the-
art tools in quanti�er elimination such as Qepcad [3]
and Redlog [4] are unable to handle such a predicate.
In particular, Redlog can feasibly handle more vari-
ables thanQepcad, butQepcad can handle higher or-
der polynomials than Redlog. In this computational
tradeo�, one approach to try to solve the problem is
to avoid the universal quanti�cation on the intermedi-
ate positions in (10) by imposing additional constraints
over the velocity. These additional constraints impose
decomposing the problem to smaller subproblems of
manageable complexity.

Consider again the scenario illustrated in Figure 1 and
let (xi; yi) = ( 51

16
; 3
4
). The idea is to try to avoid going

through the obstacle by passing by the intermediate
point (xi; yi), thus decomposing the trajectory in two
segments, the �rst one with x increasing and y decreas-
ing, the second one with both x and y increasing. Let

V ++(t) =  x(t) � 0 ^  y(t) � 0

V +�(t) =  x(t) � 0 ^  y(t) � 0

V �+(t) =  x(t) � 0 ^  y(t) � 0

V ��(t) =  x(t) � 0 ^  y(t) � 0

For p 2 f++;+�;�+;��g, we de�ne
PostpI(a0; a1; a2; b0; b1; b2; x; y; vx; vy) =
9t; x0; y0; vx0 ; vy0 : t � 0
^ x = �x(t) ^ y = �y(t)
^ vx =  x(t) ^ vy =  y(t)
^ I(x0; y0; vx0 ; vy0 ; a0; b0)
^ 8t0 : 0 � t0 � t =) V p(t0)

(11)

Let

I0 = x0 = y0 = 1 ^ vx0 = vy0 = a0 = b0 = 0

Ii = xi =
51

16
^ yi = 3

4
^ vxi = vyi = ai0 = bi0 = 0

F0 = Ii
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Figure 3. (xi; yi) = ( 51
16
; 3
4
)

F = x = y = 4 ^ vx = vy = 0

We can check whether the �nal con�guration can be
reached from the initial one by passing through the
intermediate point by simply checking whether the fol-
lowing predicate is true

9a1; a2; b1; b2; ai1; ai2; bi1; bi2 :
PostI0(a1; a2; b1; b2) ^ PostIi(ai1; ai2; bi1; bi2) :
^F (x; y; vx; vy) ^ F0(xi; yi; vxi ; vyi)

(12)

More generally, this leads us to consider the following
problem.

Problem 3 Let n 2 N and (xi; yi) 2 Q2 (for all i; 0 �
i � n) be a set of points. Is there a piecewise polynomial
trajectory of (1), where each segment has acceleration
de�ned as in (3), that starts at (x0; y0), reaches (xn; yn)
and passes through all the intermediate points (xi; yi)?

In order to consider the practical restrictions of the
tools used, for each segment we have the following as-
sumptions:

� Initial and �nal speed are set to 0.

� Initial acceleration is set to 0.

� The absolute value of the acceleration is bounded
by 1.

With these restrictions we have that the Post operator
for each segment is

PostpI(a1; a2; b1; b2; x; y) =
9t; x0; y0 : t � 0
^ x = �x(t) ^ y = �y(t)
^ 0 =  x(t) ^ 0 =  y(t)
^ 8t0 : 0 � t0 � t =) V p(t0)

^ � 1 � ax(t
0) � 1 ^ �1 � ay(t

0) � 1

We use the generic quanti�er elimination of Redlog
to eliminate a1, a2, t, x and y. The result is a predicate

Qp on the parameters b1, b2 and the initial conditions
which cannot be further reduced by Redlog, with the
additional condition b1 6= 0 ^ b2 6= 0. We use Qepcad
to prove that is equivalent to true. The answers ob-
tained are the following.
For p = ++

a1 = (�4b2)=(3b1)
a2 = (�4b22)=(3b21)
t = (�3b1)=(2b2)
x = (3b21 + 16b22x0)=(16b

2
2)

y = (�9b41 + 64b32y0)=(64b
3
2)

For p = �+
a1 = (4b2)=(3b1)

a2 = (4b22)=(3b
2
1)

t = (�3b1)=(2b2)
x = (�3b21 + 16b22x0)=(16b

2
2)

y = (�9b41 + 64b32y0)=(64b
3
2)

For p = +�
a1 = �b1
a2 = �b2
t = (�3b1)=(2b2)
x = (9b41 + 64b32x0)=(64b

3
2)

y = (�9b41 + 64b32y0)=(64b
3
2)

For p = ��
a1 = b1

a2 = b2

t = (�3b1)=(2b2)
x = (�9b41 + 64b32x0)=(64b

3
2)

y = (�9b41 + 64b32y0)=(64b
3
2)

We have therefore reduced the problem to �nding the
solutions of the system of nonlinear equations in b1 and
b2, and then checking that these solutions satisfy the
predicate Qp. Actually, the problem can be further
simpli�ed by setting a value for t and putting one of
the parameters in terms of the other, yielding a system
of nonlinear equations on a single variable.

Consider the following example. Let (x0; y0) = (1; 1),
(x1; y1) = ( 3

2
; 1
2
), (x2; y2) = ( 19

12
; 2), (x3; y3) = ( 3

2
; 4).

This yields the following equations.

1. From (x0; y0) to (x1; y1) with p = +�:

3=2 = (9b41 + 64b32)=(64b
3
2)

1=2 = (�9b41 + 64b32)=(64b
3
2)

By setting t = 1 we get b2 = � 3

2
b1. Solving the

equations for b1 gives b1 = �12. By replacing in
the other equations we get a1 = 12, a2 = �18, and
b2 = 18.



2. From (x1; y1) to (x2; y2) with p = ++:

19=12 = (3 � b212 + 24 � b222)=(16 � b222)
2 = (�9 � b214 + 32 � b223)=(64 � b223)

Solving in the same way as before we obtain a1 =
2, a2 = �3, b1 = 36, and b2 = �54.

3. From (x2; y2) to (x3; y3) with p = �+:

3=2 = (�9b21 + 76b22)=(48b
2
2)

4 = (�9b41 + 128b32)=(64b
3
2)

Solving in the same way as before we obtain a1 =
�2, a2 = 3, b1 = 48, and b2 = �72.

5. CONCLUSIONS

In this paper, we considered the application of sym-
bolic reachability computations to the motion planning
problem. Advantages of this approach include the abil-
ity to compute the set of parameter values for which the
motion planning problem is feasible. Such set compu-
tations are based on quanti�er elimination techniques
which have been implemented in the computer algebra
tools Redlog and Qepcad. Unfortunately, the com-
plexity of quanti�er elimination forces the application
of the method to problems of small size. Much faster
quanti�er elimination methods have been discovered re-
cently [2]. Even though such algorithms can be of great
use for exact reachability computations, they have not
been implemented yet. Approximate reachability com-
putations which trade precision for complexity should
be pursued further.
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