
LANGUAGE-BASED SUPPORT FOR SERVICE ORIENTED
ARCHITECTURES: FUTURE DIRECTIONS∗

Pablo Giambiagi
Swedish Institute of Computer Science – P.O. Box 1263, SE-16429 Kista, Sweden

Email: pablo@sics.se

Olaf Owe, Gerardo Schneider
Dept. of Informatics, Univ. of Oslo – P.O. Box 1080 Blindern,N-0316 Oslo, Norway

Email: {olaf,gerardo}@ifi.uio.no

Anders P. Ravn
Dept. of Computer Science, Aalborg University – Fredrik Bajers vej 7E, DK-9220 Aalborg, Denmark

Email: apr@cs.aau.dk

Keywords: SOA, Web Services, Web Languages, Contracts.

Abstract: The popularity of service-oriented architectures (SOA) lives on the promise of dynamic IT-supported inter-
business collaborations. Yet the programming models in usetoday are a poor match for the distributed, loosely-
coupled, document-based SOA; and the gap widens: interoperability across organizations needs contracts to
reduce risks. Thus, high-level contract models are making their way into SOA, but application developers
are still left to their own devices when it comes to writing code that will comply with a contract. This paper
surveys existing and future directions regarding language-based solutions to the above problem.

1 INTRODUCTION

In the past, advocates of the service-oriented archi-
tecture (SOA) have predicted that the successful inte-
gration of loosely-coupled services belonging to dif-
ferent, sometimes competing, but always collaborat-
ing organizations, would storm the world. It would
create a myriad of new business opportunities, en-
abling the formation of virtual organizations where
SMEs would join forces to thrive in ever increasingly
competitive global markets. Yet the industry has been
slow to deploy its SOAs, and the degree of integration
between different organizations remains low.

At the moment the developer faces a situation
where the tools originally used to produce intra-
organizational, non-distributed applications are al-
ready overstretched to cope with issues of distribu-
tion across organizational domains. Furthermore, col-
laboration presumes a minimum level of mutual trust,
and wherever trust is not considered sufficient, busi-
nesspeople turn to contracts as a mechanism to re-
duce risks. In other terms, for the SOA to deliver its
promised advantages, developers need not only lan-
guage support for distribution, but also cost effective
contract management solutions. Researchers and in-
dustries alike have began addressing this very essen-
tial issue with a top-down approach. Several elec-

∗Supported by the Nordunet3 Project “Contract-
Oriented Software Development for Internet Services”.

tronic contract languages, their models and reason-
ing techniques are in the process of being discussed
and refined. Thus we see a pressing need to provide
the actual system developers with the means to imple-
ment services that meet the requirements dictated by
such contracts.

In the next section, we recall the main features of
SOAs and discuss the requirements posed by con-
tracts. In Sec. 3, we discuss programming languages
and SOA. In Sec. 4, we identify open problems and
in Sec. 5 we discuss possible concrete scenarios for
addressing them.

2 SOA AND CONTRACTS

In a SOA, applications are essentially distributed
systems composed of services (Fig. 1, borrowed from
(Papazoglou, 2003)). A service is a loosely-coupled,
technology neutral and self-describing computation
element. Loose coupling is achieved through encap-
sulation and communication through message pass-
ing; technology neutrality results from adopting stan-
dardized mechanisms; and rich interface languages
permit the service to export sufficient information
so that eventual clients can discover and connect to
it (Papazoglou, 2003). A SOA can be implemented
in many different ways, e.g. usingweb services.



Figure 1: The basic Service Oriented Architecture

Web services exchange SOAP messages over stan-
dard Internet protocols which carry a payload built
from a stack of open XML standards (WSA, 2004).
There are strong similarities between services and
components in a component-based system (Szyper-
ski, 2003). However, services usually have a coarser
granularity and the communication medium with its
high latency and openness constrains reliability and
security in ways that easily go beyond what can be
found in most component-based systems.

The services in a SOA usually belong to different
organizational domains and therefore there is no sin-
gle line of authority regulating their interactions. In
principle a consumer must trust the provider to de-
liver the expected service, or establish a contract with
it. For our purposes, a contract describes an agree-
ment between distinct services that determines rights
and obligations on its signatories, and for which there
exists static or dynamic ways of identifying contract
violations.

In the case of a bilateral contract, one usually talks
about the roles ofservice providerandservice con-
sumer; but multi-lateral contracts are also possible
where the participants may play other roles. A ser-
vice provider may also use a contract template (i.e. a
yet-to-be-negotiated contract) to publish the services
it is willing to provide. As a service specification,
a contract may describe many differentaspectsof a
service, including functional properties and also non-
functional properties like security, quality of service
(QoS) and reputation.
Contract Models There exists a number of contract
models for services. The business process standard
ebXML2 describes a Collaboration Protocol Agree-
ment as a contract between business partners that
specifies the behavior of each service (by simply stat-
ing its role) and how information exchanges are to be
encoded. IBM’s Web Service Level Agreement3 is
an XML specification of performance constraints as-
sociated with the provision of a web service. It de-
fines the sources of monitoring data, a set of met-

2
http://www.ebxml.org.

3WSLA, http://www.research.ibm.com/wsla/.

rics (i.e. functions) to be evaluated on the data, and
obligations on the signatories to maintain the metric
values within certain ranges. The set of predefined
metrics and the structure of WSLA contracts are de-
signed for services involving job submissions in a grid
computing environment. The later WS-Agreement4,
a Global Grid Forum recommendation that has not
reached the standard status yet, is based on WSLA,
but adapted to more recent web-services standards,
e.g. WS-Addressing and WS-Resource Framework.
WS-Agreement is also parametric on the language
used to specify the metrics.

A number of problems have previously been iden-
tified for these standards and specifications: They
are restricted to bilateral contracts, lack formal se-
mantics (and therefore it is difficult to reason about
them), their treatment of functional behavior is rather
limited and the sub-languages used to specify QoS
and security constraints are usually limited to small
application-specific domains. In order to remedy
the situation researchers have produced contract tax-
onomies (Aagedal, 2001; Beugnard et al., 1999;
Tosic, 2005), formalizations using logics, e.g. clas-
sical (Davulcu et al., 2004), modal (Daskalopulu and
Maibaum, 2001), deontic (Paschke et al., 2005b) and
defeasible logic (Governatori, 2005), and formaliza-
tions based on models of computation –e.g. finite
state machines (Molina-Jimenez et al, 2004) and Petri
nets (Daskalopulu, 2000). The diversity of contract
types, their applications and properties poses a seri-
ous challenge to the definition of ageneric contract
model. This, however, has been identified as a major
precondition for the advancement of the area (Bouys-
sounouse and Sifakis, 2005).
Discovery and Negotiation In a setup for contract-
enhanced service provision, providers are expected to
make service descriptions available for consumers to
discover and choose among them. The description
takes the form of a proto-contract, or template, set-
ting the basis for negotiating the provision of the ser-
vice. Specifications like ebXML and WS-Agreement
define sub-languages for such contract templates,
though they are usually attached to a very specific ne-
gotiation model. There is, however, a large body of
research on contract negotiation protocols under dif-
ferent threat models, particularly in the area of agent-
based systems (Andreoli and Castellani, 2001; Picard,
2003; Kraus, 2001).
Monitoring Monitoring presents an important list
of challenges. First, monitoring data (including exe-
cution events and samplings of continuous processes)
needs to be collected in a timely, reliable and trust-
worthy manner even within a distributed system.
Moreover, monitors are usually weaved into the appli-
cation code by specialists (not by ordinary program-

4
https://forge.gridforum.org/projects/graap-wg/.



mers), creating complex dependencies that seriously
affect the software development process.

Quality of Service According to the ARTIST road-
map (Bouyssounouse and Sifakis, 2005), quality of
service is a “function mapping a given system in-
stance with its full behavior onto some [quantitative]
scale”. Typical QoS measures for web services in-
cludeaverage response time, minimum communica-
tion bandwidthandpeak CPU usage. QoS measures
usually depend on the behavior of the environment
as well as of the service, thus models tend to have a
stochastic nature, although this is not really necessary
for monitoring purposes.

Typically, contract languages for QoS of web ser-
vices consist of three main sub-languages. Their pur-
pose is to specify: (1) The QoS measures (i.e. func-
tions) including their domains; (2) a mapping be-
tween elements in the execution model (e.g. ob-
servable events) and the domains of QoS measures;
and (3) the constraints on QoS measurements (i.e.
the obligations). The design of such languages is
therefore centered around the concept of QoS mea-
sure function. However, realistic contracts are not
easily modeled as a set of functions: they are built
upon the fundamental concept of obligation, to which
other concepts (like QoS measures) become acces-
sory. For instance, the fulfillment or violation of an
obligation may trigger other obligations. Function-
based approaches need then to encodeobligation per-
formancesasQoS measures. Moreover, the inclusion
of time considerations becomes unnecessarily com-
plicated.

Security So far, contract languages for security pay
almost exclusive attention to access control issues –
e.g. (de Win et al, 2005)– but it is evident that they
should be enhanced to cover other areas of security
such as integrity and confidentiality.

3 SOA AND LANGUAGES

Current programming language abstractions are not
adequate for SOA, much less for web-service devel-
opment. The industry develops web services using
the object-oriented programming (OOP) paradigm
which maps badly to document-based communica-
tion, i.e. SOAP-transported XML documents, re-
quired by web-services (Meijer et al., 2003). Be-
sides, many current production OOP languages (e.g.
Java and C#) are based on the shared-state model so
they do not handle concurrency and message pass-
ing particularly well. Another criticism of OOP con-
cerns reusability. Object-orientation provides two
distinct mechanisms for composing concerns, namely
aggregation and inheritance, which may be difficult

to combine with synchronization, history information
or multiple views. Thus OOP needs better abstraction
mechanisms.

The programming language community has long
identified the need to provide easier ways to extend
the abstraction mechanisms of a language. One of the
main approaches is that of aspect-oriented program-
ming (AOP) (Filman et al., 2005), which helps sepa-
rate cross-cutting concerns (like access control) from
the main business logic. AOP is composed of a set of
techniques, including code instrumentation and run-
time interceptors.

A similar approach uses composition filters
(CF) (Aksit et al., 1992), where the idea is not to
replace the programming paradigm but to enhance
the expressive power and maintainability of current
object-oriented (OO) languages. CF may be consid-
ered a modular extension to the OO model within-
terfacelayers including the so-calledfilters. Advan-
tages of CFs with respect to aspects are exposed in
(Bergmans and Aksit, 2001).

An alternative approach defines new kinds of lan-
guages that adapt themselves better to the challenges
posed by web services. Some concentrate on bridging
the gap between the program language and the XML
objects that web services should exchange (Florescu
et al., 2002), others provide abstractions to manipu-
late interfaces (Cooney et al., 2005), and others ad-
dress asynchronous communication by means of mes-
sage passing –e.g., Cω (Bierman et al., 2005). The
latter combines features from two other research lan-
guages: (a) Polyphonic C# (Benton et al., 2004): a
control flow extension with asynchronous wide-area
concurrency, and (b) Xen (Meijer et al., 2003): a data
type extension for processing XML and table ma-
nipulation. Along the same lines, the Xtatic project
(Gapeyev and Pierce, 2003) aims at extending C#
with native XML processing addingregular typesand
regular patterns. More oriented to web service devel-
opment, a new language is proposed in (Cooney et al.,
2005) which combines XQuery’s semantics with im-
perative constructs and a join calculus-style concur-
rency model. This proposal solves some of the prob-
lems of mainstream languages (e.g., Java and C#) like
concurrency and message correlation problems. It
lacks, however, useful features like interface inher-
itance, correlated messages and garbage collection.
Furthermore, the current implementation assumes a
shared-state concurrency model.

Another interesting language is Creol (Johnsen and
Owe, 2004), whose programs consist of concurrent
objects with internal process control communicating
asynchronously. By means of mechanisms for condi-
tional processor release points, passive waiting, and
time-out, explicit synchronization primitives are not
needed in the language. Compared to for instance
Polyphonic C#, Creol has a simpler set of communi-



cation primitives, using the concept of asynchronous
method call, while maintaining multiple inheritance.
It also offers a synchronized merge operator which
effectively reduces the problems related to the so-
called inheritance anomaly (Matsuoka and Yonezawa,
1993), while allowing compositional reasoning.

The ideal language for SOA and web-services de-
velopment seems to be one which combines the ad-
vantages of the above-mentioned languages. It should
be based on asynchronous communications with fa-
cilities for providing good abstractions for manipu-
lating interfaces, XML processing and web service
development. The inclusion of regular typesa la
XDuce (Hosoya and Pierce, 2003) and CDuce (Ben-
zaken et al., 2003) would be a plus.
Programming and Contracts The solutions men-
tioned so far still lack support for discovery, monitor-
ing and management of contracts. Approaches like
AOP and CF can potentially provide some help here
(Becker and Geihs, 2001), but they fail to abstract
low-level issues and basically leave too much freedom
to the programmer (which leads to code maintenance
and analysis issues). This is an issue for which no
consolidated work has been completed yet. Instead,
one should look for different bits and pieces, depend-
ing on the characteristics of the contract.

Although contracts could cover many other as-
pects, guarantees of the timely provision of ser-
vices are commonplace in SOA. Despite of the cur-
rent wide acceptance of AOP as a good paradigm
for improving reusability and modularity, there is
no convincing solution to the application of aspects
to real-time systems. In some cases (Tsang et al.,
2004), aspect-orientation seems to perform better
than object-orientation when dealing with real-time
specifications, regarding system properties such as
testability and maintainability. On the other hand, in
(Assayad et al., 2005), there is a formal framework
for multi-threaded and multi-processor software syn-
thesis using timing constraints, where it is shown that
AOP is not suitable for such cases.

A new concept for real-time system develop-
ment (ACCORD) is presented in (Tesanovic et al.,
2004), combining component-based and aspect-
oriented software development. ACCORD bridges
the gap between modern software engineering meth-
ods –focused mainly on component models, inter-
faces and separation of concerns– and real-time de-
sign methods. The focus is primarily on a design
methodology, but not onanalysisand verification of
real-time systems. It is not clear, either, how the
methodology could be used to develop asynchronous
open distributed systems.

Programs using real-time features are, in general,
difficult to design and verify, even more when com-
bined with an inheritance mechanism. Changing ap-
plication requirements or real-time specifications in

real-time OO languages may produce unnecessary re-
definitions. This is called thereal-time specification
inheritance anomaly. To solve it, (Aksit et al., 1994)
propose real-time composition filters. Similar ideas
could be applied to support contract-based system de-
sign.

A contribution towards verifying properties of con-
tracts involving real-time as formulated in existing
languages is found in (Diaz et al., 2005). They use
a translation to a real-time model checker to verify
the cooperation aspect of contracts.

In conclusion, there is still plenty of work to do in
directly supporting development of services that can
be trusted to implement their contracts.

4 RESEARCH DIRECTIONS

The main problems and open issues identified for
supporting web services development include:
• Formal definition of generic contracts, in particular

for QoS and security.

• Negotiable and monitorable contracts. Contracts
must be negotiated till both parts agree on their fi-
nal form, and they must be monitorable in the sense
that there must be a way to detect violations. No ex-
isting programming language supports negotiable
and monitorable contracts.

• Combination of object-orientation and concurrency
models based on asynchronous message-passing.
The shared-state based concurrency model is not
suitable for web service development.

• Integration of XML into a host language, reducing
the distance between XML and object data-models.

• Harmonious coexistence at the language level of
real-time and inheritance mechanisms.

• Verification of contract properties. The integration
of contracts in a programming language should be
accompanied by good support for guaranteeing es-
sential properties. Guaranteeing the non-violation
of contracts might be done in (at least) four dif-
ferent ways: 1. with runtime enforcement, e.g.
through monitors; 2. by construction, e.g. through
low-level language mechanisms; 3. with standard
static program analysis techniques; or 4. through
model checking. None of the above can be used as
a universal tool; they must be combined.
Addressing these issues and problems, we need to

develop a model of contracts in a SOA that is broad
enough to cater for at least contracts for QoS and
security. A minimum requirement is the ability to
seamlessly combine real-time models (for QoS spec-
ifications) and behavioral models (essential to con-
strain protocol implementation and to enforce secu-
rity). Contract models should also address discovery



and negotiation. Yet, the formal definition of con-
tracts should be only a first step towards a more am-
bitious task, namely to provide language-based sup-
port for programming and effective usage of such con-
tracts. Some contracts may be seen as awrapper
which “envelopes” the code/object under the scope of
the contract.Firewalls, for instance, may be seen as
a kind of contract between the machine and the ex-
ternal applications wanting to run on that machine. It
would be interesting to investigate a language primi-
tive to create wrapped objects which are correct-by-
construction. On the other hand, contracts for QoS
and security could be modeled as first-class entities
using a “behavioral” approach, through interfaces. In
order to tackle timed constraints (related to QoS) such
interfaces need also to incorporate time. As exposed
in the ARTIST road-map, finding languages or nota-
tions for describing timing behaviors and timing re-
quirements is easy; the real challenges are in analy-
sis. Besides syntactic extensions, the language needs
to have timing semantic extensions in order to allow
extraction of a timed model, e.g. a timed automaton.
This model may be checked with existing tools, e.g.
Kronos (Yovine, 1997) and Uppaal (Bengtsson et al.,
1995). Model checking tools will help to prove real-
time properties, like guaranteeing that a service will
satisfy its promised response-time constraints. Other
properties may, instead, be proved to be correct-by-
construction (e.g. wrappers).

In practice, many properties can only be proved
correct through runtime approaches. A promising di-
rection is to develop techniques for constructing run-
time monitors from contracts, which will be used to
enforce its non-violation.

5 FINAL DISCUSSION

The web is mostly used nowadays for retrieving re-
mote information, but there is a high demand for more
challenging applications that offer, negotiate and dis-
cover web services through XML interfaces. This
new direction requires redesigning software architec-
tures and revising the existing foundations of com-
puter science (Montanari, 2004). Moreover, in order
to make collaboration a reality among different web-
services, the formal definition of monitorable and ne-
gotiable contracts has become imperative. In this pa-
per we have surveyed the main current approaches to
programming in a SOA and their support in state-of-
the-art programming languages. We have identified
some problems and open issues of current approaches
and we have proposed general research directions.

We believe object-orientation could still be a good
paradigm for modeling open distributed systems,
since its main problems come from sequential lan-

guage design and implementation decisions, not from
its original philosophy.

Regarding the formal definition of contracts, we
believe such a generic model can be described har-
moniously using real-time extensions of rewriting
logic (Ölveczky and Meseguer, 2002). This is in line
with recent investigations in the use of rule languages
to model contracts (Grosof and Poon, 2002; Paschke
et al., 2005a). While these languages are essentially
ad-hoc, we expect to profit from the existing large
body of research in rewriting logics. The rule-based
approach brings along new challenges in the defini-
tion of appropriate negotiation schemes (Reeves et al.,
2001; Paschke et al., 2005c). Here again, rewrit-
ing logic can give invaluable help. Its reflection and
meta-level computation properties may help define
and structure the negotiation protocol.

Concerning the choice of a host language for incor-
porating contracts as first citizens, we believe Creol
might be a good starting point. The Creol project has
addressed many of the problems of OOP and it has
a formal semantics defined in rewriting logic. More
details on such a line of research can be found in the
technical report (Giambiagi et al., 2006).

REFERENCES

Aagedal, J. (2001).Quality of Service Support in Devel-
opment of Distributed Systems. PhD thesis, Dept. of
Informatics, University of Oslo.

Aksit, M., Bergmans, L., and Vural, S. (1992). An object-
oriented language-database integration model: The
composition-filters approach. InECOOP, pp. 372–
395.

Aksit, M., Bosch, J., van der Sterren, W., and Bergmans, L.
(1994). Real-time specification inheritance anomalies
and real-time filters. InECOOP, vol. 821 ofLNCS,
pp. 386–407.

Andreoli, J. M. and Castellani, S. (2001). Towards a Flex-
ible Middleware Negotiation Facility for Distributed
Components. InDEXA, pp. 732–736. IEEE C.S.

Assayad, I., Bertin, V., Defaut, F.-X., Gerner, P., Quevreux,
O., and Yovine, S. (2005). Jahuel: A formal frame-
work for software synthesis. InICFEM, vol. 3785 of
LNCS, pp. 204–218.

Becker, C. and Geihs, K. (2001). Quality of Service and
Object-Oriented Middleware-Multiple Concerns and
their Separation. InICDCSW.

Bengtsson, J., Larsen, K., Larsson, F., Pettersson, P., and
Yi, W. (1995). UPPAAL — a Tool Suite for Automatic
Verification of Real–Time Systems. InHS III, vol.
1066 ofLNCS, pp. 232–243.

Benton, N., Cardelli, L., and Fournet, C. (2004). Modern
concurrency abstractions for c#.ACM Trans. Pro-
gram. Lang. Syst., 26(5):769–804.



Benzaken, V., Castagna, G., and Frisch, A. (2003). Cduce:
an xml-centric general-purpose language.SIGPLAN
Not., 38(9):51–63.

Bergmans, L. and Aksit, M. (2001). Composing cross-
cutting concerns using composition filters.Commun.
ACM, 44(10):51–57.

Beugnard, A., Jzquel, J.-M., and Plouzeau, N. (1999). Mak-
ing components contract aware.IEEE, 32(7):38–45.

Bierman, G., Meijer, E., and Schulte, W. (2005). The
essence of data access in Cω. In ECOOP, vol. 3586
of LNCS, pp. 287–311.

Bouyssounouse, B. and Sifakis, J., editors (2005).Embed-
ded System Design: The ARTIST Roadmap for Re-
search and Development, vol. 3436 ofLNCS.

Cooney, D., Dumas, M., and Roe, P. (2005). A pro-
gramming language for web service development. In
ACSC, vol. 38 ofCRPIT, pp. 143–150.

Daskalopulu, A. (2000). Model checking contractual pro-
tocols. InLegal Knowledge and Information Systems,
Jurix 2000, IOS Press, pp. 35–47.

Daskalopulu, A. and Maibaum, T. S. E. (2001). Towards
Electronic Contract Performance. InDEXA, pp. 771–
777. IEEE.

Davulcu, H., Kifer, M., and Ramakrishnan, I. V. (2004).
CTR-S: A Logic for Specifying Contracts in Semantic
Web Services. InWWW, pp. 144–153.

de Win, B., Piessens, F., Smans, J. and Joosen, W. (2005).
Towards a unifying view on security contracts. In
SESS, pp. 1–7. ACM Press.

Diaz, G., Pardo, J.-J., Cambronero, M. E., Valero, V., and
Cuartero, F. (2005). Verification of web services with
timed automata. InWWV, pp. 177–191.

Filman, R. E., Elrad, T., Clarke, S., and Akşit, M., edi-
tors (2005). Aspect-Oriented Software Development.
Addison-Wesley, Boston.

Florescu, D., Grünhagen, A., and Kossman, D. (2002).
XL: An XML programming language for web service
specification and composition. InWWW, pp. 65–76.

Gapeyev, V. and Pierce, B. (2003). Regular object types. In
ECOOP, vol. 2743 ofLNCS, pp. 151–175.

Giambiagi, P., Owe, O., Ravn, A. P., and Schneider, G.
(2006). Contract-based internet service software de-
velopment: A proposal. Technical Report 333, Dept.
of Informatics, University of Oslo, Norway.

Governatori, G. (2005). Representing business contracts in
RuleML. Int. Journal of Coop. Inf. Sys., 14:181–216.

Grosof, B. and Poon, T. (2002). Representing Agent Con-
tracts with Exceptions using XML Rules, Ontologies,
and Process Descriptions. InRuleML.

Hosoya, H. and Pierce, B. C. (2003). Xduce: A statically
typed xml processing language.ACM Trans. Inter.
Tech., 3(2):117–148.

Johnsen, E. B. and Owe, O. (2004). An asynchronous com-
munication model for distributed concurrent objects.
In SEFM, pp. 188–197. IEEE.

Kraus, S. (2001). Automated Negotiation and Decision
Making in Multiagent Environments. 2086:150–172.

Matsuoka, S. and Yonezawa, A. (1993). Analysis of inheri-
tance anomaly in object-oriented concurrent program-
ming languages.Research directions in concurrent
object-oriented programming, pp. 107–150.

Meijer, E., Schulte, W., and Bierman, G. (2003). Program-
ming with cirdvcles, triangles and rectangles. InXML
Conference.

Molina-Jimenez, C., Shrivastava, E. S. and Warne, J.
(2004). Run-time Monitoring and Enforcement of
Electronic Contracts.Elect. Commerce Research and
Applications, 3(2).

Montanari, U. (2004). Web services and models of compu-
tation. InWS-FM, vol. 105 ofENTCS, pp. 5–9.

Papazoglou, M. P. (2003). Service-Oriented Computing:
Concepts, Characteristics and Directions. InWISE,
pp. 3–12. IEEE.

Paschke, A., Bichler, M., and Dietrich, J. (2005a). Con-
tractLog: An Approach to Rule Based Monitoring and
Execution of Service Level Agreements. InRuleML,
vol. 3791 ofLNCS, pp. 209–217.

Paschke, A., Dietrich, J., and Kuhla, K. (2005b). A Logic
Based SLA Management Framework. In Semantic
Web and Policy Workshop 2005, pp. 68–83.

Paschke, A., Kiss, C., and Al-Hunaty, S. (2005c). A Pattern
Language for Decentralized Coordination and Nego-
tiation Protocols. InEEE, pp. 404–407. IEEE.

Picard, W. (2003). NeSSy: Enabling Mass E-Negotiations
of Complex Contracts. InDEXA, pp. 829–833. IEEE.

Reeves, D. M., Wellman, M. P., and Grosof, B. N. (2001).
Automated negotiation from declarative contract de-
scriptions. InAGENTS, pp. 51–58. ACM Press.

Szyperski, C. (2003). Component technology - what,
where, and how? InICSE, pp. 684–693. IEEE.

Tesanovic, A., Nystrm, D., Hansson, J., and Norstrm, C.
(2004). Aspects and components in real-time system
development: Towards reconfigurable and reusable
software.Journal of Embedded Computing, 1(1).

Tosic, V. (2005). On Comprehensive Contractual Descrip-
tions of Web Services. InEEE, pp. 444–449. IEEE.

Tsang, S. L., Clarke, S., and Baniassad, E. L. A. (2004). An
evaluation of aspect-oriented programming for java-
based real-time systems development. InISORC, pp.
291–300.

WSA (2004). Web Services Architecture. W3C Working
Group Note,www.w3.org/TR/ws-arch/.

Yovine, S. (1997). Kronos: A verification tool for real-
time systems.Int. Journal of Software Tools for Tech.
Transfer, 1(1/2):123–133.

Ölveczky, P. and Meseguer, J. (2002). Specification of
real-time and hybrid systems in rewriting logic.TCS,
285(2):359–405.


