
Teaching Formal Methods for Software Engineering –

Ten Principles

Antonio Cerone1, Markus Roggenbach2, Bernd-Holger Schlingloff3,
Gerardo Schneider4, and Siraj Ahmed Shaikh5

1 United Nations University — UNU-IIST, Macau SAR China
2 Swansea University, Wales, United Kingdom

3 Humboldt University and Fraunhofer FOKUS, Berlin, Germany
4 University of Gothenburg, Sweden

5 Coventry University, United Kingdom

Abstract. In this paper we report and reflect about the didactic principles
underlying our endeavour to write a book on “Formal Methods for Software
Engineering – Languages, Methods, Application Domains”, and to teach its
contents at international summer schools6. Target audience for the book are
taught master students, possibly striving for a career in industry, and doctoral
students in their early years, possibly in search of a suitable topic for their
dissertation. We outline ten principles underlying the design of the book, coin a
recommendation from each principle, and give appropriate examples. We report
about the feedback from participants to the schools and lectures, and relate our
principles to other pedagogical suggestions for teaching Formal Methods.

1 Introduction

Formal Methods are one means in Software Engineering that can help ensure that a com-
puter system meets its requirements. They can help make descriptions precise. Such de-
scriptions include requirements, specifications, and models, which appear at different levels
and moments in the life cycle. They can also help in different kinds of analysis. The use
of Formal Methods in Verification and Validation is wide and includes techniques such as
static analysis, formal testing, model checking, runtime verification, and theorem proving.

In many engineering-based application areas of computer science, e.g., in the railway
domain, Formal Methods have meanwhile reached a level of maturity that already enables
the compilation of a so-called body of knowledge, i.e., a handbook compiling the key
concepts, terms and activities that constitute the professional domain [FM-13]. In 2011,
Barnes stated that “the application of Formal Methods is a cost effective route to the
development of high integrity software” [Bar11]. In the hardware domain, Formal Methods
are an essential part of the design processes [Lam05].

In Computer Science education, however, Formal Methods often play a minor role only.
Typical questions raised in curriculum discussions include: Which of the many Formal

6 The book “Formal Methods for Software Engineering – Languages, Methods, Application Domains” by the same
authors is about to appear at Springer Verlag soon.

2 Cerone, Roggenbach, Schlingloff, Schneider, Shaikh

Methods shall be taught? Will the material taught be accessible to mainstream students?
Will a Formal Methods course be attractive to students? Are there teachable case studies
beyond the toy example level? Can students be involved in real projects where they can
apply Formal Methods?

As a constructive and positive response to such questions, we are writing the book
“Formal Methods for Software Engineering – Languages, Methods, Application Domains”
[CRS+]. This paper offers an insight into the main principles adopted in the writing of this
book. Teaching the contents of this book at summer schools associated with the SEFM
conference series [SEF], and in various courses in different universities has added didactical
insights. There were two groups of people present in these classes, to which the book is
targeted:

– taught master students, possibly striving for a career in industry, and
– doctoral students in their early years, possibly in search of a suitable topic for their

dissertation.

The rest of this paper is divided as follows. Section 2 presents the ten principles we propose
for teaching Formal Methods with a view to making the subject fun and favourable. These
serve as the guiding beacons for the writing of the book. Section 3 describes some of
the student feedback we have received on delivering the contents of the book at a recent
summer school. This provides a critical source of evaluation for us. Section 4 reviews some
of the relevant literature in this area. Section 5 concludes the paper.

2 Principles

The inception of our book is due to 1st International School on Software Engineering and
Formal Methods held in Cape Town, South Africa, in late October to early November of
2008. The two week school consisted of five courses on the application of Formal Meth-
ods to software design and verification delivered to an audience of graduate and research
students. The focus of the book on addressing the fundamentals and facilitating learning
through examples is largely owed to the instructional setting offered by the school. We
have approached the subject of the book with a similar readership in mind and a strong
desire to make the subject more widely accessible.

In the following, we state and exemplify our principles for teaching Fun With Formal
Methods.

Principle 1: The field of Formal Methods is too large to gain encyclopaedic
knowledge – choose representatives

The variety of Formal Methods is overwhelming. This might leave the beginner or potential
user to be lost in the field. Which method shall be selected in a given context?

Here we recommend teaching a non-representative selection of methods with a solid
introduction to each of them. Specialisation in one method is unproblematic, as the foun-
dations of Formal Methods are well connected. For instance, concepts studied, say, in the

Teaching Formal Methods for Software Engineering 3

context of process algebra, are also to be found in temporal logics, which again are closely
connected to automata theory, and are applied, e.g., in testing. Within a discipline, there
are often attempts to unify structural insights. In logics, for example, the theory of institu-
tions provides a general framework in which logical properties can be studied in a uniform
way. The methodological approach to different Formal Methods often is comparable. Con-
sequently, there is loads to gain by intensively studying selected few methods.

Principle 2: Formal Methods are more than pure/poor Mathematics – focus
on Engineering

Although at the beginning computer science was strongly influenced by Mathematics,
within the last 50 years it has become more and more of an engineering discipline. A fact
is that many CS students quit because they cannot see the relevance of their first years’
Mathematics classes to the engineering problems they want to solve. Thus, we encourage
to motivate the introduction of Formal Methods by engineering challenges.

For example, we see Formal Methods as part of a Software Engineering curriculum.
Here, it should be conveyed that the use of Formal Methods in a software development
is not constrained to a specific process and life cycle model. That is, Formal Methods
can be used with traditional as well as agile models. Moreover, Formal Methods should
not constitute separate phases or sprints, but should be rather integrated as part of the
general validation activities. Thus, teaching Formal Methods should frequently resort to
other topics in Software Engineering.

Mishra and Schlingloff [MS08] evaluate the compliance of Formal Methods with pro-
cess areas identified in CMMI-DEV, the capability maturity model integration for devel-
opment. Their result is that out of 22 process areas from CMMI, six can be satisfied fully
or largely with a formal specification based development approach. Notably, the process
areas requirements management, product integration, requirements development, technical
solutions, validation and verification are supported to a large extent. Mishra and Schlingloff
also show the possibility of automation in process compliance, which reduces the effort for
the implementation of a process model.

Formal Methods begin to play a significant role also in Software Engineering standards.
For example, the RTCA standard DO-178C “Software Considerations in Airborne Sys-
tems and Equipment Certification”, includes the DO-333 “Formal Methods” supplement
addressing Formal Methods to complement testing. Using this example and the engineer-
ing challenges which led to its conception can greatly increase the students’ motivation.
Furthermore, success stories related to industrial applications and successful careers in
academia and in industry can support this argument.

Principle 3: Formal Methods need tools – make them available

In the classroom, Formal Methods usually start on the “blackboard” only: Toy examples
are treated in an exemplary way. With paper and pen one checks how a method works. For
convincing case studies, however, Formal Methods need tool support in order to become

4 Cerone, Roggenbach, Schlingloff, Schneider, Shaikh

applicable. Tools for simulation of behaviour and visualisation of state space or traces are
essential to allow students to understand the behaviour associated with their models.

This is the case as software systems are fundamentally different compared to Mathe-
matical theories:

Numbers of axioms involved. The number of axioms when applying Formal Methods
is by magnitudes larger than the number of axioms involved in Mathematical theories.
Consequently, tool support is needed in Formal Methods for sheer book keeping.

Ownership and interest. Most software systems are the intellectual property of a com-
pany. This restricts access to the actual code; interest in their design is limited. Mathe-
matical theories are part of the scientific process and publicly available. There is scien-
tific interest in them. Therefore, proofs related to a specific software system are studied
by few people only, and only when necessary – while Mathematical proofs are studied
by many, over and over again. Consequently, tools play the role of “proof checkers” for
quality control in Formal Methods.

Change of axiomatic basis. Requirements of software systems are bound to change in
small time intervals. This means that design steps involving Formal Methods need
to be repeated several times, sometimes already during the design phase, certainly
when maintaining the system. Mathematical theories, however, are stable over centuries.
Consequently, tools are needed to help with management of change in Formal Methods.

Thus, it is essential that students have access to powerful, even industrial-strength tools.
They should also be referred to databases with “big” examples on which they can try these
tools. There is a plethora of free Formal Methods tools available, and many tool providers
will give students free access to expensive commercial tools, if certain legal restrictions are
met. Usually, the negotiation process takes several month, so start well in advance.

Principle 4: Modelling versus programming – work out the differences

Models of software systems are different from programming code as programs are exe-
cutable, while models can be executable. A model is a purposeful abstraction of either an
existing system or a system still to be built. In the first case, the purpose of modelling is
of analytical nature, in the second case the aim is to assist system construction.

Abstraction Models can be constructed at a high level of abstraction on which data and
processes may often be described in an intuitive way. In programming it is necessary to
spell out how to implement this data and processes by adding details. In fact, modelling
can focus on the central ideas, irrelevant details are abstracted away. Here, the usability,
i.e., the ease to express these ideas, is important when choosing a modelling language.
Such languages often have a visual representation, e.g., automata, process algebras,
Petri nets. Tool can support such visualisations allowing to design models in an intuitive
way and to easily learn the semantics.

Validation This process relates the informal system description with the most abstract
formal level. In this context, the aim of a model is to provide evidence that the modelled

Teaching Formal Methods for Software Engineering 5

system satisfies given properties. In a model-based approach informal properties may be
formalized as processes or logic formulae. Although natural language descriptions are
easily comprehensible, finding their correct formalisations is a hard task. Consequently,
providing templates which correspond to well-known properties may assist students in
their specification efforts. This also may help them to understand the correspondence
between the natural language formulation and the formalisation of the property.

Refinement and Verification Refinement transforms an abstract model into a more
concrete one, whereas verification gives a formal argument for the correspondence be-
tween the two. The more concrete a model is, the harder becomes the verification task.
In this context it is important to convey two messages: tools are required to perform ver-
ification, see Principle 3; abstraction is an important precondition to work with Formal
Methods tools.

Principle 5: Tools teach the method – use them

In the old days, a programming language was taught by going through its syntactic con-
structs and highlighting the (denotational or operational) semantics associated with each

Fig. 1. Snapshot of Hets validating the database specification.

construct. Like it or not - this is no longer the way that programming is learned. Simi-
lar to children learning to speak, nowadays students learn to program by mimicking and
modifying given examples, interacting with an IDE, and experimenting with the results.

6 Cerone, Roggenbach, Schlingloff, Schneider, Shaikh

We claim that the same should hold for Formal Methods. Instead of tediously going
through the semantics of each construct in a formal language, allow the students to experi-
ment with an appropriate tool to discover the semantics for themselves. Non-withstanding,
the formal semantics needs to be available so students so that they can use it in case of
need.

We illustrate this principle with an example written in the algebraic specification lan-
guage Casl. The task is to specify an elementary database:

[Database in Casl] With the operation symbols initial and update we construct
a table. The so constructed table can be inspected with look up, manipulated with
remove, and checked with isEmpty.

spec Database =
sorts Database, Name, Number
ops initial : Database;

look up : Database × Name →? Number ;
update : Database × Name × Number → Database;
remove : Database × Name → Database

pred isEmpty : Database
∀ db : Database; name, name1, name2 : Name; number : Number
• ¬ def look up(initial, name) %(non def initial)%

• name1 = name2
⇒ look up(update(db, name1, number), name2) = number

%(name found)%

• ¬ name1 = name2
⇒ look up(update(db, name1, number), name2)

= look up(db, name2) %(name not found)%

. . .

Taking the operations initial and update as constructors, our axioms systematically
cover how the operations look up and remove and the predicate isEmpty interact with
them: In the state initial the database has no entries. Consequently, observing this
state with the look up function, yields no result – see %(non def initial)%. When
there is at least one entry in the database, we might obtain a result when observing
it: Should the last entry match the look-up request, the number of the entry is to be
returned – see %(name found)%; otherwise, we have to inspect the previous entries –
see the axiom %(name not found)%. . . .

This explanation is enough to grasp the “functional specification style” applied in this
example – it’s effects (including variations of the axioms) can then be observed by using
a tool, in our case an automatic theorem prover. Populating the database with name
constants Erna, and Hugo and number constants N4711 and N17, using the tool set

Teaching Formal Methods for Software Engineering 7

HETS with the automated theorem prover SPASS one can prove, e.g., that the following
holds (see also Fig. 1):

[Database properties]

• ¬ look up(initial, Hugo) = N17
%(lookup on initial not equal to 17)%

• ¬ def look up(initial, Hugo) %(lookup on initial undefined)%

• look up(update(initial, Hugo, N4711), Hugo) = N4711
%(lookup stores values)%

• look up(update(update(initial, Hugo, N4711), Erna, N17),
Hugo)

= N4711 %(update does not overwrite)%

• ¬ def look up(update(initial, Erna, N17), Hugo)
%(lookup is not defined without update)%

• ¬ isEmpty(update(update(initial, Hugo, N4711), Erna, N17))
%(updating leads to a non empty database)%

• isEmpty(initial) %(the initial database is empty)%

• isEmpty(remove(update(initial, Hugo, N4711), Hugo))
%(removing all entries leads to an empty database)%

That is, students can actually experiment with the database and can see if their under-
standing of how it should behave is met. For instance, a database can have an overwriting
semantics – two updates for the same name are possible, the last update determines the
value (this is the way how the database is specified here); another design choice would be
that the update function is only defined for names not yet present in the database.

This example shows that it is beneficial to study specifications by the means of tools.

Principle 6: Formal Methods need lab classes – create a stable platform

For students, carefully designed lab classes can be enormously motivating – see the student
quotes in Section 3 concerning Reflections. Labs can offer hands-on experience with Formal
Methods tools and practical examples. Such teaching style appeals to the plug-and-play
mindset of a student generation who loves to play with gadgets of all kinds. Furthermore,
it can provide the students with a sense of achievement: students use Formal Methods with
a concrete, visible effect on their screen – rather than being lost or even frustrated in some
semantical detail. Beyond such fun and achievement aspects, lab-classes allow students to
judge how mature the tool support for a specific method is.

When preparing lab classes, to minimize the effort it is worthwhile – and we do so in the
context of our book project – to work with frozen versions of tools compiled on a live-CD.
Freezing the tools ensures that the effects one wishes to demonstrate are actually there
(e.g., a time-out in an automatic theorem prover or a model checker, where a small change

8 Cerone, Roggenbach, Schlingloff, Schneider, Shaikh

of the tool’s search heuristics can change the outcome). Moreover, the use of a live-CD
circumvents installation problems.

For a first step, it is often enough to demonstrate elementary use of a tool, as exemplified
in the following lab-exercise on “Simulating the Children-and-Candy Puzzle with ProBe”
(see also Fig. 2):

[Lab sheet for the process algebra CSP]

1. Entering the command probe starts the simulator ProBe from a terminal. The
simulator opens in a GUI.

2. One loads the file childrensPuzzle.csp by choosing the File option. This launches
a new window.

3. Double clicking on the process Children allows one to expand the process as shown
in the lectures.

4. Following any execution branch eventually yields a state where all three children
hold 4 candies.

Here, the Children-and-Candy puzzle is an example already known from the lectures,
where in the lab class the students shall explore and experience that (1) the system has
many different execution paths and that (2) these paths are infinite.

The next step can then concern a change within the example (for example change the
number of children, i.e., processes, involved in the puzzle). Only then students should be
asked to develop own examples. Such an approach separates learning the (basic) functions
of the tool, dealing with mistakes and error messages (when changing the example), and
mastering the method (when working out an own example from scratch).

Fig. 2. Simulation in ProBe

Teaching Formal Methods for Software Engineering 9

Principle 7: Formal Methods are best taught by examples – choose from a
domain familiar to the target group

An introduction to logic can read as follows:

Today’s your lucky day! You are the candidate in a big TV quiz show, and so far
you have mastered all challenges. In the final round, there are three baskets, one of
which contains the big prize, the other two being empty. The quizmaster gives you
the following facts:

1. Either the prize is in the middle basket, or the right basket is empty.
2. If the prize is not in the left basket, then it is not in the middle.

Which basket do you choose?

This example is typical for a number of “logic puzzles” which have been popular since
the middle of the 19th century. One can formalize and solve such puzzles — not just for
the sake of winning in TV quiz shows, but also to construct software solutions for all sorts
of problems.

Seen from a hardware perspective, nowadays every computer is a binary device, built
from switching elements which can be in one of two states each — on or off, high or low,
zero or one etc. Therefore, hardware can be described and analysed with logical means.

From a software perspective, every programming language incorporates some logic,
e.g., propositional logic for Boolean conditions in control flow decisions such as branches
or loops. Thus, the study of logic is fundamental for programming. There even are special
programming languages like, e.g., PROLOG, in which logic is turned into a programming
paradigm. For many programming languages, there are special logics to express certain
properties of program phrases, e.g., pre- and postconditions. Examples include ACSL for
C, JML for Java, and Spark Ada.

Moreover, logic can be used as a means for specification of systems, independent of the
particular programming language. Examples are CASL and the Z and B specification lan-
guages. Given a system specification, logic can be used to verify that a particular program
is correct with respect to it. Specialised logics have been developed for this task, including
temporal and dynamic logics.

From these examples it should be clear that there is not “one” logic in computer science,
but many different logics are being used. Each of these can be considered to be a Formal
Methods:

– The syntax of a logic usually is given by a small grammar which defines the well-formed
formulae.

– For the semantics, notions like “model”, “interpretation” and “validity” are defined.
– The method usually includes ways to show which formulae are valid in a given model

or in all models of a certain class.

All the above examples are familiar to computer science students.

10 Cerone, Roggenbach, Schlingloff, Schneider, Shaikh

Principle 8: Each Formal Method consists of syntax, semantics and algorithms
- focus uniformly on these key ingredients

To illustrate this principle, we discuss these ingredients in the context of text replacement:

[Motivation] Assume that we want to replace all occurrences of certain patterns in
a text, e.g. remove all comments from an HTML document. In HTML, comments are
marked beginning with “<!--” and ending with “-->”. Most editors offer a facility for
replacement based on regular expressions, that is, you may specify the symbol ‘*’ as
a wildcard in the search. With this, replacing “<!--*-->” by an empty string yields
the desired result.

Starting from such an accessible example, one can discuss syntax, semantics, and
method for regular expressions:

[Syntax] Syntactically, each formal method deals with objects denoted in a for-
mal language. This gives a simple example for using Backus-Naur-Form [Bac59]:
RegexpA ::= a ∈ A | λ | (RegexpA RegexpA) |

(RegexpA + RegexpA) | Regexp∗A

Semantically, regular expressions can be dealt with in denotational, operational, and
axiomatic style.

[Denotational semantics] For any regular expression ϕ, we define the denoted lan-
guage [[ϕ]] by the following clauses:

– [[a]] , {a} for any a ∈ A. That is, the regular expression ‘a’ defines the language
consisting solely of the one-letter word ‘a’.

– [[λ]] , {}. That is, λ denotes the empty language.
– . . .

[Operational semantics] For any regular expression ϕ, we define an automaton
A(ϕ), that is, a graph (N,E, s0, SF), where N is a nonempty set of nodes, E ⊆
(N × A × N) ∪ (N × N) is a set of (labelled) edges, s0 ∈ N is the initial node and
SF ⊆ N is the set of final nodes.

– A(a) , ({s0, s1}, {(s0, a, s1)}, s0, {s1}) for any letter a ∈ A.
– A(λ) , ({s0}, {}, s0, {}).
– . . .

Teaching Formal Methods for Software Engineering 11

[Axiomatic semantics] Axiomatic systems for equality of regular expressions were
given by Salomaa in [Sal66] and Kozen in [Koz94] and [KS12]. We call an equation
α = β derivable and write ` α = β, if it is either an instance of one of the following
axioms or follows from a set of such instances by a finite number of applications of the
following rules. Salomaa gives the following axioms and derivation rules:

– ` (α + (β + γ)) = ((α + β) + γ) , ` (α(βγ)) = ((αβ)γ)
– ` (α(β + γ)) = ((αβ) + (αγ)) , ` ((α + β)γ = ((αγ) + (βγ))
– . . .

A formal language is described by an unambiguous syntax and a Mathematical seman-
tics. For a Formal Method (as opposed to a formal language) it is essential that there are
some algorithms or procedures which describe what can be done with the syntactic objects
in practice. A Formal Method describes how to “work with the language”, that is, perform
some activity on its elements in order to achieve certain results.

Continuing with our example of regular expression, we define the following method:

[Method] A frequent task while writing scientific articles is to consistently replace
certain text passages by others in the whole text. A replacement [α := β] consists of a
regular expression α and a word β over A. The word δ is the result of the replacement
[α := β] on a word γ, denoted as δ = γ[α := β] if one of the following holds:

– Either there exist γ1, γ2 and γ3 such that
1. γ = γ1γ2γ3,
2. γ2 ∈ [[α]] \ [[ε]],
3. . . .

– or. . .

As an application of regular replacement, we note that
(p⇒ (q ⇒ p))[(p+ q) := (p⇒ q)] = ((p⇒ q)⇒ ((p⇒ q)⇒ (p⇒ q)))

The Backus-Naur-Form being introduced this way, we take care to present other formal
languages in exactly the same format, e.g., various logics and process algebra.

Principle 9: Formal Methods have several dimensions – use a taxonomy

In order to give students an orientation, it is important to provide a taxonomy. Formal
Methods can, e.g., be categorized according to the following dimensions.

Application range – this dimension determines the application domain (e.g., avionics,
railway, finance) and the specific needs of this domain (whether the systems are mainly
reactive, interactive, real time, spatial, mobile, service-oriented, etc.)

Underlying technology – this dimension notes how the method can be realised. Typ-
ical methods include refinement, simulation and symbolic execution, model-checking,

12 Cerone, Roggenbach, Schlingloff, Schneider, Shaikh

automated or interactive theorem proving, static analysis etc., with technologies such
as resolution, SAT solving, symbolic representation etc.

Properties under concern – here we categorize properties of the systems which are the
subject of the Formal Method and which are supported by the method (safety, liveness,
fairness, security, consistency, etc.)

Usability – this dimension describes how well fit the method is for actual use (universality,
applicability, expressivity, maturity, learning-curve, intelligibility, etc.)

Other criteria can include lightweight vs. heavyweight Formal Methods, specification fo-
cussed vs. analysis focussed, correctness-by-construction vs. design-and-proof-methodology,
etc.

Principle 10: Formal Methods are fun – shout it out loud!

Psychology tells us that the human learning capacity is highest when we enjoy what we
are doing. Many researchers are attracted to Formal Methods just because it is fun to play
with them – so the best way of teaching is to convey this fun to the students.

As an example, we start our book with the following paragraph:

[Fun with Formal Methods] What is a Formal Method?
You have just bought a book on Formal Methods and are making holiday plans in the
Caribbean to read it on the beach. In order to guarantee the reservation, your travel
agent requires a deposit. You decide to pay electronically via credit card.

With such a motivation, we describe some typical requirements for an electronic pay-
ment system.

A strong motivator are also competitions. There exist several competitions in the Formal
Methods community, e.g., the VerifyThis Verification Competition, the Hardware Model
Checking Competition, or the SAT competition. Of course, it is not easy for a beginner to
enter such a competition, but you can set up an accessible competition amongst your class
and provide a small price.

3 Reflections

We put our principles to test by teaching the material at three international summer schools
(one of which was exclusively dedicated to the curriculum of the book). Furthermore, we
used the material in several classes in our home universities. We collected results and opin-
ions from the participants and evaluated them. Overall, the students were quite satisfied
with the lectures and materials. Some remarks from students’ survey were

– “The best part of the school is the way the courses are related.”
– “The structure of courses is very good.”
– “The school opened up new ways of thinking.”

Teaching Formal Methods for Software Engineering 13

– (The school helped in) “showing that theory comes from practice and vice versa, but
practice is the goal.”

– (I liked) “the practical applications of Formal Methods.”
– (Now) “I feel ready to approach logic from a knowledgeable point.”
– (The required) “hands-on exercises were very good.”

There was unanimous support (60% agreement, 40% strong agreement) for the statement
“Teaching and learning methods used have enabled me to learn effectively”. 80% of the par-
ticipants agreed or agreed strongly to the statement “Teaching resources were adequate”,
reflecting the fact that some participants would have liked more practical examples and
lab classes.

This shows the importance of our principles 3 and 5. Even though we dedicated quite
a large portion (around one third) of the available time budget to lab classes, according to
the participants they could have played an even bigger role. Some quotes from the section
“Suggestions for Improvements” of the questionnaire were

– “More practical sessions with the tools.”
– “More on applications, especially security.”
– “More lab lessons.”

Summarizing, we can conclude that our approach to teaching Formal Methods for
Software Engineering is quite successful, and that the ten principles mentioned above have
passed the on-road test of classroom use.

4 Related Work

The Formal Methods community has been well aware of the didactic challenges faced in
teaching of the subject. We find a variety of approaches adopted in the teaching delivery
of the subject.

Gibson and Méry [GM98] reveal some lessons from their case study-led approach to a
course where fundamental problems, and the need for formality, is demonstrated over a
set of case studies delivered to students. They also emphasise the need for tool support
and the practical hands-on nature of the learning that such provision facilitates. This is
evidenced to provide for rich interaction between the teacher and the learner, ultimately
helping both. Our principles embrace both of these lessons. The use of tool support and
practical learning has also been advocated by Heitmeyer [Hei98] and Liu et al. [LTHN09].
The latter, however, promote the value of writing formal specifications by hand to start
with. This allows them to learn syntax and semantics as if it were a foreign language for
adoption. The use of examples and case studies for their instructive value is acknowledged
by several [Bur95,GM98,Hei98,RS04]. Moreover, their effective value for student assess-
ment is recognised by Sotiriadou and Kefalas [SK00] while pointing out to the need for
equal emphasis on both understanding and ability to construct formal specifications. A
dearth of real world case studies is a challenge we face if such an approach for teaching
and learning is to be pursued arguably [Bur95,Hei98]. Over the years, the situation has

14 Cerone, Roggenbach, Schlingloff, Schneider, Shaikh

improved as the uptake of Formal Methods in the industry progresses [WLBF09]. However,
student motivation remains a concern and, as Reed and Sinclair [RS04] show, using smaller
persistent examples is but only one way to address this problem, albeit to limited effect.

There is consensus amongst the community on the two-way relationship that exists
between the state of adoption of Formal Methods within the industry and the quality of
teaching of the subject [Hei98,Bur95,RS04,Bjø01]. While the former serves as a potential
lack of motivation, the situation is not helped by rolling sets of graduates who come with
limited knowledge or experience of the subject. Undoubtedly, any solution needs to address
fundamental problems of student attitudes (to subjects such as Mathematics [Fin03] and
the true cost of software errors in the industry [JMØ06]). Recent reforms to the teaching
of computer sciences in the UK schools, where appropriate emphasis on programming and
problem-solving nature of the subject is placed [BKC+13], lay down the foundation to a
student body more able and equipped for Formal Methods in the future.

While the above issues inform the endeavours towards writing our book, including
lessons from those who have strived to achieve the same [Bjø01], our approach promises a
departure from tradition to a more fresh approach.

5 What next?

The challenge of Software Engineering has been acknowledged for decades now; the notion
of software crisis has been related to the debate on software industry [Dij72,NR69] since
early days. It is safe to presume the state of the industry will continue this course unless
methods and practices are addressed. Our book is motivated by the very challenge and has
set out to address the fundamental need for clear and coherent reasoning. We also acknowl-
edge that a new era has dawned with breakthroughs in electronics and communications,
and as such three trends have emerged over the recent years: (a) software is increasingly
designed to support critical systems, which require safety and reliability guarantees to be
predicated over execution, (b) modern computing is becoming pervasive [Sat01]. No longer
is software sitting comfortably on desktops, but seamlessly dispersed across urban and
household installations, needing to be open to cross-layer configuration and communica-
tion, and (c) user centricity is vital. As systems become more interactive, how they appear
to and engage end-users has received more attention than ever before [Dix10].

We make a deliberate effort to encourage the influence of the above themes over several
examples of applications spreading across the book. Such trends only add to the challenge
of Software Engineering as they bring increased complexity in requirements and specifi-
cation, added layers of abstraction for design, and the potential for subtle errors at the
implementation stage. Equally, however, they make the examples motivating and fun. The
book is due out. Watch this space!

Teaching Formal Methods for Software Engineering 15

Acknowledgement

We would like to express our sincere gratitude to colleagues and students who have con-
tributed to our writing effort over discussions, lectures and the three summer schools.
Amongst them, we especially want to thank Erwin R. Catesbeiana (Jr) for motivating
classroom experiences. All this has helped with forming ideas and reflections over the con-
tent and style of the book. We remain grateful to the wider Formal Methods community
who, over the years, has also informed the debate on how best to teach the subject and
ensure that this carries on.

This work is partly supported by Macao Foundation.

References

[Bac59] J. W. Backus. The syntax and semantics of the proposed international algebraic
language of the Zurich ACM-GAMM Conference. In Proceedings of the Inter-
national Conference on Information Processing. UNESCO, 1959. Available via
the web site of the Computer History Museum’s Software Preservation Group,
http://www.softwarepreservation.org.

[Bar11] Janet Elizabeth Barnes. Experiences in the industrial use of Formal Methods.
In Alexander Romanovsky, Cliff Jones, Jens Bendiposto, and Michael Leuschel,
editors, AVoCS’11. Electronic Communications of the EASST, 2011.

[Bjø01] Dines Bjørner. On teaching software engineering based on formal techniques
- thoughts about and plans for - a different software engineering text book.
Journal of Universal Computer Science, 7(8):641–667, 2001.

[BKC+13] Neil Christopher Charles Brown, Michael Kölling, Tom Crick, Simon Pey-
ton Jones, Simon Humphreys, and Sue Sentance. Bringing computer science
back into schools: lessons from the UK. In Proceeding of the 44th ACM techni-
cal symposium on Computer science education, pages 269–274. ACM, 2013.

[Bur95] Colin J. Burgess. The role of Formal Methods in Software Engineering education
and industry. University of Bristol, UK, 1995.

[CRS+] Antonio Cerone, Markus Roggenbach, Bernd-Holger Schlingloff, Gerardo
Schneider, and Siraj Ahmed Shaikh. Formal Methods for Software Engineering
– Languages, Methods, Application Domains. Springer. To appear.

[Dij72] Edsger Dijkstra. The humble programmer. Communications of the ACM,
15(10):859–866, 1972.

[Dix10] Alan Dix. Human-computer interaction: A stable discipline, a nascent science,
and the growth of the long tail. Interacting with Computers, 22(1):13–27, 2010.

[Fin03] Kate Finney. Hello class – let me introduce you to Mr. Six. Teaching Formal
Methods, 2003.

[FM-13] Towards a Formal Methods Body of Knowledge for Railway conrol and safety
systems, 2013. http://ssfmgroup.wordpress.com.

[GM98] Jean-Paul Gibson and Dominique Méry. Teaching Formal Methods: Lessons to
learn. In IWFM. Workshops in Computing, BCS, 1998.

16 Cerone, Roggenbach, Schlingloff, Schneider, Shaikh

[Hei98] Constance Heitmeyer. On the need for practical Formal Methods. In Formal
Techniques in Real-Time and Fault-Tolerant Systems, pages 18–26. Springer,
1998.

[JMØ06] Magne Jørgensen and Kjetil Moløkken-Østvold. How large are software cost
overruns? A review of the 1994 CHAOS report. Information and Software Tech-
nology, 48(4):297–301, 2006.

[Koz94] Dexter Kozen. A completeness theorem for Kleene Algebras and the Algebra
of Regular Events. Information and Computation, 110:366–390, 1994.

[KS12] Dexter Kozen and Alexandra Silva. Left-handed completeness. In Wolfram
Kahl and Timothy G. Griffin, editors, RAMiCS 2012, LNCS 7560, pages 162–
178. Springer, 2012.

[Lam05] William K. Lam. Hardware Design Verification. Prentice Hall, 2005.
[LTHN09] Shaoying Liu, Kazuhiro Takahashi, Toshinori Hayashi, and Toshihiro

Nakayama. Teaching Formal Methods in the context of Software Engineering.
ACM SIGCSE Bulletin, 41(2):17–23, 2009.

[MS08] Satish Mishra and Bernd-Holger Schlingloff. Compliance of CMMI process area
with specification based development. In SERA ’08, pages 77–84. IEEE Com-
puter Society, 2008.

[NR69] Peter Naur and Brian Randell. Software Engineering Report of a conference
sponsored by the NATO Science Committee Garmisch Germany 7th–11th Oc-
tober 1968. 1969.

[RS04] Joy N. Reed and Jane E. Sinclair. Motivating study of Formal Methods in the
classroom. In Teaching Formal Methods, pages 32–46. Springer, 2004.

[Sal66] Arto Salomaa. Two complete axiom systems for the algebra of regular events.
J. ACM, 13(1):158–169, January 1966.

[Sat01] M. Satyanarayanan. Pervasive computing: vision and challenges. Personal Com-
munications, IEEE, 8(4):10–17, 2001.

[SEF] IEEE Conferences on Software Engineering and Formal Methods (SEFM).
http://sefm.iist.unu.edu/.

[SK00] Anna Sotiriadou and Petros Kefalas. Teaching Formal Methods in computer
science undergraduates. Athens, World Scientific Engineering Society Press,
pages 91–95, 2000.

[WLBF09] Jim Woodcock, Peter Gorm Larsen, Juan Bicarregui, and John S. Fitzgerald.
Formal Methods: Practice and experience. ACM Comput. Surv., 41(4), 2009.

