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Abstract— Temporal task planning guarantees a robot will
succeed in its task as long as certain explicit and implicit
assumptions about the robot’s operating environment, sensors,
and capabilities hold. A robot executing a plan can silently fail
to fulfill the task if the assumptions are violated at runtime.
Monitoring assumption violations at runtime can flag silent fail-
ures and also provide mitigation and remediation opportunities.
However, this requires means for describing assumptions com-
bining temporal and quantitative data, automatic construction
of correct monitors and ensuring a correct interplay between
the planning execution and monitors. In this paper we propose
combining temporal planning with stream runtime verification,
which offers a high-level language to describe monitors together
with guarantees on execution time and memory usage. We
demonstrate our approach both in real and simulated flights
for some typical mission scenarios.

I. INTRODUCTION

Temporal task planning (e.g., [1], [2]) and controller
synthesis (e.g., [3], [4]) are increasingly being studied as
a means to produce operational strategies for robots that are
guaranteed to achieve a complex task [5]. A discrete model of
the robot, its operating environment and its tasks are the input
to an automated procedure that produces a strategy, often
represented as an automaton, that can be directly executed
by a robot using various hybrid control strategies [5], [6].

The guarantees provided by temporal task planning are
subject to the satisfaction of a set of assumptions about the
robot’s dynamic operating environment, sensors, and capa-
bilities. Some assumptions appear explicitly in the discrete
model used for planning. These typically refer to the effects
of controlled and monitored events that the planner can rely
upon to produce a plan. An example of an explicit planning
assumption is that requesting a photograph upon flying into
a discrete region i will be fulfilled before exiting that region.

However, other assumptions remain implicit and are cru-
cial to ensure that a plan for the discrete representation of
the planning problem will yield robotic behaviour in the real
world that satisfies a continuous task specification (that is
also commonly implicit). An example of an implicit assump-
tion is that a photograph will completely cover a discrete
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region if the plane’s roll and pitch are within certain bounds.
We refer to these as implicit assumptions because they do
not appear in the mathematical model used for planning. In
this paper we propose to monitor both explicit and implicit
assumptions at runtime using runtime verification techniques.

A robot executing a plan may fail if assumptions relied
upon for temporal task planning are violated. Sometimes
this failure can be observed by a user who may decide on
mitigation and remediation actions. However, in some cases
a mission can fail silently leading to users believing that a
mission has been successful when it is not the case. The
latter can have significant consequences. Thus the need for
monitoring assumption violations

Consider a search and rescue task relying on the assump-
tions mentioned above. If a violation of the explicit planning
assumption (i.e., the photograph is taken once the plane
has left the region of interest) or the implicit assumption
(e.g. the plane’s roll is such that part of the region is not
photographed) occurs, it might be erroneously concluded that
the person searched for is not in the area.

Monitoring assumptions also provides opportunities for
corrective actions. If the pitch and roll assumption violation
is detected then, at the very least, searchers would be aware
that the negative search result is inconclusive. Alternatively,
flight-time mitigations such as re-visiting the specific area
where the assumption was violated could be implemented.
A monitor capable of predicting such a violation can report
to a motion planner in an attempt to prevent the violation.

In this paper we propose complementing task specifica-
tions with additional specifications of the assumptions that
plans rely on, and an infrastructure to automatically syn-
thesize monitors from specifications provided by engineers
through an adequate monitor specification language to detect
and predict assumption violations at runtime. The monitor
specification language should be high-level and expressive
enough for typical planning assumptions, and monitor syn-
thesis must come with guarantees of correctness and resource
consumption bounds.

Runtime verification (RV) is a formal methods technique
that studies how to synthesize monitors from high-level
formal specifications of complex properties. RV borrows
from static verification specification languages but focuses
on the problem of observing a single trace, providing a
formal framework for testing, debugging and monitoring.
The formal approach in RV provides guarantees about the
correctness and resources required to perform the monitoring
task. We propose the use of Stream Runtime Verification
(SRV) [7], [8], [9], a variant of RV that allows handling



observations and verdicts richer than Boolean observations,
including quantitative values and structured data.

In this paper we combine temporal task planning with
SRV to further improve the assurance of robotic behaviour.
We illustrate how to enrich discrete task specifications with
an explicit representation of the assumptions about the
continuous world, which allows the use of SRV to monitor
at runtime the validity of these assumptions. We use SRV
not only to monitor observations but also to anticipate and
estimate behaviours, allowing us to detect and quantify
violations, as well as to predict them. In particular, we
integrate SRV and temporal task planning in a UAV hybrid
controller architecture [6], and show its potential in three
different mission scenarios: (1) supporting off-line post-
mission decision making, (2) supporting on-line remediation
actions at the hybrid-control and (3) at the discrete-event
control layers.

In summary, the main contributions of this paper are (a) a
novel combination of sophisticated stream runtime verifica-
tion and temporal task planning to improve the effectiveness
of robotic missions, (b) the practical illustration of these
techniques in three different use cases, and (c) the empirical
evaluation both in real and simulated UAV missions.

The rest of the paper is structured as follows. Section II
presents the preliminaries of planning and runtime verifi-
cation, and later Section III provides an overview of the
interaction between these concepts. Section IV describes the
different uses of the combination of SRV with planning,
while Section V describes the practical empirical evalua-
tion. Finally, Section VI discusses the related work and
Section VII concludes.

II. PRELIMINARIES

Labeled Transition Systems (LTS). The dynamics of the
interaction of the robot with its environment are modeled
using LTS [10], which are automata where transitions are
labeled with events that constitute the interactions of the
modeled system with its environment. We partition events
into controlled and uncontrolled to specify assumptions about
the environment and safety requirements for a controller.
Complex models can be constructed by LTS composition.
We use a standard definition of parallel composition (‖) that
models the asynchronous execution of LTS, interleaving non-
shared actions and forcing synchronization of shared actions.

Fluent Linear Temporal Logic (FLTL). FLTL [11], a
variant of linear-time temporal logic that uses fluents to
describe states over sequences of actions, is used to describe
environment assumptions and system goals.

A fluent fl = 〈Set>, Set⊥, v〉 is defined by a set of
initiating actions (Set>), a set of terminating actions (Set⊥),
and an initial value v true (>) or false (⊥). We may omit set
notation for singletons and use an action label ` for the fluent
defined as fl = 〈`,Act \ {`},⊥〉. Thus, the fluent ` is only
true just after the occurrence of the action `. FLTL is defined
similarly to propositional LTL but where a fluent holds at a
position i in a trace π based on the events occurring in π
up to i. Temporal connectives are interpreted as usual: Ψϕ,

Φϕ, and ϕWψ mean that ϕ eventually holds, always holds,
and (weakly) holds until ψ, respectively.

Discrete Event Controller Synthesis. Given an LTS E
with a set of controllable actions L and a task specification
G expressed in FLTL, the goal of controller synthesis is
to find an LTS C such that E‖C: (1) is deadlock free,
(2) C does not block any non-controlled actions, and (3)
every trace of E‖C satisfies G. We say that a control
problem 〈E,G,L〉 is realizable if such an LTS C exists. The
tractability of the controller synthesis depends on the size of
the problem (i.e. states of E and size of G) and also on the
fragment of the logic used for G. When goals are restricted
to GR(1) the control problem can be solved in polynomial
time [12]. GR(1) formulas are of the form

∧n
i=1 ΦΨψi ⇒∧m

i=1 ΦΨϕi where ϕi and ψi are Boolean combinations of
fluents. In this paper we use MTSA [13], a tool for software
architecture behaviour modelling, analysis [14], [15], [16]
and discrete event controller synthesis [6], [17] for solving
control problems.

Implicit assumptions and Silent Mission Failures. Plan-
ning over discrete domains requires introducing assumptions
regarding the relation between the discrete abstraction and
the intention in the real world that typically include con-
tinuous variables. Thus, a mission in the real world of
the form “ARW implies GRW” (where ARW represents the
assumptions in the real world and GRW the mission goal).
This problem is resolved using a discrete event controller
goal AD ⇒ GD, which introduces two assumptions: “ARW

implies AD” and “GD implies GRW”. We refer to ARW and
the two implications as implicit assumptions.

We refer to a silent mission failure when a system fails
to achieve it goals GRW (because it vacuously satisfies the
implication “ARW implies GRW” ) but the system user cannot
distinguish if it is that GRW holds or not.

Hybrid Controller. In the area of robotics, the difference
in the continuous vs. discrete description of the real world,
and in the interaction between discrete event controllers and
feedback-controllers requires a non-trivial translation task
that is implemented in a hybrid control layer. In [6] we
present a hybrid control approach for robot missions that
uses an iterator data structure to manage locations derived
from the discretization of the workspace, specially suited for
UAV missions involving hundreds or thousands of discrete
locations, which we will use for the scenarios in this paper.

Stream Runtime Verification (SRV). Runtime verifica-
tion (RV) studies the problem of whether a single observed
trace satisfies a formal specification [18]. SRV [7], [9],
[19] generalizes to richer datatypes using stream declarations
(see examples in Sections III and IV). We have chosen the
language HLOLA [20], [21] as the SRV language implemen-
tation to define our properties because (1) it has clean seman-
tics, (2) its expressive yet succinct syntax results in natural
specifications, (3) the language allows easy extensions (like
new datatypes) and I/O of rich events, and (4) it allows the
creation of predictive functions such as Kalman filters. Also,
SRV allows a theoretical analysis of monitor specifications
(including the ones in this paper), which lets us calculate



Fig. 1: Architecture for SRV + UAV Temporal Planning.

beforehand the constant amount of memory required to run
the monitors throughout the entire execution independently
of the length of the trace (see [8] for details).

The syntax of SRV is given by a tuple 〈I,O,E〉 where
I is a collection of (typed) input streams, corresponding to
observations and O is a collection of (typed) output streams,
corresponding to output and intermediate values the monitor
computes. Each output stream o is associated with a defining
expression Eo that determines the computation of the value
of o at every position in time (depending on the values of
inputs and outputs at the same or shifted time instants). For
example, the following expresses that the altitude has always
been high enough after take-off has finished:

output Bool ok=takeoff[now]||(ok[-1|T]&&L<alt[now])

where ok depends on the values of take_off and alt
at the current instant (using now), and on ok itself at the
previous instant (represented by the access offset -1). The
value T in ok[-1|T] establishes that ok[-1|T] is true at
the first instant.

III. OVERVIEW OF OUR SOLUTION

We provide a solution based on the architecture shown in
Fig. 1 to monitor assumptions provided by user alongside
the discrete event control problem. In particular, we use
this approach in three different missions (Section IV) to
(A) flag assumption violations after a mission concludes to
prevent silent failures; (B) trigger recovery measures such as
replanning or mission abort immediately upon an assumption
violation; and (C) use quantitative streams in specifications
to aid plan adjustment. We now overview our approach.

Consider the following continuous variable description of
a search mission: ∃t : rt ∈ R ∧ rt = p, where rt represents
the position of the robot at time t, R ⊂ R2 is a region, and p
is the location of the person being searched for. This mission
as specified is unachievable from a practical point of view as
the UAV does not have perfect precision in movement and
must use a proxy (i.e., a sensor) to determine if the person
is found within a range. This introduces an assumption in
ARW stating that sensor event yes.person occurs if the person
is close to the current UAV position (i.e., yes.persont if and
only if ‖rt − p‖ ≤ dS where dS is the diameter of the area
covered by the sensor). A mission goal (GRW) amenable to

discretization is
[
∃t : yes.persont

]
∨
[
∀ci ∈ D : ∃t :

(
|rt −

ci| ≤ dT
)]

, where dT is the location tracking error which
is assumed to be less than the sensor breadth (dT < dS),
and D = {c1, . . . , cn} a discretization of R represented by
the center points of circular regions of diameter d where
d ≤ dS − dT and the coverage assumption ∀x ∈ R : ∃ci ∈
D : ‖ci − x‖ < d (all part of ARW).

A discretized version of the mission goal is Gd =
Ψ(yes.person∨

∧
i visited(i)) where fluents visited(i) are initially

false and change to true when at(i) occurs, at(i) is assumed
to occur at time t only if ‖ci − rt‖ < d (also in ARW). To
achieve Gd, and given that yes.person and at(i) are monitored
events, the following three assumptions must be explicitly
included in the control problem: First, a command go(i)
that guarantees eventually at(i) (i.e., A1

d = Φ
∧

i

[
go(i) ⇒

Ψat(i)
]
; second that every command to sense for a person

(person?) will be answered correctly with yes/no.person before
leaving the discrete location at which the sensor was queried:
A2

d = Φ
∧

i

[
(At(i) ∧ person?)⇒ (

∧
i6=j ¬at(j))W(yes.person ∨

no.person)
]
, where At(i) is a fluent that is true with at(i) and

false with go(i); and third that no unexpected at(i) events are
received: (i.e., A3

d = Φ
∧

i

[
go(i)⇒

(
(
∧

i6=j ¬at(j))Wat(i)
)]

.
Having introduced sufficient discrete event assumptions

to make the discrete mission goal
∧

iA
i
d ⇒ Gd realizable, a

CONTROLLER SYNTHESIS component can be used to generate
a discrete event controller. This controller is guaranteed to
satisfy Gd as long as the discrete event assumptions Ai

d hold.
Satisfaction of GRW by AERIAL VEHICLE controlled by

the discrete event controller via the HYBRID CONTROLLER

requires that assumptions ARW hold (e.g., if the breadth of the
sensor when taking a picture is actually greater than dS , the
vehicle has the capability of reaching desired locations with
certain precision). We advocate to explicitly model these as-
sumptions and having mechanisms to automatically monitor
them and react to violations. In other words, as illustrated in
(see Fig. 1) the designer decomposes a continuous variable
task problem into a discrete control problem and assumptions
regarding discretization. The problem description is used
to synthesize a discrete event controller. The assumptions
(both those in the control problem and those pertaining
discretization) are used to automatically generate monitors.

We specify assumptions using HLOLA, which are com-
piled into monitors that run within the HYBRID CONTROLLER,
receiving data feeds from the AERIAL VEHICLE. Assumption
A3

d can be monitored with the following specification:

input Position go_event, at_event
output Position going_to =
if go_event[0] != null then go_event[0]
elsif at_event[0] != null then null
else going_to[-1|null]

output Bool unexpected_go =
go_event[0] != null && going_to[-1|null] != null

output Bool unexpected_at =
at_event[0] != null &&
at_event[0] != going_to[-1|null]

This specification introduces an auxiliary output stream
going to whose value at every time point is the parameter
with which go was last called, unless an at event has occurred



afterwards, in which case the value of going to is null.
Recall that the value of the expression stream[k|d] is d
if at time n the offset n+ k is out of bounds.

The execution of the monitors is in parallel to the plan exe-
cution and completely unsynchronized with the enactment of
the discrete event controller (c.f., CONTROLLER ENACTOR).

The MONITOR WRAPPER component executes the monitor
implementations and can produce outputs to the LOG and to
ACTUATORS so that the monitored data can be fed into the
hybrid control, or to the SENSORS so that monitored data can
be conveyed to the ENACTOR, generating events that impact
the execution of the task plan.

IV. ASSUMPTION VIOLATION HANDLING

In this section we show three scenarios in which temporal
task planning and stream runtime verification are combined
to monitor assumptions and react to their violations1.

A. SRV for Offline Monitoring

The first mission uses SRV for assumption monitoring and
logging (see 1 in Fig. 1). The monitors process the incoming
events and log assumption violations alongside the associated
information, that can then be checked offline for mission
post-hoc analysis. The UAV mission is a search and rescue
mission similar to the one described previously in [6], [22]
but with a no-fly zone and landing on finding the target.

We monitor two mission assumptions. The first checks
that the UAV never enters the no-fly zone, and, if entered,
measures the degree of violation as the distance inside the
no-fly zone. The second ensures that the area sensed when
entering a discrete location indeed covers it.

The first assumption can be easily monitored by calculat-
ing for each input position reading, the distance to the no-fly
zone, returning null if the UAV is not in it.

There are several ways one could monitor the second
assumption. Here we show a simplified monitor specification
for a stronger property that requires the attitude h and
position pos of the vehicle to be within certain bounds.
Since these data measurements may carry noise, we include
in the monitor specification a filtering phase with a first order
low-pass filter. Note that most cameras may require several
seconds to capture a high resolution image, specially on low-
end hardware. For this reason, it is necessary to monitor
that, for any instant between the sense command and the
yes/no.person events, if a picture is taken, the filtered h and
pos parameters must be within required bounds. Below we
depict a simplified HLOLA specification for this assumption,
setting the bounds in accordance to the mission parameters
shown in Section V.

data Position = Position {x,y,alt :: Double}
data Attitude = Attitude {roll,pitch :: Double}
input Position pos, target
input Attitude h
input Bool capturing

1The complete discrete event control problems and assumption used to
synthesise plans and monitors, and the data obtained from the real and
simulated flights is available at http://mtsa.dc.uba.ar.

output Bool near = dist(filter(pos[0]),target[0])<1
output Bool h_ok = filter(pos[0].alt)>8
output Bool roll_ok = filter(h[0].roll)<0.0523
output Bool pitch_ok = filter(h[0].pitch)<0.0523
output Bool all_ok_capturing = capturing[0] ⇒
(h_ok[0] && near[0] && roll_ok[0] && pitch_ok[0])

The input streams represent the data read from sensors
or other monitors (not shown due to space restrictions).
The input stream capturing indicates whether the person
command has been issued but not yet responded. Auxil-
iar streams are generated from a filter function imple-
mented in the specification (not shown). The output stream
all ok capturing models whether the assumption holds,
and it is computed based on auxiliary streams near, h ok,
roll ok and pitch ok. The logger will store values of
all streams at the moment in which all ok capturing is
False for a post-hoc analysis.

B. SRV for Online Monitoring and Adaptation

In this second mission we demonstrate how SRV can be
used, beyond logging, to support remediation actions by in-
teracting with components of the HYBRID CONTROLLER. We
also showcase how more sophisticated monitoring capabili-
ties of SRV describe the overall expected system behaviour.
We ran an ordered patrol mission (as described in [23]) of
three locations with no-fly zones. We tailored the monitors
specifically for fixed-wing UAV.

We use two monitors that use quantitative data to predict
the violation of assumptions, enabling the possibility of
reacting to avoid the faulty behaviour before it occurs. One
assumption monitor predicts how close the AERIAL VEHICLE

will pass to the center of the discrete target location. Its
output is fed into an actuator ( 2.1 in Fig. 1) that—based
on the degree of the error predicted—can either directly
abort the mission issuing a return to launch command (RTL)
straight to the AERIAL VEHICLE, or request a new trajectory
from the MOTION PLANNER (see 2.2 ).

The other monitor looks at how the AERIAL VEHICLE is
following the Dubins path [24] computed by the MOTION

PLANNER (see [6]) by predicting the estimated time of arrival
and total flight distance. A significant difference is likely to
be due to wind conditions (which are not considered by the
MOTION PLANNER as the Dubins path computation assumes a
constant turn radius). This last monitor also uses this arrival
time and distance to compute the speed at which the vehicle
is more likely to succeed in closely following the trajectory.
The output of this monitor is consumed by an actuator ( 2.1 )
that changes the speed of the AERIAL VEHICLE.

Both monitors require prediction of the UAV’s behaviour
in following a trajectory. For this, the HLOLA monitor
specifications encode a simplified non-linear 2D model of
a fixed-wing UAV and the full extent of the waypoint
guidance control algorithm of ArduPilot. Part of the input
to these monitors includes the current state of the system
(position, attitude, wind) and the list of waypoints for the
current trajectory. The monitors use this input together with
the non-linear model of the UAV and the guidance control



(a) (b) (c)

Fig. 2: In (a) we show HLOLA streams and memory consumption during the ArduPlane simulation shown in (b), for the
mission scenario in Section IV-B. In (c) we show an ArduPlane simulation for the mission scenario in Section IV-C. For
clarity we only show in (b) and (c) the trajectory after the UAV visits for the first time region C and A, respectively.

algorithms to produce, by means of simulation into the
future, a prediction of the UAV’s flight path.

We add an Extended Kalman Filter (EKF) to estimate
in-flight a parameter tau from the simplified UAV models,
helping to diminish the error in the predicted flight path.
Other parameter identification techniques could be used
instead (e.g., least squares), but we aimed to show HLOLA’s
ability to implement state-of-the-art estimation algorithms.

The PI controller PIC is used to control the UAV’s
airspeed set-point, taking as an input a reference velocity
of 21 m/s and an estimation of the average UAV speed
along with the predicted flight path, generated from the
predicted arrival time (estim data.time) and flight dis-
tance (estim data.dist). The main idea is that in order to
correctly follow a Dubins path one must satisfy its constant
turn radius assumption, which (for the UAV) translates into
constant ground-speed. When the UAV has tailwind, for a
constant airspeed, it will fly at a faster ground-speed than
when it experiences headwind. Controlling the ground-speed
around a fixed value (by actuating on the airspeed set-point)
helps to follow the desired path more accurately.

We show a portion of the specification of the second
monitor focusing on the implementation of the PI controller.
The function simulate guidance simulates the UAV tra-
jectory based on tau (provided by the EKF) and the input
navigation. Note that some auxiliary functions are not shown
(is satur and saturate).

data Estimation = Estimation {time,dist :: Double}
input NavigationData nav_data
output Estimation estim_data =
simulate_guidance(tau[0], nav_data[0])

output Double estimated_error =
21 - estim_data[0].dist/estim_data[0].time

output Double err_int =
if is_satur(PIC[-1|21],15,30) then err_int[-1|0]
else err_int[-1|0] + estimated_error[0]*0.03

output Double PIC = saturate(21 +
estimated_error[0]*0.5 + err_int[0],15,30)

C. SRV for Online Discrete Event Generation

In the third mission we reuse the monitors from the
second mission but allow their output to be consumed by the
discrete event controller of the architecture (see 3 in Fig. 1).
We instrumented the MONITOR WRAPPER component of the
HYBRID CONTROLLER to produce three new events based on
the estimated error output stream. If the AERIAL VEHICLE

is predicted to hit the target discrete location but far from
its center point, then a nearMiss event is produced. On the
other hand, if the target discrete location is to be completely
missed, an event goFailed is produced.

Our monitor is specified to hold its failing prediction for
several time instants before producing a goFailed, to allow the
PIC described in the second mission to attempt to correct the
airspeed. Additionally, the new monitors generate an auxil-
iary output stream distance to trajectory (not shown)
that is used for the computation of estimated error to
produce an event abnormalDrift when the distance of the
AERIAL VEHICLE to its intended location is beyond a thresh-
old. This third scenario is a patrol mission, as before, but
with the set of monitorable events extended with the new
events and added to the discrete event control problem. The
new requirements ensure that: (1) upon a nearMiss the UAV
should reattempt to visit the location immediately, (2) upon
a goFailed the UAV should skip the location and move onto
the next location to patrol and (3) upon a abnormalDrift event,
the UAV should abort mission and land.

V. EMPIRICAL EVALUATION

In this section we report on the different combinations of
SRV and temporal task planning described in Section IV.
Our UAV hybrid control system (including SRV) was built
for MAVLink [25] complying aerial vehicles, and tested
extensively on the ArduPilot Software-In-The-Loop (SITL)
simulator as in [26]. We have used this simulator (see [6])
to seamlessly transition from simulation to actually flying
a custom made fixed-wing vehicle based on a Pixhawk.
The HYBRID CONTROLLER was run on a single Raspberry



Pi. Controllers and monitors where synthesized offline in a
few minutes and seconds, respectively. The attached video
provides more data and insight on these flown missions.

For the Offline Monitoring mission in Section IV-A we
performed real flights using the Parrot Ar.Drone 2.0 and an
onboard mounted Raspberry Pi Zero W. Due to stringent
battery limitation, we restricted the universe of locations to
116 locations. The discretization size was of 4 m× 4 m and
a flight height of 8.5 m. Even with this low-end hardware
we were able to fly the mission with ease (RAM usage of
HLOLA was always lower than 13.4 MB), and detect post-
flight assumption violations.

The missions described in Sections IV-B and IV-C were
simulated on the ArduPlane (i.e., fixed-wing ArduPilot-based
UAV) SITL simulator. Both share the same parameters of
a cell-size of 50 m × 50 m and a flight height of 100 m,
generating over 400 discrete locations. Dubins paths were
computed selecting an arrival direction (from eight possi-
bilities with 45◦ increments) to each location to minimize
the flight distance. The simulated UAV hardware was a
Raspberry Pi 3B+ as in [6].

For the Online Monitoring and Adaptation scenario we
show actions taken by the monitor during the patrol mission
in Fig. 2b. As seen in Fig. 2a, we increment gradually the
simulated wind speed over time. As a result, the second time
the UAV travels from A to B (time range 160 s – 205 s),
the predicted arrival distance error rises over 100 m, which
triggers the calculation of a new trajectory until a trajectory
that guarantees the correct arrival of the UAV to the location
is found. Traveling from B to C and then to A forces the
UAV to switch between tailwind and headwind, and thus,
as shown in Fig. 2a, the PIC stream from the monitor sets
the flight speed accordingly. This is also the cause for the
discontinuities (i.e., timeouts) in estimated error after C
is visited. The first time C is visited (∼100 s), the monitor’s
speed controller compensates this effect quickly, but the
second time (∼240 s) the wind is too strong and a RTL
command is issued. Fig. 2a illustrates HLOLA memory con-
sumption, which remains practically constant as expected.

For the Discrete Event Generation scenario (Fig. 2c). we
also increment the wind speed as the mission progresses.
The result is a goFailed event generated when the UAV tries
to go from C to A (with heavy headwind) and—as specified
in the requirements—proceeds to visit B instead. Due to the
strong wind conditions at that point, once the UAV arrives
at B and calculates a trajectory to go to C, the predicted
trajectory differs too much (abnormalDrift) causing the plan
to abort (abort.go) and RTL (rtl). The memory consumed by
HLOLA for the duration of the mission is similar to the
one shown in Fig.2a. Memory consumption reports for other
missions are omitted as they are always constant. See [20]
for details about the memory consumption of HLOLA.

Our experiments show that HLOLA can monitor assump-
tions for UAV missions with negligible interference with the
main navigation system, in particular in constant memory
consumption and in constant time per event. The speci-
fications and nontrivial mathematical functions are easily

expressed in HLOLA2, providing support for hypotheses that
motivated the use of SRV and HLOLA (see Section III).

VI. RELATED WORK

The literature on temporal task planning is very extensive
(e.g., [1], [2], [3], [4], [5]). We focus here only on the
combination of planning with RV.

Ulus and Belta [27] introduce a multi-layered architecture
where controllers interact with monitors to enforce properties
obtained from LTL specifications, and propose to construct
monitors from mission specifications. Their properties are
limited to the discretized domain, but we use SRV, which
allows much richer properties involving quantitative as-
pects and complex data-types, well beyond simple Boolean
properties. We also monitor violations of the environment
considering dynamic aspects (e.g., change of wind strength
and direction) so the controller can take corrective actions.
Finally, unlike [27], we consider predictive monitoring.

In [28], Liu and Baras use an ad-hoc approach to verify at
runtime if a plan expressed in Metric Interval Temporal Logic
is satisfied. Their motivation is similar to ours, avoid silent
mission failures. However, their focus is on goal violation
while we focus on checking assumption violations, which
has the advantage of being able to be preventive.

Doherty et al. [29] present a temporal logic-based task
planning and monitoring for UAVs based on Temporal Ac-
tion Logic, integrated into a deployed rotor-based UAV. Their
properties are Booleans and are not predictive. Thus, the
monitors cannot play the same kind of role as described
herein for mitigation of assumption violations.

In [30] Tiger and Heintz introduce Predictive MTL (P-
MTL) that extends MTL to reason over stochastic states and
predictions of states. While we use SRV for monitoring and
predicting trajectories at runtime, they use P-MTL, but their
verdicts are still Boolean, while we can compute and predict
richer values. Besides, HLOLA is a very friendly and intuitive
language for engineers for writing formulae in P-MTL (or
any other extension of temporal logic). Additionally, HLOLA
has performance and memory guarantees. This last comment
also applies to [31], where Leng and Heintz use the formula
progression procedure for MTL for execution monitoring.
The limitations in expressivity preclude the above to imple-
ment Kalman filters in their monitor specification languages.

VII. CONCLUSION AND FUTURE WORK

We have presented an application of runtime verifica-
tion infrastructure to support assumption monitoring and
assumption violation remediation in UAVs running temporal
task plans. Stream runtime verification allows describing
assumptions in a high-level language that can be used to au-
tomatically synthesize monitors that can collect and process
sophisticated data, generating rich verdicts while providing
strong correctness and resource consumption guarantees.

We believe that the rich interplay of monitoring and
planning can be integrated even further and plan to study

2Available at software.imdea.org/hlola/specs.html



how to efficiently perform dynamic discretizations and re-
planning on-the-fly—depending on data provided by the
monitoring/prediction—to further improve the behavior of
robots running of temporal plans.
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