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Abstract. Polygonal hybrid systems (SPDI) are a subclass of planar
hybrid automata which can be represented by piecewise constant differ-
ential inclusions. The reachability problem as well as the computation of
certain objects of the phase portrait, namely the viability, controllability
and invariance kernels, for such systems is decidable. In this paper we
show how to compute another object of an SPDI phase portrait, namely
semi-separatrix curves and show how the phase portrait can be used for
reducing the state-space for optimizing the reachability analysis.

1 Introduction

Hybrid systems combining discrete and continuous dynamics arise as mathe-
matical models of various artificial and natural systems, and as approximations
to complex continuous systems. They have been used in various domains, in-
cluding avionics, robotics and bioinformatics. Reachability analysis has been the
principal research question in the verification of hybrid systems, even if it is
a well-known result that for most subclasses of hybrid systems most verifica-
tion questions are undecidable. Various decidable subclasses have, subsequently,
been identified, including timed [AD94] and rectangular automata [HKPV95],
hybrid automata with linear vector fields [LPY01], piecewise constant derivative
systems (PCDs) [MP93] and polygonal hybrid systems (SPDIs) [ASY01].

Compared to reachability verification, qualitative analysis of hybrid systems
is a relatively neglected area [ALQ+01b, DV95, MS00, SP02, SJSL00]. Typical
qualitative questions include: ‘Are there ‘sink’ regions where a trajectory can
never leave once it enters the region?’ and ‘Are there regions in which every
point in the region is reachable from every other?’. The collection of objects in
a system satisfying these properties is called the phase portrait of the system.

Defining and constructing phase portraits of hybrid systems has been directly
addressed for PCDs in [MS00], and for SPDIs in [ASY02]. Given a cycle on a
SPDI, the viability kernel is the largest set of points in the cycle which may loop
forever within the cycle. The controllability kernel is the largest set of strongly
connected points in the cycle (such that any point in the set may be reached from
any other). An invariant set is a set of points such that each point must keep
rotating within the set forever, and the invariance kernel is the largest such set.
Algorithms for computing these kernels have been presented in [ASY02, Sch04]
and implemented in the tool set SPeeDI+[PS].
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Fig. 1. (a) An SPDI and its trajectory segment; (b) Reachability analysis

The contribution of this paper is threefold. We start by introducing a new
element of the phase portrait of SPDIs, semi-separatrix curves, and give an
algorithm to compute them. Separatrices are convex polygons dissecting the
plane into two mutually non-reachable subsets. We then show how the kernels
can be used to answer reachability questions directly. We also show how semi-
separatrices can be used to optimize the reachability algorithm for SPDIs by
reducing the number of states of the SPDI graph. The optimization is based on
topological properties of the plane (and in particular, those of SPDIs).

2 Theoretical Background

We summarize here the main definitions and results about SPDIs; for a more
detailed description refer to [Sch02]. A (positive) affine function f : R → R is
such that f(x) = ax + b with a > 0. An affine multivalued function F : R →
2R, denoted F = 〈fl, fu〉, is defined by F (x) = 〈fl(x), fu(x)〉 where fl and fu

are affine and 〈·, ·〉 denotes an interval. For notational convenience, we do not
make explicit whether intervals are open, closed, left-open or right-open, unless
required for comprehension. For an interval I = 〈l, u〉 we have that F (〈l, u〉) =
〈fl(l), fu(u)〉. The inverse of F is defined by F−1(x) = {y | x ∈ F (y)}. The
universal inverse of F is defined by F̃−1(I) = I ′ where I ′ is the greatest non-
empty interval satisfying ∀x ∈ I ′ · F (x) ⊆ I.

Clearly, F−1 = 〈f−1
u , f−1

l 〉 and F̃−1 = 〈f−1
l , f−1

u 〉, provided that 〈f−1
l , f−1

u 〉
�= ∅.

A truncated affine multivalued function (TAMF) F : R → 2R is defined by
an affine multivalued function F and intervals S ⊆ R

+ and J ⊆ R
+ as follows:

F(x) = F (x) ∩ J if x ∈ S, otherwise F(x) = ∅. For convenience we write
F(x) = F ({x} ∩ S) ∩ J . For an interval I, F(I) = F (I ∩ S) ∩ J and F−1(I) =
F−1(I ∩J)∩S. The universal inverse of F is defined by F̃−1(I) = I ′ if and only
if I ′ is the greatest non-empty interval such that for all x ∈ I ′, F (x) ⊆ I and
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F (x) = F(x). We say that F is normalized if S = Dom(F) = {x | F (x)∩J �= ∅}
(thus, S ⊆ F−1(J)) and J = Im(F) = F(S).

It can be proved [ASY01], that TAMFs are closed under composition.

Theorem 1. The composition of two TAMFs F1(I) = F1(I ∩ S1) ∩ J1 and
F2(I) = F2(I ∩S2)∩J2, is the TAMF (F2 ◦F1)(I) = F(I) = F (I ∩S)∩J , where
F = F2 ◦ F1, S = S1 ∩ F−1

1 (J1 ∩ S2) and J = J2 ∩ F2(J1 ∩ S2). �


2.1 SPDIs

An angle ∠b
a on the plane, defined by two non-zero vectors a,b, is the set of all

positive linear combinations x = α a + β b, with α, β ≥ 0, and α + β > 0. We
will assume that b is situated in the counter-clockwise direction from a.

A polygonal hybrid system1 (SPDI) is a finite partition P of the plane into
convex polygonal sets, such that for each P ∈ P we have two vectors aP and bP .
Let φ(P ) = ∠bP

aP
. The SPDI is determined by ẋ ∈ φ(P ) for x ∈ P .

Let E(P ) be the set of edges of P . We say that e is an entry of P if for all
x ∈ e and for all c ∈ φ(P ), x + cε ∈ P for some ε > 0. We say that e is an exit
of P if the same condition holds for some ε < 0. We denote by in(P ) ⊆ E(P )
the set of all entries of P and by out(P ) ⊆ E(P ) the set of all exits of P .

Assumption 1. All the edges in E(P ) are either entries or exits, that is, E(P )
= in(P ) ∪ out(P ).

Reachability for SPDIs is decidable provided the above assumption holds
[ASY01]; without such assumption it is not know whether reachability is de-
cidable.

A trajectory segment of an SPDI is a continuous function ξ : [0, T ] → R
2

which is smooth everywhere except in a discrete set of points, and such that for
all t ∈ [0, T ], if ξ(t) ∈ P and ξ̇(t) is defined then ξ̇(t) ∈ φ(P ). The signature,
denoted Sig(ξ), is the ordered sequence of edges traversed by the trajectory
segment, that is, e1, e2, . . ., where ξ(ti) ∈ ei and ti < ti+1. If T = ∞, a trajectory
segment is called a trajectory.

Example 1. Consider the SPDI illustrated in Fig. 1-(a). For sake of simplicity
we will only show the dynamics associated to regions R1 to R6 in the picture.
For each region Ri, 1 ≤ i ≤ 6, there is a pair of vectors (ai,bi), where: a1 =
(45, 100),b1 = (1, 4), a2 = b2 = (1, 10), a3 = b3 = (−2, 3), a4 = b4 = (−2, −3),
a5 = b5 = (1, −15), a6 = (1, −2),b6 = (1, −1). A trajectory segment starting
on interval I ⊂ e0 and finishing in interval I ′ ⊆ e4 is depicted.

We say that a signature σ is feasible if and only if there exists a trajectory
segment ξ with signature σ, i.e., Sig(ξ) = σ. From this definition, it immediately
follows that extending an unfeasible signature can never make it feasible:

1 In the literature the names polygonal differential inclusion and simple planar differ-
ential inclusion have been used to describe the same systems.
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Proposition 1. If a signature σ is not feasible, then neither is any extension
of the signature — for any signatures σ′ and σ′′, the signature σ′σσ′′ is not
feasible. �


Given an SPDI S, let E be the set of edges of S, then we can define a graph GS
where nodes correspond to edges of S and such that there exists an arc from one
node to another if there exists a trajectory segment from the first edge to the
second one without traversing any other edge. More formally: Given an SPDI S,
the underlying graph of S (or simply the graph of S), is a graph GS = (NG , AG),
with NG = E and AG = {(e, e′) | ∃ξ, t . ξ(0) ∈ e ∧ ξ(t) ∈ e′ ∧ Sig(ξ) = ee′}. We
say that a sequence e0e1 . . . ek of nodes in GS is a path whenever (ei, ei+1) ∈ AG
for 0 ≤ i ≤ k − 1.

The following lemma shows the relation between edge signatures in an SPDI
and paths in its corresponding graph.

Lemma 1. If ξ is a trajectory segment of S with edge signature Sig(ξ) = σ =
e0 . . . ep, it follows that σ is a path in GS . �


Note that the converse of the above lemma is not true in general. It is possible
to find a counter-example where there exists a path from node e to e′, but no
trajectory from edge e to edge e′ in the SPDI.

2.2 Successors and Predecessors

Given an SPDI, we fix a one-dimensional coordinate system on each edge to
represent points laying on edges [ASY01]. For notational convenience, we in-
distinctly use letter e to denote the edge or its one-dimensional representation.
Accordingly, we write x ∈ e or x ∈ e, to mean “point x in edge e with coordi-
nate x in the one-dimensional coordinate system of e”. The same convention is
applied to sets of points of e represented as intervals (e.g., x ∈ I or x ∈ I, where
I ⊆ e) and to trajectories (e.g., “ξ starting in x” or “ξ starting in x”).

Now, let P ∈ P, e ∈ in(P ) and e′ ∈ out(P ). For I ⊆ e, Succe,e′ (I) is the
set of all points in e′ reachable from some point in I by a trajectory segment
ξ : [0, t] → R

2 in P (i.e., ξ(0) ∈ I ∧ ξ(t) ∈ e′ ∧ Sig(ξ) = ee′). Succe,e′ is a TAMF
[ASY01].

Example 2. Let e1, . . . , e6 be as in Fig. 1-(a), where all the edges have local
coordinates over [0, 10], and I = [l, u]. We assume a one-dimensional coordinate
system. We show only the first and last edge-to-edge TAMF of the cycle:

Fe1e2 (I) =
[

l
4 , 9

20u
]
, S1 = [0, 10] , J1 =

[
0, 9

2

]

Fe6e1 (I) = [l, 2u] , S6 = [0, 10] , J6 = [0, 10]

with Succeiei+1(I) = Feiei+1(I ∩ Si) ∩ Ji, for 1 ≤ i ≤ 6; Si and Ji are computed
as shown in Theorem 1.

Given a sequence w = e1, e2, . . . , en, since TAMFs are closed under composition,
the successor of I along w, defined as Succw(I) = Succen−1,en ◦ . . . ◦Succe1,e2(I),
is a TAMF.
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Example 3. Let σ = e1 · · · e6e1. We have that Succσ(I) = F (I ∩Sσ)∩Jσ, where:
F (I) = [ l

4 + 1
3 , 9

10u + 2
3 ], with Sσ = [0, 10] and Jσ = [13 , 29

3 ].

For I ⊆ e′, Pree,e′ (I) is the set of points in e that can reach a point in I by a
trajectory segment in P . The ∀-predecessor P̃re(I) is defined in a similar way
to Pre(I) using the universal inverse instead of just the inverse: For I ⊆ e′,
P̃reee′ (I) is the set of points in e such that any successor of such points are in I
by a trajectory segment in P . Both definitions can be extended straightforwardly
to signatures σ = e1 · · · en: Preσ(I) and P̃reσ(I). The successor operator thus has
two “inverse” operators.

2.3 Qualitative Analysis of Simple Edge-Cycles

Let σ = e1 · · · eke1 be a simple edge-cycle, i.e., ei �= ej for all 1 ≤ i �= j ≤ k. Let
Succσ(I) = F (I∩Sσ)∩Jσ with F = 〈fl, fu〉 (we suppose that this representation
is normalized). We denote by Dσ the one-dimensional discrete-time dynamical
system defined by Succσ, that is xn+1 ∈ Succσ(xn).

Assumption 2. None of the two functions fl, fu is the identity.

Without the above assumption the results are still valid but need a special
treatment making the presentation more complicated.

Let l∗ and u∗ be the fixpoints2 of fl and fu, respectively, and Sσ∩Jσ = 〈L, U〉.
A simple cycle is of one of the following types [ASY01]: STAY, the cycle is
not abandoned neither by the leftmost nor the rightmost trajectory, that is,
L ≤ l∗ ≤ u∗ ≤ U ; DIE, the rightmost trajectory exits the cycle through the left
(consequently the leftmost one also exits) or the leftmost trajectory exits the
cycle through the right (consequently the rightmost one also exits), that is, u∗ <
L∨ l∗ > U ; EXIT-BOTH, the leftmost trajectory exits the cycle through the left
and the rightmost one through the right, that is, l∗ < L∧u∗ > U ; EXIT-LEFT,
the leftmost trajectory exits the cycle (through the left) but the rightmost one
stays inside, that is, l∗ < L ≤ u∗ ≤ U ; EXIT-RIGHT, the rightmost trajectory
exits the cycle (through the right) but the leftmost one stays inside, that is,
L ≤ l∗ ≤ U < u∗.

Example 4. Let σ = e1 · · · e6e1. Then, Sσ ∩ Jσ = 〈L, U〉 = [13 , 29
3 ]. The fixpoints

from Example 3 are 1
3 < l∗ = 11

25 < u∗ = 20
3 < 29

3 . Thus, σ is a STAY.

Any trajectory that enters a cycle of type DIE will eventually quit it after a
finite number of turns. If the cycle is of type STAY, all trajectories that happen
to enter it will keep turning inside it forever. In all other cases, some trajectories
will turn for a while and then exit, and others will continue turning forever. This
information is crucial for proving decidability of the reachability problem.

Example 5. Consider the SPDI of Fig. 1-(a). Fig. 1-(b) shows part of the reach
set of the interval [8, 10] ⊂ e0, answering positively to the reachability question:
2 The fixpoint x∗ is the solution of f(x∗) = x∗, where f(·) is positive affine.
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Is [1, 2] ⊂ e4 reachable from [8, 10] ⊂ e0? Fig. 1-(b) has been automatically
generated by the SPeeDI toolbox we have developed for reachability analysis of
SPDIs [APSY02].

2.4 Kernels

We present now how to compute the invariance, controllability and viability
kernels of an SPDI. Proofs are omitted but for further details, refer to [ASY02]
and [Sch04]. In the following, for σ a cyclic signature, we define Kσ ⊆ R

2 as
follows: Kσ =

⋃k
i=1(int(Pi)∪ei) where Pi is such that ei−1 ∈ in(Pi), ei ∈ out(Pi)

and int(Pi) is Pi’s interior.

Viability Kernel. We now recall the definition of viability kernel [Aub01]. A
trajectory ξ is viable in K if ξ(t) ∈ K for all t ≥ 0. K is a viability domain if
for every x ∈ K, there exists at least one trajectory ξ, with ξ(0) = x, which is
viable in K. The viability kernel of K, denoted Viab(K), is the largest viability
domain contained in K.

For I ⊆ e1 we define Preσ(I) to be the set of all x ∈ R
2 for which there exists a

trajectory segment ξ starting in x, that reaches some point in I, such that Sig(ξ)
is a suffix of e2 . . . eke1. It is easy to see that Preσ(I) is a polygonal subset of the
plane which can be calculated using the following procedure. We start by defining
Pree(I) = {x | ∃ξ : [0, t] → R

2, t > 0 . ξ(0) = x∧ξ(t) ∈ I ∧Sig(ξ) = e} and apply
this operation k times: Preσ(I) =

⋃k
i=1 Preei(Ii) with I1 = I, Ik = Preek,e1(I1)

and Ii = Preei,ei+1(Ii+1), for 2 ≤ i ≤ k − 1.
The following result provides a non-iterative algorithmic procedure for com-

puting the viability kernel of Kσ on an SPDI:

Theorem 2. If σ is DIE, Viab(Kσ) = ∅, otherwise Viab(Kσ) = Preσ(Sσ). �


Example 6. Fig. 2-(a) shows all the viability kernels of the SPDI given in Ex-
ample 1. There are 4 cycles with viability kernels — in the picture two of the
kernels are overlapping.

Controllability Kernel. We say K is controllable if for any two points x
and y in K there exists a trajectory segment ξ starting in x that reaches an
arbitrarily small neighborhood of y without leaving K. More formally: A set K
is controllable if ∀x,y ∈ K, ∀δ > 0, ∃ξ : [0, t] → R

2, t > 0 . (ξ(0) = x∧|ξ(t)−y| <
δ ∧ ∀t′ ∈ [0, t] . ξ(t′) ∈ K). The controllability kernel of K, denoted Cntr(K), is
the largest controllable subset of K.

For a given cyclic signature σ, we define CD(σ) as follows:

CD(σ) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

〈L, U〉 if σ is EXIT-BOTH
〈L, u∗〉 if σ is EXIT-LEFT
〈l∗, U〉 if σ is EXIT-RIGHT
〈l∗, u∗〉 if σ is STAY
∅ if σ is DIE

(1)
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(a) (b)

Fig. 2. (a) Viability kernels; (b) Controllability kernels

For I ⊆ e1 let us define Succσ(I) as the set of all points y ∈ R
2 for which

there exists a trajectory segment ξ starting in some point x ∈ I, that reaches
y, such that Sig(ξ) is a prefix of e1 . . . ek. The successor Succσ(I) is a polygonal
subset of the plane which can be computed similarly to Preσ(I). Define C(σ) =
(Succσ ∩ Preσ)(CD(σ)). We compute the controllability kernel of Kσ as follows:

Theorem 3. Cntr(Kσ) = C(σ). �


Example 7. Fig. 2-(b) shows all the controllability kernels of the SPDI given in
Example 1. There are 4 cycles with controllability kernels — in the picture two
of the kernels are overlapping.

The following result which relates controllability and viability kernels, states
that the viability kernel of a given cycle is the local basin of attraction of the
corresponding controllability kernel.

Proposition 2. Any viable trajectory in Kσ converges to Cntr(Kσ). �


Let Cntrl(Kσ) be the closed curve obtained by taking the leftmost trajectory
and Cntru(Kσ) be the closed curve obtained by taking the rightmost trajectory
which can remain inside the controllability kernel. In other words, Cntrl(Kσ)
and Cntru(Kσ) are the two polygons defining the controllability kernel.

A non-empty controllability kernel Cntr(Kσ) of a given cyclic signature σ
partitions the plane into three disjoint subsets: (1) the controllability kernel
itself, (2) the set of points limited by Cntrl(Kσ) (and not including Cntrl(Kσ))
and (3) the set of points limited by Cntru(Kσ) (and not including Cntru(Kσ)). We
define the inner of Cntr(Kσ) (denoted by Cntrin(Kσ)) to be the subset defined
by (2) above if the cycle is counter-clockwise or to be the subset defined by (3)
if it is clockwise. The outer of Cntr(Kσ) (denoted by Cntrout(Kσ)) is defined to
be the subset which is not the inner nor the controllability itself. Note that an
edge in the SPDI may intersect a controllability kernel. In such cases, we can
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generate a different SPDI, with the same dynamics but with the edge split into
parts, such that each part is completely inside, on or outside the kernel. Although
the signatures will obviously change, it is easy to prove that the behaviour of the
SPDI remains identical to the original. In the rest of the paper, we will assume
that all edges are either completely inside, on or completely outside the kernels.
We note that in practice splitting is not necessary since we can just consider
parts of edges.

Proposition 3. Given two edges e and e′, one lying completely inside a con-
trollability kernel, and the other outside or on the same controllability kernel,
such that ee′ is feasible, then there exists a point on the controllability kernel,
which is reachable from e and from which e′ is reachable. �


Invariance Kernel. In general, an invariant set is a set of points such that for
any point in the set, every trajectory starting in such point remains in the set
forever and the invariance kernel is the largest of such sets. In particular, for
an SPDI, given a cyclic signature, an invariant set is a set of points which keep
rotating in the cycle forever and the invariance kernel is the largest of such sets.
More formally: A set K is said to be invariant if for any x ∈ K there exists at
least one trajectory starting in it and every trajectory starting in x is viable in
K. Given a set K, its largest invariant subset is called the invariance kernel of K
and is denoted by Inv(K). We need some preliminary definitions before showing
how to compute the kernel. The extended ∀-predecessor of an output edge e of
a region R is the set of points in R such that every trajectory segment starting
in such point reaches e without traversing any other edge. More formally, let
R be a region and e be an edge in out(R), then the e-extended ∀-predecessor

of I, P̃ree(I) is defined as: P̃ree(I) = {x | ∀ξ . (ξ(0) = x ⇒ ∃t ≥ 0 . (ξ(t) ∈
I ∧ Sig(ξ[0, t]) = e))}. It is easy to see that P̃reσ(I) is a polygonal subset of
the plane which can be calculated using a similar procedure as for Preσ(I). We
compute the invariance kernel of Kσ as follows:

Theorem 4. If σ is STAY then Inv(Kσ) = P̃reσ(P̃reσ(Jσ)), otherwise it is ∅.
�


Example 8. Fig. 3-(a) shows the unique invariance kernel of the SPDI given in
Example 1.

An interesting property of invariance kernels is that the limits are included in
the invariance kernel, i.e. [l∗, u∗] ⊆ Inv(Kσ). In other words:

Proposition 4. The set delimited by the polygons defined by the interval [l∗, u∗]
is an invariance set of STAY cycles. �


The following result relates controllability and invariance kernels.

Proposition 5. If σ is STAY then Cntr(Kσ) ⊆ Inv(Kσ). �
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(a) (b)

Fig. 3. (a) Invariance kernel; (b) All the kernels

Example 9. Fig. 3-(b) shows the viability, controllability and invariance kernels
of the SPDI given in Example 1. For any point in the viability kernel of a cycle
there exists a trajectory which will converge to its controllability kernel (propo-
sition 2). It is possible to see in the picture that Cntr(·) ⊂ Inv(.) (proposition 5).
All the above pictures has been obtained with the toolbox SPeeDI+ [PS].

In a similar way as for the controllability kernel, we define Invl(Kσ) and Invu(Kσ).

3 Semi-separatrix Curves

In this section we define the notion of separatrix curves, which are curves dis-
secting the plane into two mutually non-reachable subsets, and semi-separatrix
curves which can only be crossed in one direction. All the proofs of this and
forthcoming sections may be found in [PS06]. We start by defining these notions
independently of SPDIs.

Definition 1. Let K ⊆ R
2. A separatrix in K is a closed curve γ partitioning

K into three sets KA, KB and γ itself, such that KA, KB and γ are pairwise
disjoint, K = KA ∪ KB ∪ γ and the following conditions hold: (1) For any point
x0 ∈ KA and trajectory ξ, with ξ(0) = x0, there is no t such that ξ(t) ∈ KB;
and (2) For any point x0 ∈ KB and trajectory ξ, with ξ(0) = x0, there is no t
such that ξ(t) ∈ KA. If only one of the above conditions holds then we say that
the curve is a semi-separatrix. If only condition 1 holds, then we say that KA

is the inner of γ (written γin) and KB is the outer of γ (written γout). If only
condition 2 holds, KB is the inner and KA is the outer of γ.

Notice that, as in the case of the controllability kernel, an edge of the SPDI
may be split into two by a semi-separatrix — part inside, and part outside. As
before, we can split the edge into parts, such that each part is completely inside,
or completely outside the semi-separatrix.
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The above notions are extended to SPDIs straightforwardly. The set of all the
separatrices of an SPDI S is denoted by Sep(S), or simply Sep.

Now, let σ = e1 . . . ene1 be a simple cycle, ∠bi
ai

(1 ≤ i ≤ n) be the dynamics
of the regions for which ei is an entry edge and I = [l, u] an interval on edge e1.
Remember that Succe1e2(I) = F (I ∩S1)∩J1, where F (x) = [a1x+ b1, a2x+ b2].
Let l be the vector corresponding to the point on e1 with local coordinates l
and l′ be the vector corresponding to the point on e2 with local coordinates F (l)
(similarly, we define u and u′ for F (u)). We define first Succ

b1

e1
(I) = {l+α(l′−l) |

0 < α < 1} and Succ
a1

e1
(I) = {u + α(u′ − u) | 0 < α < 1}. We extend these

definitions in a straight way to any (cyclic) signature σ = e1 . . . ene1, denoting
them by Succ

b
σ(I) and Succ

a
σ(I), respectively; we can compute them similarly as

for Pre. Whenever applied to the fixpoint I∗ = [l∗, u∗], we denote Succ
b
σ(I∗) and

Succ
a
σ(I∗) by ξl

σ and ξu
σ respectively. Intuitively, ξl

σ (ξu
σ) denotes the piece-wise

affine closed curve defined by the leftmost (rightmost) fixpoint l∗ (u∗).
We show now how to identify semi-separatrices for simple cycles.

Theorem 5. Given an SPDI, let σ be a simple cycle, then the following hold:

1. If σ is EXIT-RIGHT then ξl
σ is a semi-separatrix curve (filtering trajectories

from “left” to “right”);
2. If σ is EXIT-LEFT then ξu

σ is a semi-separatrix curve (filtering trajectories
from “right” to “left”);

3. If σ is STAY, then the two polygons defining the invariance kernel (Invl(Kσ)
and Invu(Kσ)), are semi-separatrices. �


In the case of STAY cycles, ξl
σ and ξu

σ are also semi-separatrices. Notice that
in the above result, computing a semi-separatrix depends only on one simple
cycle, and the corresponding algorithm is then reduced to find simple cycles in
the SPDI and checking whether it is STAY, EXIT-RIGHT or EXIT-LEFT. DIE
cycles induce an infinite number of semi-separatrices and are not treated in this
setting.

Example 10. Fig. 4 shows all the semi-separatrices of the SPDI given in Ex-
ample 1, obtained as shown in Theorem 5. The small arrows traversing the
semi-separatrices show the inner and outer of each semi-separatrix: a trajectory
may traverse the semi-separatrix following the direction of the arrow, but not
vice-versa.

The following two results relate feasible signatures and semi-separatrices.

Proposition 6. If, for some semi-separatrix γ, e ∈ γin and e′ ∈ γout, then the
signature ee′ is not feasible. �


Proposition 7. If, for some semi-separatrix γ, and signature σ (of at least
length 2), then, if head(σ) ∈ γin and last(σ) ∈ γout, σ is not feasible. �
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Fig. 4. Semi-separatrices

4 State-Space Reduction Using Semi-separatrices

Semi-separatrices partition the state space into two parts3 – once one crosses such
a border, all states outside the region can be ignored. We present a technique,
which, given an SPDI and a reachability question, enables us to discard portions
of the state space based on this information. The approach is based on identifying
inert states (edges in the SPDI) not playing a role in the reachability analysis.

Definition 2. Given an SPDI S, a semi-separatrix γ ∈ Sep, a source edge e0
and a destination edge e1, an edge e is said to be inert if it lies outside the
semi-separatrix while e0 lies inside, or it lies inside, while e1 lies outside:

inertγe0→e1 = {e : E | e0 ∈ γin ∧ e ∈ γout} ∪ {e : E | e1 ∈ γout ∧ e ∈ γin}.

We can prove that these inert edges can never appear in a feasible signature:

Lemma 2. Given an SPDI S, a semi-separatrix γ, a source edge e0 and a desti-
nation edge e1, and a feasible signature e0σe1 in S. No inert edge from inertγe0→e1
may appear in e0σe1. �


Given an SPDI, we can reduce the state space by discarding inert edges.

Definition 3. Given an SPDI S, a semi-separatrix γ, a source edge e0 and a
destination edge e1, we define the reduced SPDI Sγ

e0→e1 to be the same as S but
without the inert edges.

Clearly, the resulting SPDI is not bigger than the original one. Finally, we prove
that checking reachability on the reduced SPDI is equivalent to checking reach-
ability on the original SPDI:

3 Here, we do not consider the semi-separatrix itself.
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Fig. 5. Reduction using semi-separatrices

Theorem 6. Given an SPDI S, a semi-separatrix γ, and edges e0 and e1, then,
e1 is reachable from e0 in S if and only if e1 is reachable from e0 in Sγ

e0→e1. �


We have shown, that once semi-separatrices are identified, given a reachability
question, we can reduce the size of the SPDI to be verified by removing inert
edges of all the known semi-separatrices.

Example 11. The shaded areas of Fig. 5 (a) and (b) are examples of subsets of
the SPDI edges of the reachability graph, eliminated by the reduction presented
in this section applied to all semi-separatrices, when answering reachability ques-
tions (in this case to the question: Is I ′ reachable from I?).

This result enables us to verify SPDIs much more efficiently. It is important to
note that model-checking an SPDI requires identification of simple loops, which
means that the calculation of the semi-separatrices is not more expensive than
the initial pass of the model-checking algorithm. Furthermore, we can perform
this analysis only once for an SPDI and store the information to be used in any
reachability analysis on that SPDI. Reduction, however, can only be applied
once we know the source and destination states.

5 State-Space Reduction Using Kernels

5.1 State-Space Reduction Using Kernels

We have already shown that any invariant set is essentially a pair of semi-
separatices, and since the invariance kernel is an invariant set, we can use the
results from section 4 to abstract an SPDI using invariance kernels. We now turn
our attention to state space reduction using controllability kernels:

Definition 4. Given an SPDI S, a loop σ, a source edge e0 and a destination
edge e1, an edge e is said to be redundant if it lies on the opposite side of a
controllability kernel as both e0 and e1:
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redundantσe0→e1 = {e : E | {e0, e1} ⊆ Cntrin(σ) ∪ Cntr(σ) ∧ e ∈ Cntrout(σ)}
∪ {e : E | {e0, e1} ⊆ Cntrout(σ) ∪ Cntr(σ) ∧ e ∈ Cntrin(σ)}.

We can prove that we can do without these edges to check feasibility:

Lemma 3. Given an SPDI S, a loop σ, a source edge e0, a destination edge e1,
and a feasible signature e0σe1 then there exists a feasible signature e0σ′e1 such
that σ′ contains no redundant edge from redundantσe0→e1. �


Given an SPDI, we can reduce the state space by discarding redundant edges.

Definition 5. Given an SPDI S, a loop σ, a source edge e0 and a destination
edge e1, we define the reduced SPDI Sσ

e0→e1 to be the same as S but without
redundant edges.

Clearly, the resulting SPDI is smaller than the original one. Finally, based on
proposition 3, we prove that reachability on the reduced SPDI is equivalent to
reachability on the original one:

Theorem 7. Given an SPDI S, a loop σ, a source edge e0 and a destination
edge e1, then, e1 is reachable from e0 in S if and only if e1 is reachable from e0
in Sσ

e0→e1. �


Given a loop which has a controllability kernel, we can thus reduce the state space
to explore. In practice, we apply this state space reduction for each controllability
kernel in the SPDI. Once a loop in the SPDI is identified, it is straightforward
to apply the reduction algorithm.

5.2 Immediate Answers to Reachability Questions

By definition of the controllability kernel, any two points inside it are mutually
reachable. This can be used to answer reachability questions in which both the
source and destination edge lie (possibly partially) within the same controllabil-
ity kernel. Using proposition 2, we know that any point in the viability kernel
of a loop can eventually reach the controllability kernel of the same loop, which
allows us to relax the condition about the source edge to just check whether
it (partially) lies within the viability kernel. Finally, we note that the union of
non-disjoint controllability sets is itself a controllability set which allows us to
extend the result to work for a collection of loops whose controllability kernels
form a strongly connected set.

Definition 6. We extend viability and controllability kernels for a set of loops
Σ by taking the union of the kernels of the individual loops, with Viab(KΣ) being
the union of all viability kernels of loops in Σ, and similarly Cntr(KΣ).

Definition 7. Two loops σ and σ′ are said to be compatible (σ � σ′) if their
controllability kernels overlap: Cntr(Kσ) ∩ Cntr(Kσ′) �= ∅.

We extend the notion of compatibility to a set of loops Σ to mean that all
loops in the set are transitively compatible: ∀σ, σ′ ∈ Σ · σ �∗ σ′.
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Fig. 6. Answering reachability using kernels

Based on proposition 2, we can prove the following:

Theorem 8. Given a source edge esrc and a destination edge edst, if for some
compatible set of loops Σ, esrc ∩ Viab(KΣ) �= ∅ and edst ∩ Cntr(KΣ) �= ∅, then
edst is reachable from esrc. �


Example 12. Fig. 6-(a) shows a viability and a controllability kernel of a cycle
and two intervals I and I ′. Whether I ′ is reachable from I cannot be answered
immediately in this case, but Fig. 6-(b) shows the overlapping of the viability
and controllability kernels depicted in Fig. 6-(a) with the kernels of an inner
cycle. I ′ thus lies in a compatible controllability kernel, and we can immediately
conclude (by theorem 8) that I ′ is reachable from I.

In practice, we propose to use these theorems to enable answering certain reach-
ability questions without having to explore the complete state space. It can
also be used to reduce reachability questions to (possibly) simpler ones by try-
ing to reach a viability kernel rather than a particular edge. As in the case of
semi-separatrices, a preliminary analysis of an SPDI’s kernels be used in all sub-
sequent reachability queries. SPeeDI [APSY02] starts by calculating and caching
all loops in the given SPDI, and can thus easily identify maximal compatible sets
of loops. Combining this technique with the semi-separatrix reduction technique
we envisage substantial gains.

6 Concluding Remarks

We have introduced the concept of semi-separatrices for polygonal hybrid sys-
tems, and presented non-iterative algorithms to calculate them.

Using semi-separatrices and kernels, we presented techniques to improve reach-
ability analysis on SPDIs. In all cases, the techniques require the identification
and analysis of loops in the SPDI. When multiple reachability questions are to



320 G. Pace and G. Schneider

be asked about the same SPDI, this information can be gathered once to avoid
repeated analysis. We note that most of this information is still required in reach-
ability analysis, and thus no extra work is required to perform the optimization
presented in this paper. The results presented all depend on checking whether
an edge lies within a given polygon which can be efficiently checked using stan-
dard geometrical techniques frequently used in computer graphics such as using
the odd-parity test [FvDFH96]. Sometimes, using kernel information, we can
answer reachability questions without any further analysis. In other cases, we
use semi-separatrices and controllability kernels to reduce the size of the SPDI.

Our work is obviously restricted to planar systems, which enables us to com-
pute these kernels exactly. In higher dimensions and hybrid systems with higher
complexity, calculation of kernels is not computable. Other work is thus based
on calculations of approximations of these kernels (e.g., [ALQ+01b, ALQ+01a,
SP02]). We are not aware of any work using kernels and semi-separatrices to
reduce the state-space of the reachability graph as presented in this paper.

We have built a toolset SPeeDI [APSY02] for the analysis of SPDIs. We have
recently extended this toolset to SPeeDI+ [PS] which calculates kernels of SPDIs.
We are currently exploring the implementation of the optimizations presented in
this paper to improve the efficiency of SPeeDI+. We are also investigating other
applications of these kernels in the model-checking of SPDIs.
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