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Abstract. Many complex continuous systems are modeled as non-linear
autonomous systems, i.e., by a set of differential equations with one inde-
pendent variable. Exact reachability, i.e., whether a given configuration
can be reached by starting from an initial configuration of the system, is
undecidable in general, as one needs to know the solution of the system
of equations under consideration.
In this paper we address the reachability problem of planar autonomous
systems approximatively. We use an approximation technique which “hy-
bridizes” the state space in the following way: the original system is
partitioned into a finite set of polygonal regions where the dynamics on
each region is approximated by constant differential inclusions. Besides
proving soundness, completeness, and termination of our algorithm, we
present an implementation, and its application into (classical) examples
taken from the literature.

1 Introduction

Many complex continuous systems can be modeled as non-linear autonomous
systems, i.e., as a set of differential equations over one independent variable
(typically interpreted as the time). Such systems can be found in the fields of
mechanics, electrical engineering, etc., with typical textbook examples such as
the damped pendulum, and oscillations in an electrical circuit as captured by
the van der Pol oscillator equation.

Reachability analysis addresses the question whether, starting from an initial
state or configuration, a system can evolve into another given state, i.e., whether
it can reach that state. In this paper we investigate how to automate the ap-
proximation of non-linear dynamics in order to answer reachability questions for
non-linear planar autonomous systems. The technique is based on hybridizing4

the state space: the original system is partitioned into a finite set of polygonal re-
gions where the dynamics on each region is approximated by constant differential
inclusions. The resulting abstraction is called a Generalized Polygonal Hybrid
System (GSPDI for short), for which reachability has been proved decidable [19];
the tool GSPeeDI [11] is a reachability-checker for such systems.

4 A hybrid system combines both discrete and continuous behaviour.
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A well-known, major difficulty in the analysis of differential equations are
critical points such as sinks and attractors, i.e., objects of the so-called phase
portrait. In their absence, our refinement may iteratively be of arbitrary pre-
cision (at least in theory). In regions containing critical points, however, the
approximating GSPDI may lose precision quite drastically. We introduce an er-
ror measure, and an algorithm which allows us to choose the bound on the error
arbitrarily small to obtain a practical and useful refinement.

Working on an abstraction of the original system gives a semi-test algorithm:
a negative answer to reachability on the approximated system is indeed negative
in the real system, whereas a positive answer is inconclusive. Obviously, a recur-
rent ’yes’ answer is not useful unless we can iteratively refine the approximation
to arrive, in some cases, at a definite ’no’ with our technique, or ’yes’ by other
techniques.

Our algorithm takes as input a non-linear planar autonomous system S, an
initial configuration given as set X0 of points on the plane, and a final configura-
tion Xf . Our approach performs reachability analysis by abstraction refinement:
(1) Obtain a first (coarse) GSPDI H from S; (2) Check whether Xf is reachable
from X0; (3) If not, the algorithm terminates with a negative answer. (4) Oth-
erwise, the situation is inconclusive, so refine the partition to obtain a better
approximation H ′ and repeat from (2). The algorithm terminates after the error
measure has been reached.

We prove that the above algorithm terminates and that it is sound and
complete. Soundness, as usual, means that the result of the analysis can be relied
on, i.e., the resulting GSPDI is indeed an abstraction of the original autonomous
system in that it includes all the original behavior. Completeness states that if
some state is reachable in the original system, the analysis provides evidence of
that. We cannot expect completeness in that strict form, as the obtained GSPDIs
will always over-approximate the real system, no matter how much we iterate the
refinement procedure sketched above. Each refinement step, which corresponds
to a finer partition of the plane, results in a GSPDI representing a more precise
over-approximation, and by completeness we mean that we can approximate the
original behavior up-to a given margin of error. We have incorporated a proof-
of-concept prototype of the theory into the tool GSPeeDI. The prototype uses
readily available local optimization libraries, and while this does not ensure that
the test results are conservative in all cases, they give a good indication of what
a real implementation of the theory would provide. We furthermore show the
feasibility of the approach on a number of classical examples taken from the
literature, and compare our results to those of related work.

The rest of the paper is organized as follows. Section 2 introduces notation
and some mathematical results needed in the subsequent text. Section 3 gives
the approximation from the dynamics of an autonomous systems to that of a
GSPDI, presents our reachability analysis, and proves soundness, completeness,
and termination. We discuss the implementation in Section 4, related work in
section 5, and conclude in Section 6.
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2 Background

In this section we present notations and definitions needed in the rest of the
paper. We assume familiarity with Euclidean geometry, in particular vector op-
erations. In the following we assume that, unless stated otherwise, vectors are
normalized, so that two vectors are equal iff their directions are equal. A unit
circle is a circle with radius 1, and vector x specifies a point on a unit circle.
Henceforth, x refers to a vector as well as to the corresponding point on the unit
circle.

An arc ∠b
a is a portion of the circumference of a unit circle, bounded by its

endpoints, a and b, where a is assumed located clockwise of b. On the unit cycle,
the length of an arc, written |∠b

a | is also the angle between a and b, measured
in the interval [0, 2π). We write x ∈ ∠b

a , if vector x is located clockwise of b and
counter-clockwise of a. If both x ∈ ∠b

a and y ∈ ∠b
a then we say that ∠y

x ⊆ ∠b
a

(if x is located clockwise with respect to y), and so forth.
Many physical systems are modeled by one or more differential equations.

Often the behavior of the system describes the development over time, so that
the independent variable represents the time t.

Definition 1 (Autonomous system). A non-linear planar, autonomous, sys-
tem of first-order ordinary differential equations (ODEs) [5] is a system of the
form

dx

dt
= f(x, y) (1)

dy

dt
= g(x, y). (2)

The functions f and g may be non-linear, but neither depend on the independent
variable t.

The functions f and g from Equations (1) and (2) represent derivatives of x
and y w.r.t. t. The length of that vector gives the rate of change at that point
and thus the vector (f(x, y), g(x, y)) describes the system’s momentary dynamic
at state (x, y). An equilibrium point is a point where the dynamic is the null
vector; a system will remain in an equilibrium point forever.

For reachability, it is relevant only whether, not when, some point is reached.
Thus we can normalize the dynamic as follows:

Definition 2 (Normalization). The normalized dynamics of an autonomous
system S is given by the function h : R2 → R2:

h(x, y) = (f(x, y)/r(x, y), g(x, y)/r(x, y))

where
r(x, y) = (

√
f(x, y)2 + g(x, y)2) .

The function is undefined when both f(x, y) = 0 and g(x, y) = 0. If p = (x, y) is
the input to h, we write ṗ for h(x, y).
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Fig. 1. On the left, the pendulum, with mass m, length l, gravitational acceler-
ation g, angle θ, and angular velocity dθ

dt . In the middle, the phase plane of the
pendulum, with m = 1, c = 2.5, l = 10, g = 10. On the right, a corresponding
GSPDI

Example 1 (Pendulum). The damped pendulum of Fig. 1 can be described by
the second-order ODE

ml2
d2θ2

dt2
+ cl

dθ

dt
+mgl sin θ = 0

where constant c is the magnitude of the damping. Setting x = θ and y = dθ
dt

allows us to transform the equation into the following autonomous system of two
first-order ODEs:

dx

dt
= y , (3)

dy

dt
= − c

ml
y − g

l
sinx . (4)

The associated phase plane is shown in Fig. 1 (middle), for the particular
values m = 1, l = 10, c = 2.5, and g = 10. That is, dx

dt = y, and dy
dt =

−0.25y − sinx and the picture illustrates the vector ṗ = (yi,−0.25yi − sinxi)
for several points (xi, yi). The equilibrium points are clearly visible, at (0, 0) in
the middle and furthermore (−π, 0) and (π, 0) to the left, respectively to the
right. ut

We will not consider reachability for autonomous systems directly, but rather
by abstracting them into a special form of hybrid systems, known as generalized
polygonal hybrid systems [4, 19]. The discretization is given by a finite parti-
tioning of the plane into separate regions, and the behavior inside each region is
governed by a differential inclusion. More specifically, the dynamics is given by
two vectors restricting the direction of the system’s behavior.

Definition 3 (GSPDI). A Generalized Polygonal Hybrid System (GSPDI) is
a pair H = 〈P, F〉, where P is a finite partition of the plane. Each P ∈ P,
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called a region, is a convex polygon with area PA. The union
⋃

P of all regions
is called the domain of the GSPDI and assumed to be a convex polygon of finite
area itself. F is a function associating a pair of vectors to each region, i.e.,
F(P ) = (aP ,bP ). Every point on the plane has its dynamics defined according
to which polygon it belongs to: if p ∈ P , then ṗ ∈ ∠bP

aP
. In the following we

assume all polygons are convex.

A trajectory is a “path” through the state space, given as a function on the
independent variable, which is often interpreted as time. In case of an auton-
mous system, possible trajectories are given by the differential equations; for the
hybrid representation of GSPDIs, trajectories are determined by their direction
of movement, in particular the tangent vector at any point should stay within
the bounding angles (per region).

Definition 4 (Trajectory). Let I = [0, t] be a sub-interval of R≥0 (possibly
identical to R≥0).

1. A trajectory ξ of an autonomous system S, written ξ ∈ S, is an almost-
everywhere differentiable function ξ : I → R2 which solves S for a given
initial condition ξ(t0) = p.

2. A trajectory of a GSPDI H, written ξ ∈ H, is an almost-everywhere differ-
entiable function ξ : I → R2 s.t. the following holds: whenever ξ(t) ∈ P for
some P ∈ P, then its derivative ξ̇(t) ∈ ∠bP

aP
.

We now relate autonomous systems and GSPDIs through an approximation
relation.

Definition 5 (Approximation). A GSPDI H approximates an autonomous
system S (written H ≥ S) if ξ ∈ S implies ξ ∈ H.

Example 2 (Pendulum). Reconsider the damped pendulum from Example 1 given
in Equations (3) and (4). An approximating GSPDI of the pendulum is shown
in Fig. 1 (right). ut

To abstract an autonomous system successfully into a GSPDI, it is crucial to
expect a certain “smoothness” of the behavior. This is formulated as a continuity
condition, stipulating that if two points p and q are located close to each other,
then their dynamics, ṗ and q̇, do not differ too much.

Definition 6 (Lipschitz continuity.). A function f is Lipschitz continuous
(or just Lipschitz, for short) on a polygon P if, for all points p, q ∈ P , there exists
a constant K such that ||ṗ−q̇||||p−q|| ≤ K. The smallest such K is called the Lipschitz
constant of the function f on P . The maximum distance ||p − q|| between any
two points p and q in P , the diameter of P , is denoted diam(P).

In the following we assume that the normalized function h describing the dy-
namics of the system (cf. Definition 2) is Lipschitz continuous on all subsets of
R2 except for arbitrarily small neighborhoods around a finite number of points.
Under this assumption, the partition P of the plane falls into two separate groups
of regions, those which are Lipschitz and those which are not, i.e., P = PL ∪PN .
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3 Refinement algorithm

This section presents the algorithm that over-approximates a given autonomous
system by a GSPDI.

According to Definition 5, a GSPDI approximates the underlying autonomous
system if its trajectories form a superset of the trajectories of the underlying
autonomous system. The following lemma spells out a straightforward condition
that tells us when that approximation holds.

Lemma 1 (Approximation). Let S be an autonomous system with domain
restricted to

⋃
P, and H a GSPDI. If for all trajectories ξ ∈ S and all points

ξ(t) on those trajectories, it is the case that ξ(t) ∈ P and ξ̇(t) ∈ ∠bP
aP

(for some
P ∈ P), then H ≥ S.

Proof. The lemma follows directly from the Definitions 4 and 5. ut

Unavoidably, by going from the autonomous system to the GSPDI, we lose
precision. To determine how good the approximation is we measure the pre-
cision of the approximating GSPDI by considering the angles that bound the
trajectories. More precisely, we use the maximal angle of all the regions of the
GSPDI. Clearly, the smaller that angle, the better the approximation. We use
those angles to order GSPDIs and write H ′ ≤ H (“H ′ refines H” or “H over-
approximates H ′”) for the corresponding order. With regions being convex, an
angle of π or larger does not restrict trajectories at all inside a region. Thus π is
the maximal angle to consider. Definition 8 formalizes the corresponding strict
refinement relation H ′ < H, which treats non-Lipschitz regions specially: In a
non-Lipschitz region, e.g., containing an equilibrium point, one cannot reduce
the bounding angle. The only way to strictly refine the system is to partition
the region into smaller regions.

We define two numerical parameters to measure the precision of a GSPDI,
one using the maximal angle that bounds the behavior in a set X of regions,
which will in general be the Lipschitz regions, PL, and the second one to measure
the relative “weight” of the remaining regions Y , in general all the non-Lipschitz
regions of the system PN , compared to the overall domain. In what follows PA
will denote the area of a region P .

Definition 7 (Measures for precision). Assume an autonomous system S
and a GSPDI H = 〈P,F〉, H ≥ S, and two disjoint sets X,Y such that P =
X ∪ Y .

1. θ(X) is the maximum angle |∠bP
aP
| of all P ∈ X.

2. δ(Y ) is the relative weight of the regions of Y ,
P

P∈Y PA

(∪P)A
.

We can order GSPDIs by how precise they model the system dynamics. A
GSPDI refines another if its partition is more fine-grained and, in particular, the
bounding angles get smaller. For the same reason as in Definition 7, the latter
condition applies for Lipschitz regions, only. In abuse of notation, we use ≤ to
denote the corresponding refinement relation:
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Definition 8 (Refinement). Given two GSPDIs H = 〈P,F〉 and H ′ = 〈P′,F′〉,
H ′ refines H properly, written H ′ < H, if P′ is a sub-partition of P, and fur-
thermore |∠aP ′

bP ′
| < |∠bP

aP
|, where P and P ′ with P ′ ⊆ P are Lipschitz regions for

H, resp. of H ′, i.e., P ∈ PL and P ′ ∈ P′L.

The following lemma states that we can choose our approximating GSPDIs
as precise as we want them.

Lemma 2 (Bounds). Given an autonomous system S, an angle θ with 0 <
θ ≤ π, and a number δ > 0. Then there exists an approximating GSPDI H such
that 1) θ(PL) ≤ θ, and 2) δ(PN ) ≤ δ.

Proof. The lemma imposes two conditions on the precision of H. 1) For the first
one, Definition 6 of Lipschitz continuity gives ||ṗ − q̇|| ≤ K||p − q|| for some
K, for all points p, q ∈ P , and where K is the Lipschitz constant for P . Thus,
||ṗ− q̇|| ≤ K ∗ diam(P). Since there is a one-to-one correspondence between the
distance ||ṗ − q̇|| and the angle |∠q̇ṗ|, we can always partition Q such that all
P ∈ P have a small enough diam(P) such that ||ṗ − q̇|| ≤ K ∗ diam(P) implies
|∠q̇ṗ| ≤ θ.

2) The second condition is a direct consequence of the earlier assumption
that h is Lipschitz on all subsets of R2 except for arbitrarily small neighborhoods
around a finite number of (isolated) points: we can partition Q such that each
region P from PN , the non-Lipschitz regions, contains exactly one such point
and is arbitrarily small, which in turn renders the ratio arbitrarily small. ut

Lemma 2 guarantees that there is always a GSPDI with θ(X) and δ(Y ) arbi-
trarily small, for sets X,Y , trivially by letting PL = X and PN = Y . To actually
arrive at such a GSPDI, one can iteratively partition the domain finer and finer.
For that purpose, we assume a function partition, which when applied to a
partition of Q produces a sub-partition, for instance by splitting one particular
polygon of the current partition. That, of course, leaves open which particular
polygon or polygons are split, i.e., iterating the function partition is non-
deterministic. It should be intuitively clear, that certain strategies for resolving
the non-determinism will not improve the quality of the GSPDI, for instance by
splitting only one half of the domain, but not improving on the other half, leav-
ing the overall precision unchanged. The next lemma states, however, that there
exist strategies of applying partition “smarter” than the one just mentioned,
which eventually lead to partitions such that the corresponding GSPDI is below
any predefined measure of precision.

Lemma 3. Assume an autonomous system S, a polygon Q, an angle θ with
0 < θ ≤ π, and a number δ > 0. Then there exists a strategy to successively
apply the partition function on Q that in a finite number of steps generates
a partition P such that there exists a GSPDI H = 〈P,F〉 with Q as its domain,
and where θ(PL) ≤ θ and δ(PN ) ≤ δ, such that H ≥ S.

Proof. The lemma requires application of partition iteratively such that θ(PL)
and δ(PN ) get smaller than the given upper bounds. This can be guaranteed, if
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Fig. 2. Using partition on a rectangular initial polygon which contains an
equilibrium point e. PN is colored, PL is white.

the strategy assures that all partitions of the domain of H get arbitrarily small
(by Lemma 2). This can be achieved by splitting the polygons “uniformely”, for
instance, by always splitting (one of the) the largest into halves. ut

In order to illustrate how one would realize partition we present an ex-
ample. Here partitioning is done by simply splitting rectangles into two, along
the rectangle’s longest side. In particular the example shows that the number of
non-Lipschitz regions remain constant under the chosen partitioning strategy.

Example 3. Consider an initial rectangle with an equilibrium point e at the exact
center, see Figure 2. By partitioning twice we get four (colored) regions where the
Lipschitz condition does not hold as they all contain e, Figure 2-a). Continuing
to partition colored regions we can get a situation like in Figure 2-b), and later
like in Figure 2-c). ut

Applying the partition function as in (the proof of) the lemma above gives
an algorithm which takes as input an autonomous system S, an initial polygon
Q of finite area as domain of the intended GSPDI, and two bounds Θ and ∆ as
input. The iteration yields as output a partition P which forms part of a GSPDI
H = 〈P; F〉 with H ≥ S and where furthermore P can be divided into two sets,
POK and PBAD , such that θ(POK ) ≤ Θ and δ(PBAD) ≤ ∆ (cf. Algorithm 1).

To maintain the successively finer partitioning of the given domain Q, the
algorithm uses two collections of regions POK and PBAD . As loop invariant of the
central iteration, the union of POK and PBAD is a partition of the initial polygon
Q. The collection POK contains regions P where |∠bP

aP
| is less than or equal to

Θ. The collection PBAD , on the other hand, contains those regions whose angles
are yet to be computed.

The collection PBAD keeps the regions in a queue, which entails a form of
“breadth-first” strategy: during each iteration, the first region P is removed from
the head of the queue. If the corresponding bounding angle is small enough, i.e.,
if |∠bP

aP
| ≤ Θ, then P is considered finished and moved to POK . Otherwise, P is

partitioned, and the subpolygons P1, . . . , Pn are placed at the back of the queue
PBAD . The while loop is executed until the area of PBAD is less than or equal to
the desired threshold, ∆ ∗QA. The return value is the union of POK and PBAD ,
which is a valid partition of Q, satisfying both Θ and ∆.

Note that the algorithm does not compute sets of polygons where underlying
autonomous system is Lipschitz or not. Instead, these properties are implicitly
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Algorithm 1 Construct a GSPDI on polygon Q on the plane, with precision
parameters ∆ and Θ.

Input: Convex polygon Q, ∆ ∈ (0, 1], Θ ∈ (0, π]

Empty queue PBAD , and empty collection POK

PBAD .insert(Q)
while (PBAD)A > ∆ ∗QA do

P := PBAD .remove()
if |∠bP

aP | ≤ Θ then
POK .insert(P )

else
{P1, . . . , Pn} := partition(P )
PBAD .insert(P1, . . . , Pn)

end if
end while
return POK ∪ PBAD

used to allow the computation of two sets POK and PBAD where |∠bP
aP
| ≤ Θ for

all P ∈ POK and where the area of
⋃

PBAD ≤ ∆ ∗ QA (cf. also Definition 7
which gives the measures of precision).

One of the precision measures used in the iteration is the angle which bounds
the dynamics of the system, per partition: For the termination condition of the
refinement process, we rely that for a given polygon P , the minimal bound
can be calculated, i.e., the smallest arc ∠bP

aP
such that ṗ ∈ ∠bP

aP
for all p ∈

P . In the implementation, we use external, numerical routines to implement a
corresponding function getArc that calculates the value of ∠bP

aP
(cf. Section 4

later about the implementation).
By the properties of ∠bP

aP
, i.e., with help of getArc, Algorithm 1 ensures

that all the trajectories of the autonomous system are also trajectories of the
generated approximating GSPDI (Lemma 1), that is the algorithm is sound
It also satisfies that θ(H) ≤ Θ and δ(H) ≤ ∆ (Lemma 3), which guarantees
completeness, and also termination of the algorithm.

Theorem 1. Algorithm 1 is sound, complete, and it terminates.

Proof. The soundness of the algorithm is a direct consequence of the approx-
imation Lemma 1: As an invariant, the domain Q is partitioned into regions
P (split into PBAD and POK ). Initially, the partition consists of one polygon,
Q, and the loop either keeps the partition or refines it by replacing one poly-
gon by sub-polygons. Each iteration/partition corresponds to a GSPDI, which
approximates the autonomous system by Lemma 1.

As for completeness: the algorithm works by successively partitioning the
polygons of PBAD . For each P considered, there are two options: Either |∠bP

aP
| ≤

Θ, in which case it is moved from PBAD to POK , or not.
The question is whether the area of PBAD eventually will be less that ∆∗QA.

By Lemma 3 and its proof we know that our strategy for applying partition
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will generate two sets PL and PN , the area of the latter which can be made
arbitrarily small, and that we can find an arbitrarily small upper bound on the
angle |∠bP

aP
| for each P ∈ PL. So we let Θ be an upper bound of these |∠bP

aP
|,

eventually forcing PBAD ⊆ PN . By having the upper bound of (∪PN )A as ∆∗QA,
we have that θ(POK ) ≤ Θ and δ(PBAD) ≤ δ(PN ) ≤ ∆.

Finally, the algorithm terminates when the area of PBAD is less than ∆ ∗
QA. The proof of completeness shows that this is always possible to achieve. In
addition, Lemma 3 guarantees that there exists as strategy that generates a PN
with a sufficiently small area in a finite number of steps. Such a strategy is used
in the implementation. ut

4 Prototype implementation

The tool GSPeeDI contains an implementation of the results introduced in the
previous section [10]. The tool answers ’maybe’ or ’no’ when asked to investigate
safety properties. Graphics are also produced, and all the figures of GSPDIs in
this paper are screen-shots from the tool. An overview of an older version of the
tool has been published in [11].

A key issue was the implementation of the oracle getArc, which should re-
turn the extremal vectors a and b on polygon P , to create the arc ∠bP

aP
. We

extracted the angle of a vector by using the function atan2, which is commonly
implemented in many programming languages. It gives the angle of a vector with
respect to the vector (1, 0) in the interval (−π, π]. Since there is a discontinu-
ity at the point (−1, 0) we also used the function atan2b which gives the same
angle, though in the interval [0, 2π). Extremal vectors were thus obtained by
maximizing and minimizing atan2, alternatively atan2b.

Note that due to the experimental nature of the prototype it does not strictly
enforce the conservativeness of the theory presented in the previous sections. We
used external, numerical routines for finding the extremal values of these two
functions from the extensive Python scientific library Scipy [1]. This library
includes a implementation of the limited memory Broyden-Fletcher-Goldfarb-
Shanno method with bounds (L-BFGS-B) for non-linear optimization [24]. The
bounds in question are box-constraints, which restrict us to rectangular regions.

The empirical results appear correct, as illustrated in figures 3 and 4, but
an implementation that guarantees conservative answers should include global
optimization methods [23].

A very real scenario when using optimization tools of any kind is that they
may fail, depending on starting points, constraints, or the function to be opti-
mized. The ratio of such failures, and their consequences, obviously determines
the usability of the tool.

In the event of failure, we also implemented a backup routine that produced
arcs that preserved the soundness of Algorithm 1. If that also fails we ultimately
give up and declare the offending region to be reach-all.5 We included a cut-off

5 A reach-all region is one where every point is reachable from any other point.
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Fig. 3. Reach-set for van der Pol equation with Θ = 0.45 and ∆ = 5%. The
parameter µ = 1.5.

parameter to the algorithm implementation to ensure termination, should such
failures should prove abundant.

The implementation was restricted to produce only rectangular regions, and
the partition function is realized as simply splitting a rectangle P with length
l and width w, l ≥ w, into two rectangles with length l/2 and width w.

We are interested in assessing the performance of the prototype when applied
to real non-linear autonomous systems, as means to decide whether to write a
full, conservative implementation of the theory, and so we have performed some
case studies.

4.1 Case studies

We present results produced by our prototype when used on models of the
damped pendulum (cf. Example 1) and the van der Pol oscillator.

Example 4. The equation of the van der Pol oscillator [6], are used in electrical
engineering, neurology, and seismology. The second-order ODE

x′′(t) = −µ(x(t)− 1)x′(t)− x(t)

can be transformed into a first-order non-linear autonomous system:

x′(t) = y(t)

y′(t) = −µ(x(t)− 1)y(t)− x(t).

The above equation, where the positive constant µ represents the amount
of damping in the system, is interesting because it includes a limit cycle: All
trajectories in the system converge towards that cycle.

We executed our tool on a laptop with a 1.33 Ghz Intel Atom processor,
generating GSPDIs with different values of Θ and ∆, with initial area Q =
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System Θ ∆ Refinement Graph building Reach set Remark

Pendulum 0.125 20% 403s 90s 62s
Pendulum 0.2 2.5% 298s 69s 41s Fig. 4
Pendulum 0.5 5% 10s 12s 6s Fig. 4
Pendulum 0.5 0.1% 33s 28s 58s
Van der Pol 0.45 5% 36s 32s 485s Fig. 3
Van der Pol 0.75 5% 12s 17s 2s

Table 1. Results obtained by running GSPeeDI on the damped pendulum and
the van der Pol oscillator with different precision parameters.

[−4, 4]× [−4, 4]. The results are shown in table 1. Also, some results are shown
graphically in figures 3 and 4. The desired ∆ was attained in all cases. Not
shown in the table are the results we got concerning the failure ratio of the
getArc function: For the van der Pol system it failed only on the initial rectangle
Q, and for the pendulum only on Q and the two rectangles Q was split into,
independently of ∆ or Θ. We did not observe any failures of the backup routine.

5 Related work

In this section we briefly survey related work, both with respect to our theoretical
development as well as to our implementation.

5.1 Refinement

The idea of over-approximating systems having complex, often non-linear, dy-
namics by systems with simpler dynamics in order to investigate safety properties
is not novel, and neither is the technique of creating finer and finer partitions
to verify safety properties [14]. Our approach aims at a fully automated process
to answer the reachability question for any non-pathological planar autonomous
system by working on adjusting the precision up to a desirable level.

Defining an upper limit on the approximation error (the Θ parameter in
our approach) is quite standard and used in many other approaches. However,
for non-linear dynamics using only this upper limit is not enough as we cannot
guarantee that |∠bP

aP
| ≤ Θ for non-Lipschitz regions P . The ∆ parameter is used

to put an upper limit to the area of these regions.
We presently consider the autonomous systems as ‘black boxes’ that are

fed to the optimization software, while other related works (e.g., [16, 14, 17])
require manual analysis to find good partitions. Automatic partitioning has been
implemented in [8], but not for systems with non-linear dynamics.

5.2 Approximation

As mentioned above the purpose of refinement is to replace complex, possibly
non-linear, dynamics with simpler yet less precise dynamics. This can be done
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Fig. 4. Pendulum example: Above a coarse GSPDI and reach-set with parame-
ters Θ = 0.5 and ∆ = 5%, and below a finer GSPDI with parameters Θ = 0.2
and ∆ = 2.5%.

by techniques such as rate translation [14], the result of which is a rectangular
hybrid automata [8], or linear phase-portrait approximation, generating linear
hybrid automata [15]. In both cases the method and resulting approximation
are motivated by what automata are accepted by their tools, Hytech [12], and
PHAVer [9], respectively. This is also true for our work: we produce approxima-
tions in the form of constant differential inclusions (GSPDIs), which can then be
analyzed using our tool GSPeeDI [11]. Our method, realized through the getArc
function, is optimal for any given region provided the external routines succeed
in finding the extremal vectors of the function h.

5.3 Comparison with other tools

Known tools that do not directly analyze non-linear autonomous systems (au-
tomatically) are HyTech [12], based on linear hybrid automata [13], PHAVer
[9], that approximates piece-wise affine dynamics into polyhedral automata, and
d/dt [3], which is based on linear differential inclusions. A comparable tool is
HSolver [21], which can analyze systems with non-linear dynamics (based on
interval constraint propagation). HSolver is based on RSolver, a program for
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solving quantified inequality constraints [20], which guarantees conservative re-
sults.

We have formulated and run HSolver on the examples mentioned earlier, the
damped pendulum, and the van der Pol equation. While our prototype shows
promising results in terms of execution time, we will postpone any discussion of
this until we have a conservative implementation.

6 Conclusion

In this paper we presented an approach for reachability for non-linear planar
autonomous systems by hybridizing the system into a GSPDI using abstraction
refinement.

Exploiting Lipschitz continuity for reachability checking and simulation is
not new in itself. It is for instance inherent in the hybridization approach of
[2], and is also used for hybrid computation [7]. A main difference is that we
consider systems that may be Lipschitz continuous only in parts of the plane. A
Lipschitz continuous system has an upper bound, the Lipschitz constant, on how
fast the system’s dynamics changes. We exploit the phenomenon that a system
may be Lipschitz continuous almost everywhere, and have different Lipschitz
constants for different areas of the plane. We minimize the area where the system
is not Lipschitz continuous, and treat areas where the Lipschitz constant is large
more thoroughly than areas where it is small, to get as good an approximation
as possible. This comes with a computational price, as we must identify the
Lipschitz constant for each area we consider, using non-linear optimization tools.
We need, however, to identify these areas only once, and then we can perform
multiple reachability computations based without needing to perform the task
again.

Approximation of complex, possibly non-linear, dynamics by simpler, yet
less precise, dynamics is a well-studied field [14, 16, 8]. Our work demonstrates a
strategy by which, using optimizations tools, we can automate the approximation
of non-linear dynamics, using an optimal approximation for GSPDIs.

We are currently working on a conservative implementation based on the
current prototype. In the future, also we intend to expand the class of systems
that can be analyzed by GSPDIs. Our approach may be used to approximate
differential inclusions and switched continuous systems [22], as well. Applying
the techniques on more general systems with an arbitrary numbers of variables,
different modes, jumps, etc., is also an interesting topic, despite that this will
cause loss of decidability in the approximated system. In addition, since we
now are able to create GSPDIs with a large number of regions, we will work in
improving the tool’s performance and furthermore incorporate the theoretical
improvements investigated in [18].
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