
Relaxing Goodness is Still Good

Gordon J. Pace1 and Gerardo Schneider2

1 Dept. of Computer Science and AI, University of Malta, Msida, Malta.
2 Dept. of Informatics, University of Oslo, Oslo, Norway.

{gordon.pace@um.edu.mt; gerardo@ifi.uio.no}

Abstract. Polygonal hybrid systems (SPDIs) are planar hybrid sys-
tems, whose dynamics are defined in terms of constant differential in-
clusions, one for each of a number of polygonal regions partitioning the
plane. The reachability problem for SPDIs is known to be decidable, but
depends on the goodness assumption — which states that the dynamics
do not allow a trajectory to both enter and leave a region through the
same edge. In this paper we extend the decidability result to generalised
SPDIs (GSPDI), SPDIs not satisfying the goodness assumption, and give
an algorithmic solution to decide reachability of such systems.

1 Introduction

A hybrid system is one in which discrete and continuous behaviours interact.
Some systems are inherently hybrid — consider a robot, with differential equa-
tions determining its speed, together with an embedded computer taking dis-
crete decisions based on the continuous input values coming from sensors. In
other cases, a system consisting only of continuous behaviour, can be hybridised,
introducing discrete behaviour in order to facilitate the analysis. For example,
exact solutions can be difficult to obtain for a non-linear differential equation,
making a qualitative and approximative analysis necessary.
A class of hybrid systems for which the reachability question is known to be
decidable, are Polygonal Hybrid Systems (SPDIs) — a subclass of hybrid sys-
tems on the plane whose dynamics is defined by constant differential inclusions
[ASY01,ASY07]. Informally, an SPDI consists of a partition of the plane into
polygonal regions, each of which enforces different dynamics given by two vec-
tors determining the possible directions a trajectory might take; a simple SPDI
is depicted in Fig. 1-(a). A constructive proof for deciding reachability on SPDIs
can be found in [ASY07]. The proof is restricted to SPDIs satisfying the so-called
goodness assumption — the dynamics of any region of the SPDI do not allow a
trajectory to traverse any edge of the polygonal region in opposite directions. An
SPDI without the goodness assumption is called a Generalised SPDI (GSPDI).
Fig. 1-(b) shows an example of a good and a ‘bad’ region (here ‘bad’ indicates
that the region does not satisfy the goodness criterion). In the figure on the left
we can see a good region, where the two vectors a and b make it impossible
for a trajectory to enter and leave the region P through the same edge of the
polygon delimiting the region. On the other hand, the figure on the right shows



Good region Bad region

e2

e3

e6

e1

e2

e5

e6

e4
e3

e4

P P
e5

e1

R3

R7

R1R5

e3R4

R6

e4

e5

e2

e6 e7

e8

e1

R8

(a)

b

a

b

a

(b)

R2

Fig. 1. (a) Example of an SPDI; (b) Good and bad regions.

a bad region: Both e2 and e5 can be crossed in both directions by a trajectory
entering and leaving P .
The algorithm presented in [ASY07] for deciding reachability on SPDI depends
on pre-processing of trajectory segments and a qualitative analysis to guarantee
that it is possible to review the behaviour of all the possible signatures1, by
looking at only a finite set of abstract signatures. Informally, this is achieved
as follows: (1) Trajectory segments are simplified — it is sufficient to look at
trajectories made up of straight segments across regions, and which do not cross
themselves; (2) Trajectory segments are abstracted into signatures, based on the
Poincaré map that relates n-dimensional continuous-time systems with (n− 1)-
dimensional discrete-time systems; (3) It is shown that it is sufficient to look at
signatures which consist only of sequences of edges and simple cycles; (4) Such
signatures can be abstracted into types of signatures — signatures which do not
take into account the number of times each simple cycle is iterated.
Many of the lemmas for proving that the above guarantee the finiteness of types
of signatures critically depend on the goodness assumption, which propagate this
dependency to the constructive proof given for deciding reachability of SPDIs.
The restriction to “good” SPDIs is not justified by applications or inherent in-
terest, it was just a technical condition to facilitate the application of certain
techniques and prove decidability. In fact restricting oneself only to SPDIs satis-
fying the goodness assumption makes it very difficult to model real-life examples.
Unfortunately, extending the SPDI model in most ways, such as allowing jumps
with resets (from one edge to another remote one), increasing the number of
dimensions and allowing non-linear differential inclusions, have been shown to
make the model undecidable (see [AS02,MP05] and references therein).
A potentially interesting and useful application of SPDIs is that of the approx-
imation and analysis of two-dimensional non-linear differential equations. By
splitting the plane into polygons, and by setting the dynamics of each polygon
to be over-approximations of the non-linear differential equation in that region,
one can ask reachability questions about the equation, and obtain answers ac-
cordingly. When over-approximating the dynamics, a negative reachability an-
swer implies a negative answer in the exact equation. Using more and smaller
polygons enables more precise approximations.
The problem with using this approach is that for most differential equations,
using a fixed partition breaks the goodness assumption, since some edges will
1 We call signature the sequence of traversed edges by the trajectory. A more formal
definition will be given in a later section.



Fig. 2. Approximating a non-linear differential equation using different partitioning of
the plane.

lie within the differential inclusion of that region. One solution would be to try
to derive an intelligent partition which maintains goodness, but which may be
impossible, or by extending the SPDI analysis algorithms to relax the goodness
assumption, thus enabling the modelling of non-linear differential equations in a
straightforward manner.
As a simple example, consider a pendulum with friction coefficient k, mass M ,
pendulum length R and gravitational constant g. If θ is the angle subtended with
the vertical, the behaviour of the pendulum follows the differential equation:
MR2θ̈ + kθ̇ + MgR sin θ = 0. Taking x = θ, and y = θ̇, we get ẋ = y and
ẏ = − ky

MR2 − g sin(x)
R . Using these formulae, SPDIs expressing these constraints

can be constructed, possibly with different plane partitions. Fig. 2 gives two
such partitions for k = 1, R = 10, M = 10, and g = −10. Visual inspection
shows that various polygons are not good. By presenting an algorithm to decide
GSPDI reachability, we can automatically analyse such systems.
In this paper we present an algorithm for solving the reachability problem for
GSPDIs, contributing towards the narrowing of the undecidability frontier of
low dimension hybrid systems [AS02,MP05], and enabling the use of GSPDIs to
approximate planar non-linear differential equations.
In the next section we outline definitions and results about SPDIs, and then
extend them to enable the analysis of GSPDIs in section 3.

2 Polygonal Hybrid Systems (SPDIs)

In this section we recall the main definitions and concepts required in the rest of
the paper, and give an outline of the results for SPDIs, upon which the results
presented in this paper are built. For a more detailed presentation see [ASY07]. In
what follows, we will use a = (a1, a2) and x = (x1, x2) to represent 2-dimensional
vectors (a,x ∈ R2). An angle ∠b

a on the plane, defined by two non-zero vectors a
and b is the set of all positive linear combinations x = α a+β b, with α, β ≥ 0,
and α+β > 0. We can always assume that b is situated in the counter-clockwise
direction from a.



Definition 1. A polygonal hybrid system (SPDI) is a pair H = 〈P, F〉, where
P is a finite partition of the plane (each P ∈ P being a convex polygon), called
the regions of the SPDI, and F is a function associating a pair of vectors to each
polygon: F(P ) = (aP ,bP ). In an SPDI every point on the plane has its dynamics
defined according to which polygon it belongs to: if x ∈ P , then ẋ ∈ ∠bP

aP
.

Example 1. Consider the SPDI illustrated in Fig. 1-(a), with eight regions
R1, R2, . . . , R8. A pair of vectors (ai,bi) is also associated to each region Ri:
a1 = b1 = (1, 5), a2 = b2 = (−1, 1

2 ), a3 = (−1, 11
60 ) and b3 = (−1,− 1

4 ),
a4 = b4 = (−1,−1), a5 = b5 = (0,−1), a6 = b6 = (1,−1), a7 = b7 = (1, 0),
a8 = b8 = (1, 1).

We define E(P ) to be the set of edges of region P . We say that an edge e
(e ∈ E(P )) is an entry-only of P if for all x ∈ e and for all c ∈ ∠bP

aP
, x + cε ∈ P

for some ε > 0. We say that e is an exit-only of P if the same condition holds for
some ε < 0. Intuitively, an entry-only (exit-only) edge of a region P allows at least
a trajectory in P starting (terminating) on edge e, but allows no trajectories in P
terminating (starting) on edge e. We write In(P ) (In(P ) ⊆ E(P )) to denote the
set of all entry-only edges of P and Out(P )(Out(P ) ⊆ E(P )) to denote the set
of exit-only edges of P . From the definition, it follows immediately that no edge
can be both an entry-only and an exit-only edge of a region: In(P )∩Out(P ) = ∅.
A region P is said to be good, if all the edges of that region are either entry-only
or exit-only: E(P ) = In(P ) ∪ Out(P ). An SPDI is said to be good, or satisfy
the goodness assumption, if it consists of only good regions: ∀P ∈ P · E(P ) =
In(P ) ∪Out(P ).

Example 2. In Fig. 1-(b), the region P shown on the left is good since all edges
are either entry-only or exit-only. The region depicted on the right shows a region
that is not good, since neither edge e2 nor edge e5 are in In(P ) ∪Out(P ).

Note that though the definition of SPDIs does not exclude the possibility of
having dynamics with a and b co-linear (i.e., a = −b), this is excluded under
the goodness assumption. In what follows, ‘SPDI’ will always denote a good
SPDI, unless specified otherwise.
We will use the notation eP

© to indicate the directed edge e such that it follows
a clockwise direction around region P , and similarly eP

ª to indicate the directed
edge e following an anti-clockwise direction around region P . Given a directed
edge e, its inverse will be written as e−1.

Definition 2. The set of directed edges of an SPDI H with partition P, written
Ed(H), is defined to be: Ed(H) = {eP

© | P ∈ P, e ∈ In(P )} ∪ {eP
ª | P ∈ P, e ∈

Out(P )}. Similarly, we define Ind(P ) and Outd(P ) to correspond to In(P ) and
Out(P ) but with directed edges.

Since an edge appears in two adjacent regions, the direction induced in the
two regions may be different. However, it is easy to see that edges which are
entry-only in one region, and exit-only in the other, result in matching induced
directions: e ∈ Ed(H) or e−1 ∈ Ed(H), but not both [ASY01,MP93]. In an SPDI



the only case where one can have both e and e−1 in a signature is when e is an
entry-only (or exit-only) edge in both adjacent regions it belongs to.
A trajectory segment of an SPDI H, is a continuous and almost-everywhere
(everywhere except on finitely many points) differentiable function ξ ∈ [0, T ] →
R2 such that for all t ∈ [0, T ], if ξ(t) ∈ P and ξ̇(t) is defined then ξ̇(t) ∈ ∠bP

aP
.

The signature of a trajectory segment ξ, written Sig(ξ), is the sequence of edges
traversed by the trajectory, that is, e1, e2, . . . en resulting from ξ∩Ed(H), where
edges are arranged in the order they are “visited” by ξ.
One important result is that the behaviour of any trajectory is equivalent, with
respect to reachability, to the behaviour of some trajectory which does not cross
itself and follows straight-line segments within regions.

Lemma 1 ([ASY07]). Given a trajectory segment ξ ∈ [0, T ] → R2, there exists
another trajectory segment ξ′ ∈ [0, T ′] → R2 starting and finishing at the same
points as ξ (ξ(0) = ξ′(0) and ξ(T ) = ξ′(T ′)) such that (i) ξ′ does not cross itself
(ξ is injective); and (ii) ξ′ follows straight-line segments inside regions. ut
Though in general the reachability problem for an SPDI H may be considered
for region-to-region, for simplicity of presentation we define it as the following
predicate: Reach(H,x0,xf ) ≡ ∃ξ ∃t ≥ 0 . (ξ(0) = x0 ∧ ξ(t) = xf ). lemma
1 shows that to decide reachability, it is sufficient to look at non-self-crossing
trajectories consisting of straight-line segments. In the rest of the discussion,
we will restrict our use of trajectory to mean ‘a non-self-crossing trajectory
composed of straight-line segments between edges’. Similarly, the term signature
will be used to indicate the signature of a trajectory with these constraints.
As usual in reachability analysis we need to compute successors, which are built
upon special kind of multi-valued functions introduced in what follows.

Truncated Affine Multi-Valued Functions. An affine function f ∈ R→ R is such
that f(x) = ax + b. If a > 0 we say that f is positive affine, and if a < 0 we say
that f is negative affine; we call this the parity of the affine function.
An affine multivalued function (AMF) F ∈ R → 2R, written F = 〈fl, fu〉,
is defined by F (x) = 〈fl(x), fu(x)〉 where fl and fu are positive affine and
〈·, ·〉 denotes an interval. For notational convenience, we do not make explicit
whether intervals are open, closed, left-open or right-open, unless required for
comprehension. For an interval I = 〈l, u〉 we have that F (〈l, u〉) = 〈fl(l), fu(u)〉.
An inverted affine multivalued function F ∈ R → 2R, is defined by F (x) =
〈fu(x), fl(x)〉 where fl and fu are both negative affine and 〈·, ·〉 denotes an
interval.
Given an AMF F and two intervals S ⊆ R+ and J ⊆ R+, a truncated affine
multivalued function (TAMF) FF,S,J ∈ R→ 2R is defined as follows: FF,S,J(x) =
F (x) ∩ J if x ∈ S, otherwise FF,S,J(x) = ∅. In what follows we will write F
instead of FF,S,J whenever no confusion may arise. Moreover, in the rest of the
paper F will always denote an AMF and F a TAMF. For convenience we write
F(x) = F ({x} ∩ S) ∩ J instead of F(x) = F (x) ∩ J if x ∈ S. We overload the
application of a TAMF on an interval I: F(I) = F (I ∩ S)∩ J . We say that F is
normalised if S = Dom(F) = {x | F (x) ∩ J 6= ∅} and J = Im(F) = F(S).



As in the case of affine multivalued functions, an inverted truncated affine mul-
tivalued function (inverted TAMF) is similar to a TAMF, but defined in terms
of an inverted affine multivalued function as opposed to a normal one. An im-
portant result is that normal TAMFs are closed under composition.

Theorem 1 ([ASY07]). The functional composition of two normal TAMFs
F1(I) = F1(I ∩ S1) ∩ J1 and F2(I) = F2(I ∩ S2) ∩ J2, is the TAMF (F2 ◦
F1)(I) = F(I) = F (I ∩ S) ∩ J , where F = F2 ◦ F1, S = S1 ∩ F−1

1 (J1 ∩ S2) and
J = J2 ∩ F2(J1 ∩ S2). ut

The following new corollary extends the above result.

Corollary 1. The composition of two inverted TAMFs gives a normal TAMF.
Conversely, the composition of one normal and one inverted TAMF (in either
order) gives an inverted TAMF. ut

To avoid having to reason about the length of every edge, we normalise every
edge e such that its TAMF has the domain [0, 1] (that is, the normalised version
of e has length 1, with 0 corresponding to the starting point of the directed edge,
and 1 to the end point).

Successors Given an SPDI, we fix a one-dimensional coordinate system on each
edge to represent points lying on edges. For notational convenience, we will use e
to denote both the directed edge and its one-dimensional representation. Accord-
ingly, we write x ∈ e and x ∈ e, to mean “point x lies on edge e” and “coordinate
x in the one-dimensional coordinate system of e” respectively. The same conven-
tion applied to sets of points of e represented as intervals (for example, x ∈ I
and x ∈ I, where I ⊆ e) and to trajectories (for example, “ξ starting at x” or “ξ
starting at x”).
Consider a polygon P ∈ P, with e0 ∈ Ind(P ) and e1 ∈ Outd(P ). For I ⊆ e0,
Succe0e1(I) is defined to be the set of all points lying on e1 reachable from some
point in I by a trajectory segment ξ ∈ [0, t] → R2 in P (that is, ξ(0) ∈ I ∧ ξ(t) ∈
e1 ∧ Sig(ξ) = e0e1). Given I = [l, u], Succe0e1(I) = F (I ∩ Se0e1) ∩ Je0e1 , where
Se0e1 and Je0e1 are intervals, F ([l, u]) = 〈fl(l), fu(u)〉 and fl and fu are positive
affine functions. Successors are thus normal TAMFs.

Qualitative analysis of simple edge-cycles In what follows a sequence of edges in
parenthesis, σ = (e1 . . . ek), will denote a simple edge-cycle – that is, a signature
that can be repeated at least once, and such that all edges are distinct (ei 6= ej

for all 1 ≤ i < j ≤ k). Given an SPDI, its topology determines when a sequence
of edges may form a simple cycle [ASY07]. Let Succσ(I) = F (I ∩ Sσ) ∩ Jσ with
F = 〈fl, fu〉, and Sσ and Jσ computed as in theorem 1.
We assume that neither of the two functions fl, fu is the identity function. The
following analysis, taken from [ASY01], allows us to calculate the behaviour
of cycles provided that the path along the cycle has a normal (not inverted)
TAMF. Since, in SPDIs, the TAMF between a pair of edges is normal, and the



composition of two normal TAMFs is itself a normal TAMF, this approach is
universally applicable as long as the goodness assumption holds.
Let σ be a simple cycle, and l∗ and u∗ be the fix-points2 of fl and fu, respectively,
and Sσ ∩ Jσ = 〈L,U〉. It can be shown that σ is of one of the following kinds:
STAY: The cycle is not abandoned neither by the leftmost nor the rightmost
trajectory, that is, L ≤ l∗ ≤ u∗ ≤ U . DIE: The rightmost trajectory exits the
cycle through the left (consequently the leftmost one also exits) or the leftmost
trajectory exits the cycle through the right (consequently the rightmost one
also exits), that is, u∗ < L ∨ l∗ > U . EXIT-BOTH: The leftmost trajectory
exits the cycle through the left and the rightmost one through the right, that is,
l∗ < L∧u∗ > U . EXIT-LEFT: The leftmost trajectory exits the cycle (through
the left) but the rightmost one stays inside, that is, l∗ < L ≤ u∗ ≤ U . EXIT-
RIGHT: The rightmost trajectory exits the cycle (through the right) but the
leftmost one stays inside, that is, L ≤ l∗ ≤ U < u∗.
The classification above provides useful information about the qualitative be-
haviour of trajectories. Any trajectory that enters a cycle of kind DIE will even-
tually leave it after a finite number of turns. In a cycle of kind STAY, all trajecto-
ries that happen to enter it will keep turning inside it forever. In all other cases,
some trajectories will turn for a while and then exit, and others will continue
turning forever. This information is crucial for solving the reachability problem
for SPDIs. Also note that the above analysis gives us a non-iterative solution
of cycle behaviour for most cycles; the theoretical algorithm [ASY07] as well as
the tool SPeeDI [Spe] uses such acceleration techniques. An important result to
prove the decidability of SPDIs is that any valid signature can be expressed in
a normal form, consisting of alternating sequential paths and simple cycles:

Theorem 2 ([ASY07]). Given an SPDI with the goodness assumption, any
edge signature σ = e1 . . . ep can be written as σA = r1s

k1
1 . . . rnskn

n rn+1, where
for any 1 ≤ i ≤ n + 1, ri is a sequence of pairwise different edges and for all
1 ≤ i ≤ n, si is a simple cycle (no edges are repeated within si). ut
Let σ = e1 . . . ep be an edge signature and σA = r1s

k1
1 . . . rnskn

n rn+1 be its
representation as in the above theorem. Then we define the type of a signature
σ as type(σ) = r1, s1, . . . , rn, sn, rn+1. We say that a signature σ is feasible if
and only if there exists a trajectory segment ξ with signature σ, i.e., Sig(ξ) = σ.
Types of signatures have the following properties:

Lemma 2 ([ASY07]). Given an SPDI, let σ = e0 . . . ep be a feasible signature,
then its type, type(σ) = r1, s1, . . . , rn, sn, rn+1 satisfies the following properties:
(i) every 1 ≤ i < j ≤ n + 1, ri and rj are disjoint; (ii) every 1 ≤ i < j ≤ n, si

and sj are different. ut
The finiteness of types of signatures is the basis of the proof of decidability of
(good) SPDI reachability, and of the termination of the reachability algorithm
(together with acceleration results for simple cycles).
2 The fix-point x∗ is the solution of f(x∗) = x∗, where f(·) is positive affine. The
existence and computation of such fix-points are detailed in [ASY07].



Theorem 3 ([ASY07]). Point-to-point, interval-to-interval and region-to-region
reachability for SPDIs is decidable. ut

3 Relaxing Goodness: Generalised SPDIs

The original proof of the decidability of the reachability question for SPDIs, de-
pended on the concept of monotonicity of TAMFs and their composition. Before
starting the analysis, the algorithm fixed the direction of the edges separating
regions. An interesting result guaranteed that the orientation of the edges re-
sulted in each polygon split into two contiguous sequences of edges — one being
entry-only edges, the other being exit-only edges. Furthermore, the orientation
of an edge in one region is guaranteed to match the orientation of the same edge
in the adjacent region3, as shown in Fig. 3-(a). When one moves on to GSPDIs,
inout edges (those that may be traversed in both directions) break this result,
since the direction of an edge when considered as an input edge clashes with the
direction it is given when used as an output edge in the same region. The previ-
ous result however, still guaranteed that the entry-only edges and the exit-only
edges can be assigned in one fixed direction (see Fig. 3-(b)).
To solve this problem, we use directed edges, and differentiate between the edge
used as an input, and when it is used as an output, just as though they were
two different edges in the GSPDI. Fig. 3-(c) shows how an inout edge can be
seen in this manner. Note that depending on in which direction the trajectory
traverse the inout edge e1, it is an input edge in region R1, but an output edge
in region R2, and similarly, e−1

1 is an output edge in region R1 and an input edge
in region R2; that is why we did not draw the direction vector in the picture. In
other words, any path passing through the edge such as σ = e0e1e2 . . . e3e

−1
1 e4

(see Fig. 3-(d)) can be analysed as before, and through monotonicity, one can
deduce that Succσ is a positive TAMF. e1 and e−1

1 are considered distinct edges,
and the above path contains no cycle.
It can be seen that the standard analysis for SPDIs works well for such cases.
However, paths can now ‘bounce’ off an edge. Recall that any pair of edges e0e1

is part of a path if e0 is an input edge of a region, and e1 is an output edge of
the same region. One can calculate the TAMF for such a trajectory. However,
ee−1 can now be a valid path, whose behaviour cannot be expressed as a normal
TAMF. This breaks the analysis used in SPDIs, to accelerate the analysis of
simple cycles. The standard SPDI analysis thus needs to be extended to handle
such ‘bounces’ in paths.

3.1 Preliminary Results

The goodness assumption was originally introduced to simplify treatment of tra-
jectories and to guarantee that each region can be partitioned into entry-only
3 There are special cases when an edge is an entry-only to a region and an exit-only
to an adjacent region. From the reachability point of view this does not cause any
problem as these cases can be identified and treated accordingly.



(b)(a)

?

(c) (d)

R1

b
a

R2

Out

In b

a

Out
Out

Out
b

a

R2

In

Out

Out

In

R1

In

Out

In

In

a

b

Out In

In

a

b

Out

Out

Out
R1

e1In

Out

Out

a

b

R2

e
−1

1

Out In

In

In
Out

Out

Out

In

In

In

a

b

R1

Out

Out

In

In

In

b

a

R2

In

In

Out

Fig. 3. (a) An SPDI with matching order of edges; (b) a GSPDI showing that the order
breaks the contiguity of the edge directions; (c) a GSPDI with a duplicated inout edge;
(d) a path through the GSPDI using edge e1 in both directions.

and exit-only edges in an ordered way, a fact used in the proof of decidability of
the reachability problem. In this section, we will introduce further background,
and provide new results concerning GSPDIs, needed to prove our decidability
result.

Definition 3. An edge e ∈ P is an inout edge of P if e is neither an entry-only
nor an exit-only edge of P .

An SPDI without the goodness assumption is called aGeneralised SPDI (GSPDI).
Thus, in GSPDIs there are three kinds of edges: inouts, entry-only and exit-only.
Self-crossing of trajectory (segments) of SPDIs can be eliminated, which allows
us to consider only non-crossing trajectory (segments). Standard algebraic ma-
nipulation of vector suffices to show that lemma 1 [ASY07]) also applies to
GSPDIs. Therefore, in what follows, we will consider only trajectory segments
without self-crossings. Note that on GSPDIs, a trajectory can “intersect” an edge
at an infinite number of points by sliding along it. A trace is thus no longer a
sequence of points, but rather, a sequence of intervals.

Definition 4. The trace of a trajectory ξ is the sequence trace(ξ) = I0I1 . . . In

of the intersection intervals of ξ with the set of edges: Ii ⊆ ξ ∩ Ed(H).

In Fig. 4-(a) we show a trajectory segment ξ, such that trace(ξ) = I0I1I2 . . . I3I4I5

where I1, I2, I3, I4 and I5 are points.

Definition 5. An edge signature (or simply a signature) of a GSPDI is a se-
quence of edges. The edge signature of a trajectory ξ, Sig(ξ), is the sequence
of traversed edges by the trajectory segment, that is, Sig(ξ) = e0e1 . . . en, with
trace(ξ) = I0I1 . . . In and Ii ⊆ ei.

In Fig. 4-(a) the signature of the trajectory segment ξ is Sig(ξ) = ee′e′′ . . . e′′−1e′−1e′′′

(to simplify the picture we do not draw the “duplicated” edges e′′−1 and e′−1).



(b)(a)

e
′′

I2I0

I1

I3

e

e
′′

e
′

e
′′′

I4

I1

e
′

I0

I5
e
′′′

e

I4

I2

I3

Fig. 4. (a) A sliding trajectory with a proper inout edge; (b) A sliding trajectory with
a proper inout edge and a bounce.

Note that, in many cases, the intervals of a trace are in fact points. We say
that a trajectory with edge signature Sig(ξ) = e0e1 . . . en and trace trace(ξ) =
I0I1 . . . In interval-crosses edge ei if Ii is not a point. Given a trajectory segment,
we will distinguish between proper inout edges and sliding edges.

Definition 6. Let ξ be a trajectory segment from point x0 ∈ e0 to xf ∈ ef , with
edge signature Sig(ξ) = e0 . . . ei . . . en, and ei ∈ E(P ) be an edge of P . We say
that ei is a sliding edge of P for ξ if ξ interval-crosses ei, otherwise e is said to
be a proper inout edge of P for ξ.

We say that a trajectory segment ξ slides along an edge e, if e is a sliding edge
of P for ξ, and that ξ is a sliding trajectory if it contains at least one sliding
edge. Fig. 4-(a) shows a sliding trajectory, where e is a sliding edge while e′ and
e′′ are proper inout edges. The following is a useful property of inout edges.

Proposition 1. If e is an inout edge, then any trajectory reaching the edge can
always slide on the edge (in one or the other direction, or both). ut

Since inout edges may appear in different situations, we need to explain our
strategy to deal with them, for which we need some preliminaries. For a region
P let us say that a vector c is compatible with the orientation of P if c is a
positive combination of vectors a and b associated with P .
Let e be an edge separating two polygons P1 and P2. There are the following
four new cases in addition to those from [ASY07]: (1) e is an inout edge in P1

and an entry-only edge in P2; (2) e is an inout edge in P1 and an exit-only edge
in P2; (3) e is an inout edge in P1 and also an inout edge in P2

4; (4) e is an
inout edge in P1 and also an inout edge in P2 like in the previous case5. In all
these cases a trajectory may slide on the edge if at least one of the dynamics on
the region allows it. For instance, in case (4), the trajectory may slide in both
directions. The above cases are included in our reachability analysis.
4 If c1 is a vector compatible with the orientation of P1 and c2 a vector compatible
with the orientation of P2 (see definition above) such that c1 and c2 are parallel to
edge e then both vectors are oriented in the same direction.

5 In this case if c1 is a vector compatible with the orientation of P1 and c2 a vector
compatible with the orientation of P2 such that both c1 and c2 are parallel to edge
e then c1 and c2 are oriented in the opposite directions.



As for SPDIs, we have the following property of Succ: for any edge signatures
σ1 and σ2 and edge e: Succeσ1 ◦ Succσ2e = Succσ2eσ1 .
The following lemma shows that the edge-to-edge successor function is a normal
TAMF whenever the two edges are not the inverse of each other. It follows
directly from the similar result for SPDIs [ASY07], which makes no assumption
regarding goodness.6

Lemma 3. For any two edges e0 and e1, Succe0e1 is always a normal TAMF,
whenever e1 6= e−1

0 . ut
Besides sliding, the signatures that we will be analysing in GSPDIs may include
subsequences of the form ee−1. The behaviour between such edges does not
correspond to a normal TAMF, and thus has to be analysed separately. A bounce
is a part of a trajectory which crosses an edge twice in immediate succession.
More formally:

Definition 7. Given a signature σ = e0e1 . . . en, a pair of edges eiei+1 is said
to be a bounce if ei+1 = e−1

i . We say that a signature e0e1 . . . en contains m
bounces, if there are exactly m distinct indices I = {i1, i2, . . . im} such for
every i ∈ I, ei = e−1

i+1.

Fig. 4-(b) shows a sliding trajectory Sig(ξ) = ee′e′′e′′−1e′−1e′′′. There is only one
bounce, namely e′′e′′−1.
Let Flip[l, u] = [1− u, 1− l] be an interval function. The following result estab-
lishes that the successor function for bounces can be defined in terms of the Flip
function. It is easy to prove that Succee−1 = Flip.
One of the useful properties of SPDIs is that the successor function of any given
signature is a normal TAMF. For GSPDIs, however, we need to take into account
bounces, and hence analyse the composition of normal TAMFs with Flip:

Lemma 4. Composing Flip with an inverted TAMF gives a normal TAMF and
an inverted TAMF if we compose it with a normal TAMF. ut
The parity of the number of bounces occurring in a given signature influences
the form of the underlying TAMF, as shown in the following result, whose proof
follows immediately by induction on the number of bounces.

Corollary 2. Any signature with an even number of bounces has its behaviour
characterised by a normal TAMF, while a signature with an odd number of
bounces is characterised by an inverted TAMF. ut
Recall that the analysis of simple cycle behaviour given for SPDIs depends only
on the assumption that the TAMF of the cycle body is a normal one. From the
previous result, it thus follows that whenever the number of bounces is even on
a given cyclic signature, the composed TAMF is a normal one, so the analysis
of simple cycles can be conducted as for SPDIs:
6 Note that the underlying AMFs are not necessarily positive affine whenever applied
to an inout edge, since the leftmost (rightmost) function may give −∞ (+∞). How-
ever, this is not a problem for successors, as in this case the underlying TAMFs are
of the form [0, ax + b] or [ax + b, 1] due to sliding.



Lemma 5. Given a simple cycle σ containing an even number of bounces, its
iterated behaviour can be calculated as for SPDIs. ut
Since a trajectory slides only along inout edges, and can only bounce off inout
edges, we can prove that simple cycles which include at least one bounce are never
STAY cycles. This gives us the advantage of the use of acceleration techniques
already used for SPDIs.

Lemma 6. Simple cycles which include bounces are not STAY cycles. ut
From lemma 5 we have that only simple cycles with an odd number of bounces
need to be analysed. Considering the case when a bounce appears as the first pair
of elements of a simple cycle body, we can accelerate the analysis by running
through the simple cycle only once. The proof follows from the fact that the
initial bounce enables a slide, thus allowing us to identify the limits through
only one application of the simple cycle body:

Lemma 7. Given a signature σ = e0(e1e
−1
1 e2 . . . en)ke1 (i) with only one simple

cycle; (ii) with k > 0; (iii) with an odd number of bounces; and (iv) starts
with a bounce; its behaviour is equivalent to following the simple cycle only once
σ′ = e0e1e

−1
1 e2 . . . ene1. In other words: Succσ = Succσ′ . ut

Based on the above lemma, we can prove that any simple cycle containing an
odd number of bounces can be accelerated. The proof works by unwinding the
simple cycle body to push the first bounce to the beginning, and then applying
the previous lemma:

Lemma 8. Given a simple cycle s with an odd number of bounces, we can cal-
culate the limit of its iterated behaviour without iterating. ut
Therefore, we can now analyse any type of signature in GSPDIs using the results
from lemma 3 (to deal with inout edges), and lemmas 5 and 8 (to deal with
bounces). Given a simple cycle s, let s+ be the cycle iterated one or more times.

Theorem 4. We can (constructively) compute the behaviour of a signature r1s
+
1

r2s
+
2 . . . rn. ut

3.2 Decidability Results

The following lemma guarantees that it is sufficient to consider simple cycles
which occur in a type of signature with certain patterns. Any type of signature
containing two occurrences of the same simple cycle can be reduced to another
type of signature where the simple cycle s occurs only once, provided the cycle
with the edges in reverse order does not occur between them. The proof is based
on the fact that, assuming the trajectory does not cross itself, between two
instances of a repeated simple cycle, one can always find either the reverse of
the cycle or a bounce, in which case, the bounce can be eliminated to avoid
leaving the simple cycle.



Lemma 9. Given a GSPDI, and assuming only trajectories without self-crossing,
if there is a type of signature where a simple cycle s = (e0, e1, . . . , en) appears
twice, i.e. type(Sig(ξ)) = σ′σ′′σ′′′ with σ′′ = sk . . . sk′′ , then if there is no
reverse(s) between the two occurrences of s, then type(Sig(ξ)) = σ′sk′′′σ′′′. ut
We also prove that a trajectory which takes a simple cycle (any number of times),
then takes it again (any number of times) but in reverse order, and finally takes
it a number of times in the forward direction, can be simulated by another
trajectory which simply takes the simple cycle a number of times. The proof
is based on the fact that whichever direction the first edge of the simple cycle
under consideration allows sliding in, it is possible to obtain a type of signature
preserving reachability without such a pattern.

Lemma 10. Given a GSPDI, if there is a trajectory segment ξ : [0, T ] →
R2, with ξ(0) = x and ξ(t) = x′ for some t > 0, such that type(Sig(ξ)) =
r1s

k1
1 r2s

k2
2 r3s

k3
3 r4, with s2 = s−1

1 and s3 = s1, then it is always possible to find
a trajectory segment ξ′ : [0, T ] → R2 such that ξ′(0) = x and ξ′(t) = x′ for some
t > 0, and type(Sig(ξ)) = r1s

k′1
1 r′4. ut

Based on the above, we can conclude that for GSPDIs we can always transform
a type of signature into one where simple cycles are not repeated.

Corollary 3. Given a GSPDI, an edge signature σ can be written as σA =
r1s

k1
1 . . . rnskn

n rn+1, where for any 1 ≤ i ≤ n + 1, si is a simple cycle (no
repetition of edges), and for every 1 ≤ i < j ≤ n, si and sj are different. ut
We can define the notion of type of signature as for SPDIs, abstracting the
number of times simple cycles are iterated on signatures of the kind shown on
the above corollary. Note that the statement of corollary 3 is weaker than the
corresponding result for SPDIs (theorem 2 and lemma 2) since it does not have
any restriction on the sequences of edges ri. However, the result is enough to
prove that there is only a finite number of types of signatures for a given GSPDI.

Corollary 4. A GSPDI has finitely many different types of signatures. ut
Given a type of signature σ where each edge is traversed in exactly one di-
rection, let Reachσ(x0,xf ) be the SPDI reachability algorithm from [ASY07].
The reachability algorithm for a GSPDI H, Reach(H,x0,xf ), works as follows:
(1) Generate the finite set of types of signatures Σ = {σ0, . . . , σn} (taking into
account e and e−1 as different edges), and such that the simple cycles are all
distinct; (2) Apply Reachσi(x0,xf ) for each σi ∈ Σ; (3) Answer Yes if and only
if for some σi ∈ Σ, Reachσi(x0,xf ) = Yes.
In step 2 we apply Succ progressively on the abstract signature, using lemmas
5 and 8 to compute the successor of a simple cycle with bounces, and the Succ
function as in the case of SPDIs for the rest. Based on these results, it is possible
to show termination, correctness and completeness of GSPDI reachability. From
this, the main theoretical result follows immediately:

Theorem 5. Reach(H,x0,xf ) is a sound and complete algorithm calculating
GSPDI reachability. The reachability problem for GSPDIs is decidable. ut



4 Final Remarks

We have proved that the reachability question for GSPDIs is decidable. The
proof is constructive, extending the algorithm for SPDIs [ASY07]. The key lies in
showing that the previous analysis works in all cases except when a simple cycle
contains an odd number of bounces. The algorithm is extended to deal with such
cases, considering now inout edges which enable sliding, but the overall effect
is to accelerate the analysis of an SPDI, since at least one end of the edge is
immediately covered once the edge is reached.
Concerning complexity, the algorithm presented here has the same worst-case
space complexity as for SPDIs, with the only extra additional drawback of even-
tually doubling the number of edges due to duplication of inout edges. Con-
cerning time complexity, the reachability algorithm developed for SPDIs makes
massive use of acceleration techniques, reducing the practical complexity of the
analysis. For GSPDIs acceleration is used even in more cases: every simple cycle
containing an inout edge can be accelerated. Overall, if compared with SPDI
reachability analysis, we have a slight increase on the size of the search state-
space, but a faster way of analysing simple cycles. Furthermore, we conjecture
that the techniques presented in [PS06b] for reducing the search state-space as
well as the compositional analysis introduced in [PS06a] for SPDIs could be
applied without further development for GSPDIs.
The main contribution of our paper is interesting in a theoretical sense since
it extends the class of decidable hybrid systems, narrowing further the gap be-
tween what is known to be be decidable and what is known to be undecidable
[AS02,MP05]. The result is also interesting in a practical sense, since it pro-
vides a good foundation to approximate planar non-linear differential equations,
complementing other works using piecewise linear hybrid systems.
Reachability analysis of GSPDIs is not easy. An early (unsuccessful) attempt to
prove decidability of GSPDI reachability was presented in [Sch08] — in which it
is shown that no structure-preserving reduction of GPSDI reachability into SPDI
reachability is possible. Instead, a semi-test algorithm, which reduces reachabil-
ity of GSPDI into reachability of an exponential number of SPDIs was developed.
The main idea behind this algorithm is that in most cases reachability is pre-
served when fixing inout edges as entry-only or exit-only edges, and considering
all possible permutations of SPDIs generated from this pre-processing, reduc-
ing then the problem to SPDI reachability. However, there are cases where it
is not possible to eliminate inout edges while preserving reachability. Moreover,
the proposed algorithm introduces an extra exponential blow-up to the analysis.
The decidable algorithm presented in the present paper for GSPDIs follows a
completely different approach than the semi-test presented in [Sch08].
Reachability analysis over SPDIs converges in various cases in which semi-
algorithms for general n-dimensional hybrid systems diverge (eg. see [APSY02]
for a comparative analysis with HyTech [HHW95]) This extends for GSPDI anal-
ysis. Decidability of low-dimensional hybrid systems is addressed in [AS02,MP05].
In particular, in [AS02] it was shown that by slightly modifying PCDs to ob-
tain 2-dimensional linear hybrid automata, the reachability problem becomes



undecidable, showing that GSPDIs really lies on the edge of decidability. The
relation between GSPDIs and rectangular hybrid automata [HM00] restricted to
2-dimensional systems, is that not all GSPDIs can be reduced into a rectangular
automaton, but on the other hand, no resets are allowed in GSPDIs — making
them incomparable.
Multi-affine functions have also been used in [KB06], in which the reachabil-
ity problem is translated into an abstract discrete system resulting in an over-
approximation. The notion of trace and edge signatures has also been used in
[BMRT04] to build a bisimulation relation for o-minimal hybrid systems [LPS00]
— GSPDIs are not o-minimal systems since the flow is non-deterministic.
Further comparison of other work with GSPDIs can be induced from their com-
parison to SPDIs [ASY07]. A full version of this paper can be found in [PS08].

References

[APSY02] E. Asarin, G. Pace, G. Schneider, and S. Yovine. SPeeDI: a verification tool
for polygonal hybrid systems. In CAV’02, LNCS 2404, 2002.

[AS02] E. Asarin and G. Schneider. Widening the boundary between decidable and
undecidable hybrid systems. In CONCUR’02, LNCS 2421, 2002.

[ASY01] E. Asarin, G. Schneider, and S. Yovine. On the decidability of the reacha-
bility problem for planar differential inclusions. In HSCC’01, LNCS 2034,
2001.

[ASY07] E. Asarin, G. Schneider, and S. Yovine. Algorithmic Analysis of Polygonal
Hybrid Systems. Part I: Reachability. TCS, 379(1-2):231–265, 2007.

[BMRT04] T. Brihaye, C. Michaux, C. Rivière, and C. Troestler. On o-minimal hybrid
systems. In HSCC, volume 2993 of LNCS, pages 219–233, 2004.

[HHW95] T.A. Henzinger, P-H. Ho, and H. Wong-Toi. Hytech: The next generation.
In Proc. IEEE Real-Time Systems Symposium RTSS’95, 1995.

[HM00] T. A. Henzinger and R. Majumdar. Symbolic model checking for rectangular
hybrid systems. In TACAS, LNCS 1785, pages 142–156, 2000.

[KB06] M. Kloetzer and C. Belta. Reachability analysis of multi-affine systems. In
HSCC, LNCS 3927, pages 348–362, 2006.

[LPS00] G. Lafferriere, G.J. Pappas, and S. Sastry. O–Minimal hybrid systems.
Mathematics of control, signals and systems, 13:1–21, 2000.

[MP93] O. Maler and A. Pnueli. Reachability analysis of planar multi-linear systems.
In CAV’93, LNCS 687, 1993.

[MP05] V. Mysore and A. Pnueli. Refining the undecidability frontier of hybrid
automata. In FSTTCS, LNCS 3821, 2005.

[PS06a] G. J. Pace and G. Schneider. A compositional algorithm for parallel model
checking of polygonal hybrid systems. In ICTAC’06, LNCS 4281, 2006.

[PS06b] G. J. Pace and G. Schneider. Static analysis for state-space reduction of
polygonal hybrid systems. In FORMATS’06, LNCS 4202, 2006.

[PS08] G. J. Pace and G. Schneider. Relaxing Goodness is Still Good for SPDIs.
Technical Report 372, Dept. of Informatics, Univ. of Oslo, Norway, Feb.
2008.

[Sch08] G. Schneider. Reachability analysis of Generalized Polygonal Hybrid Sys-
tems. In ACM SAC-SV’08, pages 327–332. ACM, March 2008.

[Spe] SpeeDI+. http://www.cs.um.edu.mt/speedi/.


